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by Rébola [6], projected into d orbitals of Co atoms in the CoO2 sub-
system (top) and in the rocksalt type subsystem (bottom). The Fermi
level is shown with the red dashed lines. . . . . . . . . . . . . . . . . . . 28

1.14 CoO6 octahedron as it appears in the CoO2 subsystem. . . . . . . . . . 28
1.15 Schematic positions of the eg, e

′
g and a1g orbitals of Co in the CoO2

subsystem. The green arrows represent the electronic population for
Co4+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Schematic representation of the self-consistent loop for solution of Kohn-
Sham equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Supercells (Ca2CoO3)4(CoO2)6 (left) and (Ca2CoO3)6(CoO2)10 (right). 52
3.2 Electronic band structure of Ca3Co4O9 (AFM1) obtained within the

local density approximation with RA = 3/2, for each spin channel. . . . 56

6



LIST OF FIGURES 7

3.3 Total density of states of Ca3Co4O9 (AFM1) obtained within the local
density approximation with RA = 3/2, for each spin channel. . . . . . . 56

3.4 Spin-up (positive values) and spin-down (negative values) partial density
of states projected into d orbitals of Co atoms in the CoO2 subsystem
for the LDA calculation AFM1 with RA = 3/2. The states of the t2g
bands are the blue curves. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Spin-up (positive values) and spin-down (negative values) partial density
of states projected into d orbitals of Co atoms in the rocksalt subsystem
for the LDA calculation AFM1 with RA = 3/2. . . . . . . . . . . . . . . 57

3.6 Electronic band structure of Ca3Co4O9 (AFM1) calculated with the
B1WC functional for RA = 3/2, for each spin channel. . . . . . . . . . . 61

3.7 Density of states of Ca3Co4O9 (AFM1) calculated with the B1WC func-
tional for RA = 3/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.8 Spin-up (positive values) and spin-down (negative values) partial den-
sity of states projected into d orbitals of Co atoms in the CoO2 subsys-
tem. Calculations performed within the B1WC functional (AFM1) with
RA = 3/2. The blue curves designs the t2g bands. . . . . . . . . . . . . 62

3.9 Spin-up (positive values) and spin-down (negative values) partial density
of states projected into d orbitals of Co atoms in the rocksalt type sub-
system. Calculations performed within the B1WC functional (AFM1)
with RA = 3/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.10 Electronic band structure of Ca3Co4O9 (AFM1) with RA = 5/3, for
each spin channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.11 Total density of states of Ca3Co4O9 (AFM1) obtained with the B1WC
functional with RA = 5/3. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.12 Spin-up (positive values) and spin-down (negative values) partial den-
sity of states projected into d orbitals of Co atoms in the CoO2 subsys-
tem. Calculations performed within the B1WC functional (AFM1) with
RA = 5/3. The blue curves designs the occupied states. . . . . . . . . . 67

3.13 Spin-up (positive values) and spin-down (negative values) partial density
of states projected into d orbitals of Co atoms in the rocksalt type sub-
system. Calculations performed within the B1WC functional (AFM1)
with RA = 5/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.14 Our approximated RA = 3/2 supercell, with the rocksalt subsystem
untranslated (left) and translated along the b-axis of b

4 (right). . . . . . 68
3.15 Partial density of states of Co for different translation of the rocksalt

subsystem along b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.16 Seebeck coefficient in function of chemical potential at temperatures

from 100 K to 600 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.17 Power factor in function of chemical potential at temperatures from 100

K to 600 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.18 Seebeck coefficient in function of temperature when µ = EF . . . . . . . 73
3.19 Seebeck coefficient in function of temperature when µ = EF . . . . . . . 74
3.20 Seebeck coefficient in function of temperature at different chemical po-

tentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



LIST OF FIGURES 8

3.21 In-plane resistivity as a function of temperature at different chemical
potentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



List of Tables

1.1 Experimental fractional coordinates from Miyazaki et al ’s model [7] . . 22

2.1 Basis set for the oxygen atoms . . . . . . . . . . . . . . . . . . . . . . . 44
2.2 Basis set for the calciums atoms . . . . . . . . . . . . . . . . . . . . . . 44
2.3 Basis set for the cobalt atoms . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Experimental and optimized lattice parameters for each magnetic order-
ing within the local density approximation for RA = 3/2. . . . . . . . . 53

3.2 Optimized fractional coordinates within LDA (RA = 3/2) and experi-
mental data [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Energy differences from the spin-polarized AFM1 calculation. AFM1
yields the lowest total energy. . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Individual magnetic moments for Co atoms belonging to the CoO2 and
rocksalt-type subsystem computed within the local density approxima-
tion, with RA = 3/2, for the AFM1 magnetic structure. . . . . . . . . . 55

3.5 Experimental and optimized lattice parameters for each calculations
using the B1WC functional for the exchange-correlation energy, with
RA = 3/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Optimized fractional coordinates within B1WC (RA = 3/2) and exper-
imental data [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Individual magnetic moments for Co atoms belonging to the CoO2 and
rocksalt-type subsystem computed with the B1WC functional, with the
3/2 structural approximation. . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Experimental and optimized lattice parameters for each calculations us-
ing the B1WC hybrid function with RA = 5/3. . . . . . . . . . . . . . . 63

3.9 Optimized fractional coordinates within B1WC (RA = 5/3) and exper-
imental data [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.10 Individual magnetic moments for Co atoms belonging to the CoO2

and rocksalt-type subsystem computed with the B1WC functional, with
RA = 5/3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9



Chapter 1

Introduction

Transforming energy from one form to another has always been a staple of technology.
Using the driving force of water or wind to run the mills, using nuclear energy to
produce electricity, it is often necessary to transform energies in order to reach our
goals. In the context of environmental issues that become more and more prevalent in
today’s society, it is necessary to find new, clean and efficient ways to produce energy.
Also, using energy more efficiently and identifying new ways to recycle, it is another
timely challenge.

As of today, most energy resources are consumed as thermal energy, with an average
yield around 30 %. The remaining 70 % are wasted and the major part of this residual
energy is rejected in the environment under the form of thermal energy. This wasted
thermal energy serves no mean and is difficult to recycle using traditional conversion
methods since it is typically associated with temperature ranges below 700 K, presents
strong variations of power density and is stored within various environments.

This is why, over the past ten years, there has been a growing interest in thermo-
electric materials, which have the peculiar property to convert heat into electricity,
and vice-versa. Such a conversion is very interesting since electricity can be stored and
used for many different applications. Moreover thermoelectric conversion presents also
numerous advantages, such as the lack of maintenance, the lack of dependence upon
the type of heat source, the easy setup or even the longevity of this technology (related
to the absence of moving parts). Thermoelectric generators are composed of different
modules which contains many couples of p-type and n-type semiconducting materials
(as one can see in figure 1.1). The diffused heat goes hand in hand with the diffusion
of charge carriers, in the same direction, which produces a voltage.

Due to their actual weak efficiency, thermoelectric generators are not yet widely
exploited. There are however good hopes to use them, in combination with other
devices, in power plants for recovering waste heat and converting it into additionnal
electrical power. They have also been used in space probes, using radioisotopes as
heat sources. Some devices are also set up inside the exhaust pipe of automobiles to
convert waste heat into electricity. Those device are called automotive thermoelectric
generators.

Thermoelectrics can also be used for cooling applications. Those thermoelectric

10



CHAPTER 1. INTRODUCTION 11

coolers are most widely used and are mostly known as Peltier coolers. They are mainly
used to cool down electronic components, but are also used for many consumers prod-
ucts, such as camping/car coolers. They have also proven themselves to be precise
temperature regulators (error around 0.01 K) with the necessary electronic feedback.

One can expect that enhancing thermoelectric performances would lead to a greater
amount of mainstream applications, that could also be coupled with other energy
converters such as photovoltaics, which fail to grasp the thermal part of solar energy.
Even without challenging other traditionnal means for converting heat into electricity,
using thermoelectrics to convert wastes into usable energy is a sufficient motivation
to use them: whatever the amount, energy has always to be gained in the process!
These are examples among many others, but basically, thermoelectrics could play an
important role in the future.

Nowaday thermoelectric applications use compounds made of Si, Te, Pb or Se,
such as Bi2Te3, and they are not adapted for large scale applications for many reasons:
the production costs are high, some compounds are toxic, they are not stable at high
temperature, etc. Research now focus upon alternative materials which circumvence
the aforementionned inconveniences, and might yield to the massive production of
cheap, non-toxic and less restrictive thermoelectric device for a larger spectrum of
applications.

Figure 1.1: A Seebeck power module which generates electrical power [1].

Recently, interest has gathered around various classes of materials including oxides,
which were not expected to exhibit large thermoelectric coefficients, but present other
advantages.

The aim of this Master Thesis is to model from first-principles calculations the prop-
erties of one of the most promising thermoelectric oxide material: calcium cobaltite,
also known as Ca3Co4O9 or (Ca2CoO3)(CoO2)1.618.

In the first half of the present chapter, the basics of thermoelectricity are introduced.
The second half is devoted to the state of the art on thermoelectric oxides, focusing
mainly on Ca3Co4O9.
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1.1 Phenomenological approach to thermoelectrics

In this section, following the approach of Ref. [8], we will present a historical introduc-
tion to thermoelectricity, from the discovery of the phenomenon to the characterization
of the performance of thermoelectric compounds.

1.1.1 The Seebeck effect

Seebeck discovered the first thermoelectric effect in 1821. He observed that when a
metallic compass needle is placed in between two different conductors a and b, linked
by junctions at their extremities and under a temperature gradient, the needle is de-
flected 1.2. The deviation was first assigned to a magnetic effect due to the different
responses of the conductors. Later, it was discovered that a difference of electric po-
tential appeared at the junction of two materials under a temperature gradient. Thus,
thermoelectricity was discovered. The main use of the Seebeck effect is to measure
temperature with a thermocouple.

The Seebeck coefficient, or thermoelectric power (thermopower), of a material is
the measure of the magnitude of an induced voltage in response to the temperature
gradient across that material. It can be written:

E = Sab ∇rT (1.1)

where E is the electric field induced by the temperature gradient ∇rT

Figure 1.2: The experimental device used by Seebeck to discover the first thermoelectric
effect.

1.1.2 Peltier and Thomson Effects

In 1834, Peltier discovered a second thermoelectric effect: a temperature gradient
would appear at the junctions of two different materials a and b in which a voltage is
applied. In other words, when a current is flowing throught the junction, one junction
absorbs heat while the other generates it.

Thus, another coefficient is defined: the Peltier coefficient, measuring the magnitude
of produced and absorbed heat at the junction when a current is applied:

Q = ΠabI (1.2)
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with Q being the produced or absorbed heat, I being the electric current and Πab being
the Peltier coefficient for the couple a and b .

In 1851, Lord Kelvin predicted and observed that both Seebeck and Peltier effects
are related: a single material under a temperature gradient and which is traversed by an
electric current exchanges heat with the environment. Reciprocally, an electric current
is generated when a material is under a temperature gradient with heat flowing through.
This phenomenon would be called the Thomson effect. The main difference with the
Peltier and Seebeck effects is that the Thomson effect involves only one material and
no junction is required.

The Thomson effect offers many perspectives. In one way, thermoelectic materials
could be used as refrigerators, and be used in many applications which require a highly
precise temperature regulation. On the other way, converting heat into electricity
would reprensent a clean energy source, which is particulary interesting as humankind
aspires to respect Earth and its environment better than it used to.

1.1.3 Basic principles and thermoelectric coefficients

We will now introduce the different relations involved in thermoelectricity. Let’s con-
sider a basic thermoelectric circuit. Two materials a and b a linked together by two
junctions, which we should call X and W . In the case of the Seebeck effect, a difference
of temperature dT is applied between the two junctions X and W , which generates
a voltage dV between the extremities Y and Z (figure 1.3). In a open circuit, the

W

Y Z

X

a

b b

Figure 1.3: A basic thermoelectric circuit.

Seebeck coefficient is defined for the couple a and b:

Sab =
dV

dT
(1.3)

The sign of Sab is such as if the temperature at the junction W is higher than the
temperature at the junction X, and if VY > VZ , then Sab is positive.

In the case of the Peltier effect, a current I is flowing through the circuit. Heat is
then absorbed at one junction, and produced at the other. The Peltier coefficient is
defined for the couple a and b:

Πab =
Q

I
(1.4)



CHAPTER 1. INTRODUCTION 14

The sign of Πab is such as if the current goes from W to X and if the absorption of
heat occurs at the junction W , and the production of heat occurs at the junction X,
then Πab is positive.

In the case of the Thomson effect, both an electric current and a temperature
gradient are applied. Heat is then generated or absorbed in each part a and b of the
thermocouple individually. The thermal flux in each materials is given by the relation:

dQ

dz
= τI

dT

dz
(1.5)

where z is the spatial coordinate and τ is the Thomson coefficient of the material.
Those three effects are related, and it was demonstrated by Kelvin that each coefficient
characterizing those three effects are also related. The relations are:

Πab = SabT (1.6)

τa − τb = T
dSab
dT

(1.7)

In practice, applications for thermoelectric effects require at least two materials linked
together to form junctions. The Seebeck coefficient and Peltier coefficients have been
defined for the couple of materials a and b. However, the knowledge of the absolute
coefficients of each material (Sa, Sb, Πa and Πb) is important for their own optimiza-
tion.

The absolute coefficients are given by:

Sab = Sa − Sb (1.8)

Πab = Πa −Πb (1.9)

When one measures the thermopower of a couple of materials, one usually measures
the contribution from both part of the thermocouple. But it is possible to measure
the absolute Seebeck coefficient of a material by using superconductors. Indeed, in a
superconductor, electrons do not carry entropy, and thus superconductors have zero
thermopower. The absolute Seebeck, Peltier and Thomson coefficients also obey the
relations of Lord Kelvin:

Πa = Sa T (1.10)

τa = T
dSa
dT

(1.11)

1.1.4 Transport equations

Thermoelectric devices consist in two couples which are connected. Each couple is
composed of a doped material: one is p-type doped, with S > 0 and the other is n-
type doped with S < 0. Those materials are connected by a conductor and one assumes
that its thermopower is equal to zero. We also conveniently ignore thermal conduction
throught convection and radiation, and we assume that the Seebeck coefficient, as well
as the electrical resistivity and thermal conductivity to be temperature independent.
All couples in the thermoelectric device are connected in serial for electricity transport
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and in parallel for heat transport. For the sake of simplicity, one only considers a
single couple, with two materials, respectively n-type and p-type doped, with exactly
the same section.

Let’s consider a thermoelectric cooler (figure 1.4). Such a device consists of a “p”
branch with a positive S and an “n” branch with a negative S. These two branches
are joined by a metal interconnect. The two legs of each couple and all the other
couples in a thermoelectric device are connected thermally in parallel and electrically
in series. The objective is to figure out the thermodynamic considerations needed to
calculate the efficiency of such a device. There’s no loss in generality in analysing a
single thermocouple. The applied electric current is such that the charge carriers both

0

z

Ln
Lp

Figure 1.4: A diagram of a single-couple refrigerator. Both holes and electrons goes
from the cold source to the hot source.

goes from the cold source to the hot source. In other words, electrons in the n-type
doped branch move toward the hot source, and holes in the p-doped branch also move
toward the hot source. Thus, both charge carriers carry entropy from the cold source
to the hot source, and a thermal flux is induced such as it is opposed to the thermal
conduction.

In each branch, the total flux can be written as:

Qp = SpIT − κpAp
dT

dz
(1.12)

Qn = −SnIT − κnAn
dT

dz
(1.13)

κp and κn are the thermal conductivities of the p-doped and n-doped materials, Ap
and An are their sections, Sn and Sp are the absolute Seebeck coefficients, and z is the
spatial coordinate.
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Heat is transported from the cold source to the hot source with a total flux Qt:

Qt = (Qn +Qp)|z=0 (1.14)

At the same time, a Joule effect occurs in the circuit due to the electric current I. The

generated heat by this effect is equal to I2ρ
A , where ρ is the resistivity. The energy

conservation can be written for both branches of the circuit by considering that the
Joule heat supply is balanced by a non constant thermal gradient:

κpAp
d2T

dz2
=
I2ρp
Ap

(1.15)

κnAn
d2T

dz2
=
I2ρn
An

(1.16)

Since S is assumed temperature independent, the Thomson coefficient is zero and the
thermoelectric current does not supply or extract heat within the branches. We need
to consider the following boundary conditions. Let’s call Ln and Lp the length of each
branch: at the cold source (z = 0), the temperature is equal to the temperature of the
cold source. At the hot source (z = Lp or z = Ln), the temperature is equal to the
temperature of the hot source. Then the boundary conditions can be written as:

T = Tc at z = 0 (1.17)

T = Th at z = Ln or z = Lp (1.18)

so that equation (1.15) and (1.16) gives:

κpAp
dT

dz
= −

I2ρp(z − 1
2Lp)

Ap
+
κpAp(Th − Tc)

Lp
(1.19)

κnAn
dT

dz
= −

I2ρn(z − 1
2Ln)

An
+
κnAn(Th − Tc)

Ln
(1.20)

Substituting these results in eq. (1.12) and (1.13) and using (1.14) the total thermal
flux Qt can be written as:

Qt = (Sp − Sn)ITf −K∆T − 1

2
I2R (1.21)

where K is the thermal conductance and R is the electrical resistance of the circuit,
both defined as:

K =
κpAp
Lp

+
κnAn
Ln

(1.22)

R =
 Lpρp
Ap

+
 Lnρn
An

(1.23)

Both Joule and Seebeck effects contribute to the dissipated power W:

W = I.[(Sp − Sn).∆T + IR] (1.24)
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The efficiency εc of the thermoelectric cooler is the ratio between the extracted heat
Qt and the dissipated electric power W . From equations (1.21) and (1.24), it follows:

εc =
Qt
W

=
(Sp − Sn)ITf −K∆T − 1

2I
2R

I.[(Sp − Sn).∆T + IR]
(1.25)

One can directly see that for any fixed temperature difference ∆T , the efficiency de-
pends on the applied current I. From these expressions, it is possible to know which
current I can maximize either the efficiency or the extracted heat Qt.

It is also possible to determine the efficiency of a p-n device designed for generating
electricity from a difference of temperature. The efficiency εe is given by the ratio
between the useful electric power delivered to a load resistance r and the thermal flux
across the device:

εe =
Wuseful

Qt
=

I.[(Sp − Sn).∆T + IR]

(Sp − Sn)ITf −K∆T − 1
2I

2(R+ r)
(1.26)

Once again, it is possible to use this expression to find the electric current which
maximize the efficiency. Both cooling and generating electricity have two particular
values of I which maximize either the efficiency of conversion, or the electric power
produced or heat extracted. If those two efficiencies are maximized, it can be proved
that they only depends on the temperature Tc and Th, as well as the figure of merit
ZpnTA with TA = Tc+Th

2 being the average temperature.
The figure of merit ZpnTA is a dimensionless factor which has been defined for

the couple of material. Zpn can be expressed as a function of the intrinsic absolute
parameters of the materials from which the couple is made:

Zpn =
(Sn − Sp)2

(
√
κpρp +

√
κnρn)2

(1.27)

It is maximal when the efficiency is maximal, which happens when the product RK is
minimal, which occurs when:

LnAn
LpAp

=

√
ρpκn
ρnκp

(1.28)

Within a similar spirit, both the individual p-type and n-type materials have their
own intrinsic factor usually called “factor of merit”:

Z =
S2

ρκ
=
S2σ

κ
(1.29)

In order to get the highest possible efficiency, one should maximize the factor Zpn by
selecting the right components for the device. Looking at expression (1.27), one can
claim that optimizing a couple is not just simply optimizing individually the Z factors of
both branch for the couple. However, at the temperatures usually used for generating
electricity, the thermoelectrics properties of the best p-type and n-type materials are
similar and in this case, the factor Znp is not far from the average of the individual
factors Zn and Zp, and optimizing the materials individually is not unreasonable. This
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is why generally, when studying a material, one should look at the transport properties
of this material, such as the Seebeck coefficient S, the resistivity ρ or conductivity σ,

as well as the thermal conductivity κ, in order to maximize the factor S2

ρκ .
One can directly see that in order to maximize Z, it is necessary that the considered

material has a high Seebeck coefficient as well as a high conductivity: this means that
a small temperature difference can induce a high enough voltage, and that there’s the
lowest dissipation when the current flows across the material. It is also required that
the material has a weak thermal conductivity in order to maintain the temperature
gradient across the material.

When a thermoelectric device is used for cooling, the efficiency of the device is
given by the coefficient of performance COP . It is given by:

COP =
γTc − Th

(Tc − Th)(1 + γ)
(1.30)

with γ =
√

1 + ZT .
In a similar fashion, the maximal yield of conversion for a thermoelectric system

generating electricity is given by:

εe max =
(Th − Tc)(γ − 1)

Tc + γTh
(1.31)

1.1.5 Optimizing the thermoelectric properties of materials

As a consequence of the previous discussion, improving the thermoelectric performance
of a material can be achieved by increasing its “factor of merit” (equation (1.27)) or
equivalently its dimensionless “figure of merit”:

ZT =
S2σT

κe + κl
(1.32)

The numerator S2σ is also called power factor that one should maximize. The denom-
inator is the sum of the electronic contribution to thermal conductivity κe, and the
contribution from the lattice, κl, that one should minimize.

Often, both the electrical and thermal conductivities are related. For metals, the
ratio between electronic thermal conductivity κe and electrical conductivity σ follows
the Wiedemann-Franz law:

κe
σ

= LT (1.33)

with L is being a constant and T being the temperature. In other words, at a fixed
temperature, the ratio κe

σ stay the same and if one increases σ, so does κe. This behav-
ior can be extrapolated to other materials and basically, optimizing these coefficients
in opposition ends up being quite tricky.

The recent progress in increasing the figure of merit finds its origin in many con-
cepts and ideas which have been proposed in order to get rid of the interdependence of
electrical and thermal conductivities. For example, an interesting and intriguing idea
to achieve the highest figure of merit was proposed by Slack [9] and is referred to as
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the phonon-glass electron-crystal approach (PGEC). Basically, a PGEC material fea-
tures a very low thermal conductivity normally associated with amorphous materials,
but a high electrical conductivity normally associated with good semiconductor single
crystals.

Another idea proposed by Hick and Dresselhaus [10] is to confine the electrons
in planes forming so-called two-dimensional electron gas (2DEG) in order to yield
enhancement of the electrical conductivity. This can typically be realized in nanos-
tructures that further enhance thermal resistivity by increasing phonon scattering at
the interfaces between different layers.

In spite of intensive studies, Bi2Te3 with a figure of merit as high as 1 still remains
among the most powerful thermoelectrics since its discovery six decades ago (with a
power factor around 40−50 µWcm−1K−2 at room temperature [11]). Nevertheless, the
recent concepts and advancements in the field led to the discovery of other materials
that go beyond the performance of Bi2Te3 compounds, such as Bi2Te3/Sb2Te3 super-
lattices which reach ZT = 2.4 [12]. Yet, in order for thermoelectricity to be used in
larger scale applications and to become competitive against alternative energy sources,
the figure of merit should at least reach a value of 3 and beyond.

For some pratical applications however, research focuses upon improving the power
factor only instead of the figure of merit. This is typically the case for recovering
wasted heat. A large power factor implies large voltage generation during conversion
process. In this case, the power factor is considered as the key quantity to optimize in
order to achieve high thermoelectric efficiency. It is in this context that we will work
in the present study.

1.2 Oxides as thermoelectric materials: why such an
interest ?

Usually, most oxides have their transition metal atoms in their common oxidation
degrees that are stable at high temperatures, and they received little attention for
thermoelectric applications because of their strong ionic character with narrow con-
duction band widths arising from weak orbitals overlap, leading to localized electrons
with low carrier mobilities and therefore bad transport properties.

However, interest started to gather around oxides as it was discovered that the
misfit-layered material NaxCoO2 (x = 0.5), consisting of CdI2-type CoO2 layers and
sodium layers stacked and alternating along the c-axis (figure 1.5), had unexpected
good thermoelectric properties and attains S ≈ 100 µVK−1 at 300 K and ZT ≈
0.75 at 1000 K [13]. Following this discovery, studies started to focus on Co-based
layered oxides, such as calcium cobaltite [4, 13] and Bi2Sr3Co2Oy. Research also
started to focus around superlattices containing SrTiO3 and SrRuO3 layers [14], and
they can show good thermoelectric properties if doped with holes. These are p-type
compounds. But, as explicited in the previous section, thermoelectric devices use p-
type compounds in conjunction with n-type compounds. Amongst the n-type oxides,
strontium titanate (SrTiO3) shows good thermoelectric properties at room temperature
if it is heavily doped. In the same fashion, Al-doped ZnO (Al0.02Zn0.98O) displays good
thermoelectric performances (ZT = 0.3 at 1000 K) [15].
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But let us go back to NaxCoO2. Its peculiar crystallographic structure encouraged
scientists to investigate similar materials displaying good thermoelectric properties.
This class is the group of layered CoO2 compounds. The main advantage of these
materials is that they present different substructures with different individual transport
properties: indeed it is difficult to control an electronic system and a phonon system
simultaneously in a simple crystal and those complex crystals are considered ideal
in controlling electronic transport and heat transport separately, thus enhancing the
total conversion efficiency. For example, in NaxCoO2, the CoO2 nanosheets serve as
electronic transport layers because the electron system in those sheet are strongly
correlated, whereas the sodium ion nanoblocks serve as phonon-scattering regions and
thus achieve low lattice thermal conductivity.

Figure 1.5: Atomic structure of NaxCoO2.

1.3 Ca3Co4O9

Following the discovery of the thermoelectric properties of NaxCoO2, interest extended
to Ca3Co4O9 as it also displayed interesting thermoelectric properties such as a very
high Seebeck coefficient (around 125 µVK−1 at 300 K). The reason calcium cobaltite is
interesting is that the compound happens to be very stable at room temperature and
is very resistant against change of temperature, pressure and humidity. Therefore, it
could be useful in many applications. The following subsections are a summary of the
research performed since its discovery.

1.3.1 Crystallographic structure

The first specimens of Ca3Co4O9 were synthetized in 2000. Several groups [4, 7, 16]
studied the structure and all converged to the same results. They found out that the
compound is a misfit-layer oxide consisting in two monoclinic subsystems direction
with identical a, b and β parameters. The first subsystem consist of triple rocksalt-
type layers Ca2CoO3 and the second consists of CdI2-type CoO2 layers. The two
subsystems are stacked along the direction c as shown in figure 1.6. Following the
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discovery of NaxCoO2’s thermoelectric properties, the CoO2 planes are expected to be
the conducting system whereas the Ca2CoO3 subsystem is expected to be the phonon
glass. The incommensurate character of the structure is related to the fact that the
two subsystems have different b parameters whose ratio is irrational and corresponds
to the “golden” ratio1.

b1
b2

=
1 +
√

5

2
= 1.61803398...

Measurements by X-ray diffraction led by Lambert et al [16] showed that the CoO6

octahedra in the CoO2 layers were noticeably distorted. This would imply strong
interactions between the two subsystems. Two different structural phases were also
observed, which would prove the existence of polytypism in the system: orthorhombic
and monoclinic lattice symmetries were observed cooexisting in the specimens.

Figure 1.6: Atomic structure of Ca3Co4O9.

Two set of lattice parameters were proposed by Masset et al [4] and Miyazaki et
al [7] from their respective measurements :

a[4] = 4.8376(7) Å c[4] = 10.8330(1) Å β[4] = 98.06(1)◦

b
[4]
1 = 4.5565(6) Å b

[4]
2 = 2.8189(4) Å

a[7] = 4.83 Å c[7] = 10.84 Å β[7] = 98.13◦

b
[7]
1 = 4.56 Å b

[7]
2 = 2.82 Å

Miyazaki et al [7] also proposed a structural model for the two subsystems, by
setting the individual primitives cells of the two subsystems at the same origin along
b, then building the structure along this direction by adding successive unit cells for
both of these subsystems. The fractional coordinates for each atoms in each subsystems
are reported in table 1.1.

1In the following section, the incommensurate lattice parameters of the rocksalt type and the CoO2

subsystems are referred respectively as b1 and b2
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Subsystem Atom x
a
exp z

c
exp

CoO2 Co 0.000 0.000
O1 0.363 0.084
O2 0.636 0.896

RS Ca1 0.182 0.281
Ca2 0.312 0.727
Co 0.702 0.505
O1 0.718 0.338
O2 0.183 0.497
O3 0.837 0.677

Table 1.1: Experimental fractional coordinates from Miyazaki et al ’s model [7]

Atomic-resolution annular bright-field imaging experiments were also performed
by Klie et al [17] and they found out that, in contrast to previous reports [7, 16],
the oxygen-atomic columns in the CoO2 subsystem do not exhibit any disorder, while
there’s a global displacement of the oxygen-atomic columns in the Ca2CoO3 subsystem.

Thermal expansion aside, the atomic structure seems stable up to 400 K. Mea-
surement performed by Wu et al [2] and Wakisaka et al [18] show that the c lattice
parameter increase monotonically, but the a, b1 and b2 lattice parameters for both sub-
systems have a sudden drop around 400 K before increasing again (figure 1.7), which
could be due to a still unresolved structural phase transition.

Figure 1.7: Lattice parameters of Ca3Co4O9 between 346 K and 438 K. Sudden anoma-
lies occur in the same temperature range for the a, b1 and b2 parameters, around 400
K [2].
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1.3.2 Magnetic properties

Even though there is a consensus onthe crystallographic structure (at least up to room
temperature), the magnetic properties of calcium cobaltite are still under debate.

Masset et al ’s results [4] showed two different Co-O distances that are resulting in
the existence of cobalt with three different oxidation states 2+ in the rocksalt subsys-
tem, and 3+ and 4+ in the CoO2 subsystem, in agreement with x-ray experiments.
The spin state is ambiguous as the splitting of the 3d orbitals of Co into t2g and eg
orbitals is quite weak and two spin state configurations are observed: one of high spin
(HS) t42ge

2
g and one of low spin (LS) t62ge

0
g. Yang et al later proposed their estimation

of oxidation degrees from charge transfert measurements: +3 for Co in the rocksalt
subsystem and +3.38 for Co in the CoO2 subsystem [19].

Different magnetic phase transitions are observed and/or proposed are summarized
in figure 1.8.

Below 19 K, a ferrimagnetic phase coexisting with a long range incommensurate
spin density wave (LR-IC-SDW) is observed. The ferrimagnetic ordering is parallel to
the c-axis and the IC-SDW existing in the CoO2 subsystem and propagates in the ab
plane, with magnetic moments oscillating along the c-axis [3, 20, 21]. Above 19 K, the
ferrimagnetic order disappears, but the long range IC-SDW persists up to 27 K [3, 20].
At 27 K, a short range incommensurate spin density wave transition appears (SR-
IC-SDW) and a gradual evolution of the IC-SDW was observed up to 100 K where
it disappears [3, 20, 21]. From 100 K, a paramagnetic phase occurs. The effective
magnetic moment is 1.3 µB/Co at 300 K which is explained by a mixture of low-spin
and high-spin states [20, 21].

Around 400 K, a spin-state transition is said to occur by some publications [2–
4, 18, 20]. A first argument for this was proposed by by Masset et al [4] who performed
measurements of the magnetic susceptibility χ which showed a divergence around 400
K, hence a magnetic transition around this temperature. Below 400 K, the effective
magnetic moment measured is 1.3 µB/Co, while above this temperature, 2.8 µB/Co
is found, which could be explained by an intermediate spin state configuration t52ge

0
g

for the Co in the CoO2 subsystem as the splitting between t2g and eg orbitals is very
small, hence a weak energy gain [4]. Sugiyama et al argued that the transition is
discontinuous and as the temperature decreases, the system goes from a paramagnetic
low-spin + intermediate-spin state for the Co atoms (LS+IS) to a paramagnetic high-
spin + intermediate-spin state (HS+IS). A ferrimagnetic hysteresis loop is observed
for an applied magnetic field orthogonal to the ab plane which is not the case for an
in-plane applied magnetic field, which suggests an anisotropic magnetic behavior, with
the ferrimagnetic ordering parallel to c [20]. Wu et al also doubt the real nature of
the phase transition around 400 K as heat capacity measurements show little magnetic
field dependence during cooling and warming (figure 1.9). As one can see on 1.9,
the relative area of the hysteresis loop of the electrical resistivity decreases as the
magnetic field increases. Additionally, the evolution of the specific heat with respect
to the temperature is seen independant of the applied magnetic field, further cementing
the doubt on the magnetic nature of the phase transition.

Around 500 K, another spin-state transition is observed [2, 5].Wu et al [2] proposed
that the transition occurs for the Co3+ ions which go from a low-spin state to high-spin
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Figure 1.8: Magnetic phases observed for low and high temperature. The transition
around 400 K is still up to debate and we do not know its exact nature.

Figure 1.9: Resistivity and specific heat measurements (during cooling and warming)
by Wu et al [2].

1.3.3 Thermoelectric properties

The Seebeck coefficient has been measured by many groups [2–4] and all of them
found values between 125 and 133 µVK−1. The positive value of the Seebeck coefficient
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implies that holes are the charge carriers. From 100 K to 300 K, the Seebeck coefficient
does not change much as one can see in figure 1.10, and this is quite interesting for
optimizing other properties in this temperature range.

Figure 1.10: Seebeck coefficient as measured by Miyazaki [3].

The temperature dependence of the resistivity was also measured. A first measure-
ment by Masset et al on a bar of Ca3Co4O9 ceramic showed an anomaly at 400-420
K, which should be related to the structural and/or magnetic phase transitions de-
scribed in the previous subsections [4]. They also measured the resistivity ρab along
the CoO2 layers (in-plane) from 0 K to 300 K, as well as the out-of-plane resistivity
ρc. The resistivity also exhibits a strong anisotropic behavior as ρc is at least one
order of magnitude higher than ρab (figure 1.11). Such a strong anisotropic behavior
is indeed intended and a reason why such a misfit-layered compound gathers so much
interest. The electronic transport along the c direction is not as good as the one along
ab which is why only in-plane properties are investigated. Such behavior is typical to
-CoO2 layered compounds. Limelette et al [5] further analyzed the temperature depen-
dence of the in-plane resistivity from 0 to 600 K (figure 1.12). The three temperatures
Tmin, T ∗, and T ∗∗ separate respectively an insulating behavior, a strongly correlated
Fermi liquid, an incoherent metal and a high-temperature insulator. Comparing Mas-
set et al and Limelette et al ’s respective in-plane resistivity measurements (figures 1.11
and 1.12), one can notice that they are quite different : around room temperature, the
in-plane resistivity measured by Masset is three times superior to the one measured by
Limelette.

Miyazaki et al performed measurements on polycrystalline samples [3] and got the
following results at room temperature:

ZT300K = 3.5E−2

This figure of merit is quite low in comparison to what one should expect of a good
thermoelectric, but the composition of the sample used is quite different from the
usual monocrystals used in other experiments. Unfortunately, no other figure of merit
at room temperature was reported to our knowledge.
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Figure 1.11: In-plane (ρab) and out-of-plane (ρc) resistivities as measured by Masset [4].

Figure 1.12: In plane resistivity as measured by Limelette [5].

Finally, recently, Klie et al [17] performed experiments on thin films of Ca3Co4O9

and reported the achievement of a 27 % increase in the room temperature in-plane
Seebeck coefficient.

1.3.4 Electronic properties

High-resolution photoemission spectroscopy experiments on many cobalt oxides, in-
cluding Ca3Co4O9, were performed by Takeuchi [22], who observed that the electronic
population near the Fermi level comes from the d orbitals of the cobalt atoms in the
CoO2 layers, yields an intense peak in the density of states just below the Fermi level,
which means that the transport properties actually comes from the CoO2 layers, like
the usual −CoO2 thermoelectric oxides and that the charge carriers are holes. This was
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confirmed by other research groups [3, 19]. They also suggested that a gap open across
the Fermi level below 50 K, and indeed, their ultraviolet photoemission spectra showed
an empty density of state around EF below 10 K. The gap measured was estimated to
be around 20 meV at 10 K. This is coherent with the observed insulating behavior of
the electrical resistivity observed below 50 K. Klie et al performed bright-field imaging
and electron energy-loss spectroscopy and found out

1. that the oxygen atoms in the CoO2 subsystem are highly ordered, whereas the
oxygen-atomic columns in the Ca2CoO3 subsystem are globally displaced;

2. that holes in the CoO2 layers are very delocalized, further proving that this
subsystem is the one exhibiting the p-type electrical conductivity.

These properties have been investigated from a theoretical point of view using the
DFT formalism as well as chemical quantum calculations. The first DFT calculations
were performed by Asahi et al [23] within the local density approximation. Their cal-
culations yielded an electronic structure showing a high contribution of the 3d orbitals
of Co in the rocksalt subsystem around the Fermi level, without any contribution from
the 3d orbitals of Co in the CoO2 subsystem around, which means that the transport
properties actually comes from the Ca2CoO3 subsystem, and not the CoO2 subsystem,
unlike what was observed in NaxCoO2, and thus failed to reproduce Takeushi’s results.
Rébola et al [6] performed DFT+U calculations to take better treat strong electronic
correlations. They performed different calculations on supercells of different size in
order to model the incommensurability along b Their LDA results showed that the
states around the Fermi level come from a strong hybridation of the O 2p and Co 3d
orbitals, and that the rocksalt type subsystem mainly contribute to the population at
the Fermi level. Not much difference with Asahi’s results were noticed except a small
contribution of the d orbitals of Co in the CoO2. However, the DFT+U calculations
managed to contradict Asahi et al ’s results: when strong electronic correlations are
taken into account, which was not the case in Asahi’s calculations, they found that
the electronic population near the Fermi level comes from the t2g orbitals of Co in
the CoO2 subsystem, with almost no contribution from the rocksalt type subsystem
(figure 1.13). The eg orbitals of Co in the CoO2 subsystem are located around 2.3 eV
from the Fermi level and are not occupied whereas the t2g ones are mainly occupied.
The electronic structure showed little dependence upon the supercell used: the con-
tribution of the 3d orbitals of Co in the rocksalt subsystem increases weakly with the
volume of the unit cell, but this increment is negligible compared to the contribution
of the CoO2 subsystem. Thus, they concluded that the electronic properties should be
weakly dependant of the incommensurability.

The electronic structure computed with chemical quantum calculations performed
on clusters by Soret and Lepetit [24] displayed interesting properties. As the Co and
the O form octahedra in both the CoO2 and rocksalt type subsystem (figure 1.14),
the 3d orbitals of the cobalts are bound to split according to the crystal field theory.
The crystal field theory predicts that such a configuration, which is called octahedral
crystal field, induce a splitting between the 3d orbitals of the transition metal, which is
purely due to electrostatic interactions. The six O ions generate an electrostatic field
and their influence depends on the orientation of those oxygens. In a case of a perfect
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Figure 1.13: Spin-up and spin-down partial density of states, computed within LDA+U
by Rébola [6], projected into d orbitals of Co atoms in the CoO2 subsystem (top) and
in the rocksalt type subsystem (bottom). The Fermi level is shown with the red dashed
lines.

Figure 1.14: CoO6 octahedron as it appears in the CoO2 subsystem.

octahedron, the d orbitals are not equivalents anymore with respect to the oxygens,
hence a splitting:
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• The orbitals dxy, dyz, dxz are stabilized as they point between the oxygen p
orbitals. Therefore, an electron occupying one of those orbitals will interact less
with the oxygens and their energy is lowered. Those orbitals are called t2g.

• The orbitals dx2−y2 and dz2 are destabilized as they point toward the oxygen
p orbitals. Thus, an electron occupying one of those orbitals will interact more
with the oxygens and their energy is raised. Those orbitals are called eg.

Such a splitting is important, as the occupation of the orbitals are influenced by the
relative height of their energy levels. However, because the CoO6 octahedra in the
CoO2 layers are deformed, there is an additional splitting of t2g orbitals into one a1g

and two e′g orbitals. Up until then, such a splitting was observed in DFT calculations
but the relative order of the orbitals was unclear. Soret and Lepetit managed to prove
that the a1g orbital is always higher than the e′g orbitals of about 240 meV, which
results in Co atoms always in the low-spin state whatever its oxidation degree is (Co3+

or Co4+. For instance, the energy of the low-spin state for Co4+ is about 700 meV
lower than the energy in the high-spin state. This has an important consequence :
the a1g orbital is the one always carrying the hole involved in electrical conductivity
(figure 1.15), and the DFT+U calculations of Rébola failed to reproduce the splitting
of the t2g orbitals. Their results also showed that the electronic properties are strongly

Regular octahedra Distorted octahedra

Figure 1.15: Schematic positions of the eg, e
′
g and a1g orbitals of Co in the CoO2

subsystem. The green arrows represent the electronic population for Co4+.

modulated by the incommensurate nature of the crystal, in contradiction with Rébola
et al ’s own results.

1.4 Motivations

As one can see, Ca3Co4O9 is an interesting compound that has attracted significant
experimental interest. Yet, there are still many things to clarify about its behavior,
especially above room temperature.

There is also a relative lack of theoretical studies of this compound, which can
be attributed to its incommensurate nature and the impossibility to treat its exact
structure. Few research groups nevertheless managed to bypass this problem and
investigated the properties of Ca3Co4O9 from a theoretical point of view, with more
or less success [6, 23, 24].
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Seminal investigations within density functional theory and the LDA [23] did not
manage to reproduce an electronic structure in agreement with the experimental stud-
ies by Takeuchi et al [22]. More recent DFT+U calculations [6] managed to yield an
electronic density of states around the Fermi level in better agreement with experi-
ments, but failed to properly explain the magnetic structure and the thermoelectric
properties. DFT+U includes also an empirical Hubbard correction term, associated
to a lack of predicting power: several calculations with different Hubbard corrections
were performed by Rébola et al, and they published the results of those agreeing the
most with experimental observations.

Here, we decided to study Ca3Co4O9 and its structural and electronic proper-
ties within the density functional theory, but going beyond the usual LDA(+U) and
GGA(+U) formalism and using instead an original hybrid functional approach. Go-
ing further we plan to use the electronic structure so obtained at the first-principles
level to access for the first time the thermoelectric properties of Ca3Co4O9 within the
Boltzmann theory formalism.

Our purpose is to validate the hybrid approach for the study of Ca3Co4O9and then
use it to clarify its properties. The main questions we want to answer are:

1. Can we reproduce the expected electronic structure near the Fermi level and
specially the splitting of the d-levels with our hybrid functional approach ? Is
this compound intrinsically a metal or a semiconductor ?

2. Can we get, at our level of approximation, a magnetic ground state structure in
qualitative agreement with experimental findings ?

3. Does the incommensurate nature of Ca3Co4O9 strongly influence its properties ?

4. Can we access the transport coefficients within Boltzmann transport theory ?
Are their temperature dependence strongly influenced by spin and electronic
transitions ?



Chapter 2

Theoretical framework

The aim of the present work is to study theoretically the electronic and thermoelectric
properties of calcium cobaltite Ca3Co4O9. In order to perform such a study, we will
use density functional theory, which allows to model the electronic structure in periodic
systems and will give us insight on the bulk electronic properties of the material of
interest. Then, from the obtained electronic structure, we will compute the transport
properties of Ca3Co4O9 using the Boltzmann transport equation, which will gives us
some insight on its transport properties (electrical and thermal conductivities, Seebeck
coefficient) and thermoelectric performances (power factor S2σ and figure of merit ZT ).
This chapter is devoted to a basic description of density functional theory providing
access to ground state properties, of Boltzmann transport theory providing access to
thermoelectric properties, and of the computational tools implementing those theories
we used: Crystal09 [25] and BoltzTraP [26].

2.1 Ground state properties

2.1.1 The many-body problem

A crystal consists in a primitive unit cell containing atoms and repeated periodically all
over the space. The following theory is general and apply to any kind of solid. Let us
consider a quantum system which contains N0 nuclei, and N electrons in interactions.
Such a system can be characterized by a wave function which can be obtained by
solving the Schrödinger equation:

H(r,R) |Ψ(r,R)〉 = E |Ψ(r,R)〉

Where |Ψ(r, R)〉 is the eigenfunction and H is the hamiltonian operator, which is
the sum of distinct operators related to the kinetic and interaction energies between
electrons and nuclei:

H(r,R) = Tcore(R) + Ucore−core(R) + Te(r) + Uee(r) + Ucore−e(r,R)

The mathematical expressions in this chapter will make use of the following notations:

31
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• N0 is the total number of nuclei in the system,

• N is the total number of electrons in the system,

• the indexes κ and κ′ refer to the nuclei,

• the indexes i and j refer to the electrons,

• ri is the position of the electron i,

• Rκ is the position of the nucleus κ,

• Zκ is the charge of the nucleus κ.

If we work in atomic units1, we have:

1

4πε0
= 1 h̄ = 1 e = 1

me− = 1 c = 137.036

and the different terms can be written as:

Tcore(R) = −
N0∑
κ=1

1

2Mκ
∆Rκ (2.1)

Ucore−core(R) = +
∑
κ<κ′

ZκZκ′

|Rκ −R′κ|
(2.2)

Te(r) = −
N∑
i=1

1

2
∆ri (2.3)

Uee(r) = +
∑
i<j

1

|Ri −Rj |
(2.4)

Ucore−e(r,R) = −
∑
κ,i

Zκ
|ri −Rκ|

(2.5)

• Eq. (2.1) is the operator related to the kinetic energy of the nuclei,

• Eq. (2.2) is the operator related to the interaction energy between the nuclei,

• Eq. (2.3) is the operator related to the kinetic energy of the electrons,

• Eq. (2.4) is the operator related to the interaction energy between electrons,

• Eq. (2.5) is the operator related to the interaction energy between the nuclei and
the electrons.

1From this point and onward, we will make use of atomic units, unless if specified.
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In practice, the previous equation is impossible to solve analytically. It is therefore
necessary to make use of a few approximations in order to simplify the problem.

We notice that the nuclei have masses that are way more important than the mass
of the electrons (Mκ ≈ 1000 me). In that case, the term Ti(R) becomes very small
compared to Te, and we can consider it as a perturbation. This hypothesis is the
Born-Oppenheimer approximation, which was published in 1927 [27]. It means that
the electrons are more mobile than the cores and follow adiabatically ionic motions.
In other words, the inertia of the electrons dragged by the ions they are bound to is
considered negligible.

The unperturbed hamiltonian is the Born-Oppenheimer hamiltonian:

HBO(r,R) = Ucore−core(R) + Te(r) + Uee(r) + Ucore−e(r,R) (2.6)

and the Born-Oppenheimer energy can be obtained by solving the Born-Oppenheimer
Schrödinger equation:

HBO(r,R) |ψ(r,R)〉 = EBO(R) |ψ(r,R)〉 (2.7)

Since the Born-Oppenheimer hamiltonian does not have any differential operator on
R, R just becomes a simple parameter of the hamiltonian. By fixing R, Ucore−core(R)
becomes a global shift of the electronic energy so that we can further write:

HBO(r,R) = Hel(r,R) + Ucore−core(R) (2.8)

with

Hel(r,R) = Te(r) + Uee(r) + Ucore−e(r,R)

In practice, the Born-Oppenheimer approximation allows us to treat separately the
electrons and the nuclei:

1. the electronic ground state can be found for any given configuration of the nuclei
by solving

Hel(r,R) |Ψ(r,R)〉 = Eel(R) |Ψ(r,R)〉 (2.9)

or by using the variational principle:

Eel(R) = minΨ 〈Ψ|Hel |Ψ〉 (2.10)

2. then the ground state configuration of the nuclei R0 and the related energy are
found as the minimum of the Born-Oppenheimer energy

EBO(R) = Eel(R) + Ecore−core(R) (2.11)

→ EBO(R0) = minR(Eel(R) + Ecore−core(R)) (2.12)

At this stage the central problem is to solve equation (2.9). There are many methods
to solve such a problem. Density functional theory is one of them and is the topic of
the following section.
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2.1.2 Density Functional Theory

Up until now, we considered the many-body wave function Ψ as the “variable” of our
problem. Within the density functional theory (DFT), the approach is different: the
fundamental variable is no more the wave function, but the electronic density. If the
wave function associated to the ground state of the N-electron system depends on the
spatial coordinates r1, r2, r3, ..., rN , the electronic density is defined as:

d(r) =

N∑
i

δ(r− ri) (2.13)

n(r) = 〈Ψ(r1, r2, ..., rN )| d(r) |Ψ(r1, r2, ..., rN )〉 (2.14)

n(r1) = N(

∫ ∫
|Ψ(r1, r2, ..., rN )|2 dr2...drN ) (2.15)

As the density is space-dependent, from a problem with 3 x N variables, we get to a
problem with only 3 spatial variables. In other words, it is much easier to solve and
less demanding in terms of computational resources.

The reformulation of the many-body problem in terms of the density relies on the
two Honenberg-Kohn theorems and the Kohn-Sham ansatz that are now described.

2.1.2.1 The first Hohenberg-Kohn theorem

We will now see how the many-body problem can be recast into a problem which only
make use of the electronic density [28, 29] .
The first Hohenberg-Kohn theorem stipulates:
“the density of the ground state n0(r) of the many-body electronic system is entirely
and uniquely determined by the external potential Uext(r) modulo a constant”
Let us consider a family of hamiltonian Hel which all have identical Te and Uee oper-
ators, but which actually differ in their external potential Uext.

Proof2 : Ad absurdum. Let us consider two external potentials U
(1)
ext(r) and U

(2)
ext(r)

which are different (in more ways than just an additive constant), associated to the
same ground state electronic density n0(r). These two potentials leads to two different
hamiltonians, H(1) and H(2), with two different ground state wave functions |Ψ(1)〉 and
|Ψ(2)〉. As

∣∣Ψ(2)
〉

is not the ground state of the system with the hamiltonian H(1), we
have

E(1) = 〈Ψ(1)|H(1)|Ψ(1)〉
< 〈Ψ(2)|H(1)|Ψ(2)〉
< 〈Ψ(2)|H(2)|Ψ(2)〉+ 〈Ψ(2)|H(1) −H(2)|Ψ(2)〉

< E(2) +

∫
dr[U

(1)
ext − U

(2)
ext]n0(r)

⇒ E(1) < E(2) +

∫
dr[U

(1)
ext − U

(2)
ext]n0(r)

2For the sake of simplicity, this proof is only for the non-degenerated case. The proof can be
extended to degenerates cases.
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Similarly, as
∣∣Ψ(1)

〉
is not the ground state of the system with the hamiltonian H(2),

E(2) = 〈Ψ(2)|H(2)|Ψ(2)〉
< 〈Ψ(1)|H(2)|Ψ(1)〉
< 〈Ψ(1)|H(1)|Ψ(1)〉+ 〈Ψ(1)|H(2) −H(1)|Ψ(2)〉

< E(1) +

∫
dr[U

(2)
ext − U

(1)
ext]n0(r)

⇒ E(2) < E(1) +

∫
dr3[U

(2)
ext − U

(1)
ext]n0(r)

Summing these two inequalities yields E(1) +E(2) < E(2) +E(1), which is not possible.
The assumption that the same density is associated with the two different external
potentials is wrong. In other words only the external potential modulo a constant
determines the electronic density.

2.1.2.2 The second Hohenberg-Kohn theorem

The second theorem can be summarized as [28, 29]:
“A universal functional E[n], which gives the energy in regards to the electronic den-
sity n(r), exists for any external potential Uext(r). For each Uext(r), the ground state
energy is the energy which minimizes this functional, and the associated density n(r)
is the exact ground state density n0(r)”

Proof : As any properties are defined by the knowledge of the electronic density
n(r), they can be written as density functionals. The total energy can be written:

E[n] = T [n] + U [n] +

∫
Uext(r)n(r)dr (2.16)

= F [n] +

∫
Uext(r)n(r)dr (2.17)

F [n] is a partial contribution of the electronic system (kinetic and electrons-electrons
energies) to the total energy. As this functional is the same for any electronic system
and for any external potential, F is a “universal functional” of the density.

Let us now consider a system which has a ground state density n(1) which is given

by an external potential U
(1)
ext(r). In this case, the Hohenberg-Kohn functional is equal

to the expected value of the hamiltonian of the ground state
∣∣Ψ(1)

〉
:

E(1) =
〈
ψ(1)

∣∣∣H(1)
∣∣∣ψ(1)

〉
(2.18)

If we consider a second density n(2) associated to another wave function
∣∣Ψ(2)

〉
,

which is different than
∣∣Ψ(1)

〉
and therefore is not associated to the ground state, we

can see that the energy E(2) of this other state is higher than the ground state energy
E(1):

E(1) =
〈
ψ(1)

∣∣∣H(1)
∣∣∣ψ(1)

〉
<

〈
ψ(2)

∣∣∣H(1)
∣∣∣ψ(2)

〉
< E(2) (2.19)
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Therefore, the value of the energy functional evaluated for the ground state density
n0(r) must be inferior to the value obtained for any other density n. If the universal
functional F [n] is known, minimizing the total energy by changing the electronic den-
sity function n(r) while conserving all the particles in the system leads to the energy
and the density of the ground state.

2.1.2.3 The Kohn-Sham ansatz

While DFT is a beautiful theory, there is no pratical way to implement it in order to
find a solution to the many-body problem because the analytic form of F [n] is not
known. This would have made the theory useless in practice, but Kohn and Sham had
a brilliant idea in changing the unsolvable problem to a simpler and solvable problem
leading to the same solution.
This approach is the Kohn-Sham ansatz. Let us consider a system of non-interacting
particles, which are moving in an external potential vs and produce the same ground
state density as the many-body system. The key point of the Kohn-Sham ansatz is that
the whole electronic system can be expressed by a single product of each individual
wave function as the particles are considered independents from each other:

|ΨKS〉 =

∣∣∣∣∣
N∏
i=1

Ψi(ri)

〉
(2.20)

The many-body wave function which characterize this system is a Slater determinant
of monoelectronic orbitals |Ψi(ri)〉, which are solutions of the Schrödinger equation:

[−1

2
∆ri + vs(r)] |Ψi(ri)〉 = εi |Ψi(ri)〉 (2.21)

n(r) =

N∑
i

|Ψi(ri)|2 (2.22)

The universal functional F [n] can be expressed as the sums of three terms. One
represents the kinetic energy of the non-interacting particle, one the interaction of the
density with itself, and one represents the energy of exchange and correlation in the
system:

F [n] = TKS [n] + EH [n] + Exc[n] (2.23)

TKS is the kinetic energy of the non-interacting particles, which can be expressed as a
kinetic energy of the associated Slater determinant:

TKS = −1

2

N∑
i=1

〈Ψi| ∇2
ri |Ψi〉 (2.24)

EH [n] is called Hartree energy. It is the classical coulombian interaction energy of the
electronic density interacting with itself. Its expression is:

EH [n] =
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ (2.25)
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Finally, the term Exc corresponds to the exchange-correlation energy, which contains
the indiscernability of the electrons (Pauli’s principle) and the spatial correlations
between electrons (quantum fluctuations). It also contains the difference of kinetic
energy between the real system (interacting particles) and the Kohn-Sham system
(non-interacting particles): even if the electronic density of their ground state may be
the same, there is no reason that the density operator for both systems is the same,
and thus, there is no reason that both system must have the same kinetic energy. Exc
can be considered as a “melting pot” which contains all effects that we cannot treat
correctly.

We must now replace the Schrödinger equation of the many-body system by the
Schrödinger equation associated with the non-interacting particles system. We can
write the hamiltonian as:

H = −1

2

N∑
i=1

∆ri +

N∑
i=1

vs(ri) (2.26)

= −1

2

N∑
i=1

∆ri +

N∑
i=1

uext(ri) +

N∑
i=1

uH(ri) +

N∑
i=1

uxc(ri) (2.27)

with UH(r) being the Hartree potential

uH(r) =
δEH [n]

δn(r)
=

∫
n(r′)

r− r′
dr′ (2.28)

and Uxc(r) being the exchange-correlation potential

uxc(r) =
δExc[n]

δn(r)
= εxc[n] +

dεxc[n]

dn
(2.29)

If one expresses Exc as:

Exc[n] =

∫
εxc[n]n(r)dr (2.30)

The energy functional E[n] =

N∑
i=1

〈Ψi|H |Ψi〉 can be written as:

E[n] = −1

2

N∑
i=1

〈Ψi|∆ri |Ψi〉+

∫
n(r)uextdr + EH [n] + Exc[n]

= −1

2

N∑
i=1

∫
Ψ†i (r) [∆rΨi(r)] dr +

N∑
i=1

∫
uext |Ψi(r)|2 dr

+
1

2

N∑
i=1

∫
uH |Ψi(r)|2 dr +

N∑
i=1

∫
εxc[n(r)] |Ψi(r)|2 dr (2.31)

One can see that the energy functional only contains monoelectronic operators. This
means that solving the Schrödinger equation for the Kohn-Sham system can be done
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for each electrons individually. Thus, one can find each individual wave functions by
solving the eigenvalue problem:(

−1

2
∆r + uext(r) + uH(r) + uxc(r)

)
|Ψi(r)〉 = εi |Ψi(r)〉 (2.32)

with εi being the energy of the electron in the state |Ψi(r)〉.
The Kohn-Sham ansatz allows us to find the electronic density associated with the
ground state of the interacting electron system. However, even though the equation
are seemingly simpler to solve, there is still a major problem: there is no exact analytic
expression for the exchange-correlation energy functional Exc[n]. If it was known, than
it would be possible to find the exact ground state energy. Unfortunately, this is not
the case, so it will be necessary to approximate Exc[n]. Fortunately, many options are
avalaible to us, and those shall be presented in subsection 2.1.4.

2.1.3 Solving the Kohn-Sham equations

The Kohn-Sham equations prove themselves to be extremelly useful. From these equa-
tions, we are able to find the exact density and energy of the ground state of a many-
body electron problem just using an independent-particles approach. The only remain-
ing issue is the form of the exchange-correlation energy Exc, which is unknown and
need to be approximated as it will be further discussed in the next section. Assuming
that issue solved, we now have all the necessary ingredients in order to find the ground
state.

How can the Kohn-Sham equations be solved in practice ? As we’ve seen, the
external Kohn-Sham potential vs(r) is implicitely dependent on the electronic density
n(r). They must be consistent. The actual procedure in a numerical calculation
successively changes vs and n to approach the self-consistent solution as illustrated in
figure 2.1.

What is done is that we use an initial guess for the electronic density ni, which gen-
erates the effective KS potential vs. The Kohn-Sham equations are then solved, which
generates a new electronic density. If the self-consistency is reached, the calculation is
over. If not, the new electronic density is used to generate a new effective potential,
which is used to solve the Kohn-Sham equations, and so on... [28]

The iterative progression converges with a judicious choice of the new potential in
terms of the potential or density found at the previous step(s).

Sometime, achieving self-consistency can be a true challenge because it is necessary
to make a good choice for updating the potential vs or the density n in each iterations
of the previous progression. It is simpler to describe in term of the electronic density,
which is unique, whereas the external potential is unique modulo a constant.

The simplest approach is the linear mixing, which we are about to describe and
which has been used for our own calculations [28] . This approach is simple: the
electronic density input at step i + 1 is estimated as a fixed linear combination of
ninputi and noutputi at step i:

ninputi+1 = αnoutputi + (1− α)ninputi = ninputi + α(noutputi − ninputi ) (2.33)
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Figure 2.1: Schematic representation of the self-consistent loop for solution of Kohn-
Sham equations.

As any other information is missing during a calculation, this is indeed the best
choice to make and is essentially moving in an approximate steepest descent direction
for minimizing the energy. One cannot take the output density at one step as the input
of the next step. The main issue here is that doing so would make the consecutive
solutions jump around the bottom of the energy well, without ever reaching it.

2.1.4 Approximate exchange-correlation energy functional

In theory, Exc[n] is an universal density functional, which would have the same analyti-
cal form for any kind of material. However, as said previously, its analytical form is not
known. Also, the kinetic energy of the real system is not guaranteed to be equal to the
kinetic energy of the fictional Kohn-Sham system, and Exc[n] must contains the differ-
ence between these two energies. It is necessary to approximate it, and there are many
different options available to us. We shall review the most common approximations.

2.1.4.1 LDA - Local Density Approximation

The result of this approximation is a functional which happens to be the most widely
used in applied density functional theory. It is based on the homogeneous electron gas
model, which is a simple model which allows to treat the exchange part analytically: in
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such a gas, all the physical properties depends on a single parameter, the density n(r),
which is identical for any r: n(r) = n0. Therefore, the exchange-correlation energy
also depends on the density: Exc = Exc[n(r)] = Exc[n0]. The knowledge of the energy
of such a gas leads to the knowledge of the exchange-correlation part. If we make the
approximation that the exchange-correlation energy density at a point r, εxc(r), only
depends on the density at this point and that it is equal to the exchange-correlation
energy per particle of a homogeneous gas of density n0, we can use εxc locally for any
system where n(r) is not uniform, which is usually the case in many systems, we can
express the exchange-correlation energy as a local functional of the density:

ELDAxc [n] =

∫
n(r)εhomxc (n(r))dr (2.34)

(2.35)

The exchange-correlation energy can be written as the sum of two contributions, the
exchange part Ehomx and the correlation part Ehomc :

Ehomxc [n] = Ehomx [n] + Ehomc [n] (2.36)

The exchange part can be calculated analytically Hartree-Fock methods, which yields [28]:

Ehomx [n] = −3

4

(
3

π

) 5
3
∫
n4/3(r)dr (2.37)

The correlation energy part Ec[n] is approximated by fitting an analytical func-
tion on curves obtained using Quantum Monte-Carlo simulations of an homogeneous
electron gas, by subtracting the known exchange and kinetic parts of the total energy.

The most used formulations are those of Vosko, Wilkes and Nussair [30] (called
VWN) and Perdew and Zunger [31] (called PZ).

While LDA has proved to be very efficient, the approximation does have its weak-
nesses: it tends to underestimate lattice parameters and cannot treat strong electronic
correlations. However, many calculations has shown great accuracy in comparison to
experimental results, which is the reason why the local density approximation is so
popular among physicists.

The local density approximation can be generalized to magnetic systems by taking
the spin of each electron into account. If we consider that the magnetic properties
originates solely from the intrinsic magnetic moment of the electrons, this means that
we can treat two different electron densities: the spin-up electronic density n↑(r) and
the spin-down electronic density n↓(r). Basically, we have two times more equations
to solve in this case.

It is also necessary to define a spin-dependent exchange-correlation energy Exc[n] =
Exc[n

↑, n↓]. In the case of collinear magnetism, this means that we must use two
exchange-correlation potentials:

U↑xc = δExc[n
↑,n↓]

δn↑
and U↓xc = δExc[n

↑,n↓]
δn↓

The generalized approximation is the local spin density approximation (LSDA) and
the exchange functional is expressed as:

ELSDAx [n↑, n↓] = −2
2
3

3

4

(
3

π

)1/3 ∫ (
n↑

4
3 + n↓

4
3

)
dr (2.38)
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2.1.4.2 GGA - Generalized Gradient Approximation

The local density approximation may be popular and yields results quite coherent with
experimental measurements, yet there is no reason for the electronic density n(r) at a
given r does not depend on the electronic density around it. It is more than reasonable
to consider that the electronic density is not spatially uniform and that the density at
a given position r depends on the density around that position. The GGA methods are
semi-local approximations which are similar to the local density approximation, but
take into account the variations of the electronic density by expressing the exchange-
correlation energy as a functional of the density, but also as a functional of its gradient
and higher order derivatives:

EGGAxc [n] =

∫
n(r)εxc[n,∇n,∇2n, ...]dr (2.39)

The most popular functionals of this type are those of Perdew, Burke and Ernzerhof
(PBE) [32] and Perdew and Wang (PW91) [33].

2.1.4.3 Hybrid functionals

As local and semi-local approaches, the LDA and GGA are known to illy treat strong
correlation effects. One solution to go beyond is the DFT+U formalism, which consists
in adding a Hubbard correction U to increase repulsions in d and f orbitals (which are
very localized), therefore better treating electronic correlations. Another solution is to
better treat the exchange part, which is the topic of the following subsection.

Hybrid functionals has been introduced since the beginning of the nineties and are
mainly used in quantum chemistry calculations. These functionals try to solve problems
arising from the local density approximation and generalized gradient approximation.
By adding explicitly a fraction of the real exchange energy which can be obtained by
Hartree-Fock methods. They are used to take into account many non-local effects of
the exchange energy [28]. Hybrid functionals are expressed as a combination of various
LDA and GGA functionals with exact exchange:

Ehybxc [n] = ELDAxc + a0(E0
x − ELDAx ) + ax(EGGAx − ELDAx ) + ac(E

GGA
c − ELDAc )

The different terms are:

• ELDAxc : exchange-correlation functional as defined in the local density approxi-
mation.

• E0
x : exact exchange obtained for the non-interacting particles system.

• ELDAx : LDA exchange functional.

• EGGAx : GGA exchange functional.

• ELDAc : LDA correlation functional.

• EGGAc : GGA correlation functional.



CHAPTER 2. THEORETICAL FRAMEWORK 42

The coefficient a0, ax and ac are optimized with different LDA and GGA exchange-
correlation functionals.

The nomenclature of hybrid functionals is such as the first letter correspond to the
GGA functional used for the exchange energy, followed by the number of coefficients a0,
ax and ac to be optimized, followed by the letters corresponding to the GGA functional
used for the energy.

The B3LYP functional is the most used one and uses the Becke GGA functional for
the exchange energy, and the Lee-Yang-Parr [34] GGA functional for the correlation
energy. The three coefficients are :

a0 = 0.20

ax = 0.72

ac = 0.81

The B1WC functional has been optimized by D.I. Bilc et al [35] at the “Université
de Liège” and uses the Becke GGA functional for the exchange energy, and the Wu-
Cohen [34] GGA functional for the correlation energy. Only a0 is optimized. A value
of a0 = 0.16 has been obtained. The other coefficients are fixed at: ax = 1 − a0

and ac = 1. This functional has proved itself to be very useful to treat ferroelectric
and magnetic oxide materials. For the following calculations, we will make use of the
B1WC functional. As it contains a fraction of the exact exchange energy, it is expected
to give better results for magnetic materials. By using it, we aim at proving that it
is a conveniant alternative to DFT+U that can indeed be used to model the ground
state properties of calcium cobaltite, correcting the usual errors associated to the local
density approximation.

2.1.5 Crystal09, software and technical details

The present section is devoted to the software used to perform our calculation within
the DFT formalism, as well as the technical details relative to the computation of the
ground state properties.

2.1.5.1 General features

Crystal09 has been used in order to calculate the electronic properties of Ca3Co4O9

within the DFT framework.
The Crystal09 [25, 36] package allows to perform ab initio calculations of the ground

state energy, energy gradients, electronic wave function, density and various properties
of periodic systems. The fundamental aspect of Crystal09, which differentiates it from
other ab initio calculation packages, is that the single particle wave functions ψi(r; k)
are expanded as a linear combination of atomic orbitals defined in terms of local func-
tions. This method is usually known as the LCAO method (Linear Combination of
Atomic Orbitals). The local functions consist of linear combinations of Gaussian type
functions, whose exponents and coefficients are defined by input. Different functions of
symmetry s, p, d, f and even sp can be used. LCAO methods are usually utilized in cal-
culations for finite system. Many other codes actually work with plane waves [28, 29].
Local Gaussian orbitals nevertheless present some advantages:
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• the exchange energies are easier to calculate, however this is not the case for
kinetic energies;

• the interactions between electrons localized in 3d orbitals around the Fermi level
are better reproduced with local orbitals than plane waves because these orbitals
are very localized.

Each atomic orbital is a combination of gaussian functions:

χ(r, θ, φ) =

∑
j

Cje
−αjr2

[rlYlm(θ, φ)
]

(2.40)

with αj being the exponents and Cj the coefficients of the radial parts of the atomic
orbitals.

The choice of the basis set is a fundamental and crucial step in defining the level
of calculation and its accuracy, especially when dealing with periodic systems where
many chemical bonding can be found.

With Crystal09, we’ve been able to compute the following properties:

• the electronic structure: wave functions, eigenenergies and related band structure
and density of states;

• forces and stresses to relax the atomic structure and find the configuration of
minimal energy;

• magnetic properties within the collinear-spin approximation.

2.1.6 Technical details

The first calculations has been performed within the local density approximation with
the VWN [30] correlation functional. We also used the B1WC hybrid functional to
better treat correlations between electrons.
The same basis sets are used for all calculations. For the neutral atoms, we have each
orbitals populated as:

Co : 1s22s22p63s23p64s23d7

Ca :
[
1s22s22p6

]
3s23p64s2

O : 1s22s22p4

A pseudopotential is used to treat the core electrons of the calcium atoms (between
the square brackets). The details of our basis sets are reported in tables 2.1, 2.2, 2.3
and in [37, 38].

Spin-polarized calculations were performed for different magnetic structure : seven
different magnetic structures were set as a starting point and are labeled:

• FM1: the total magnetic spin is set at 2 µB for all cobalt atoms in the primitive
cell;
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ATOM TYPE EXP S COEF P COEF D/F/G COEF
Oxygen S 7.817E+03 1.176E-03 0.000E+00 0.000E+00

1.176E+03 8.968E-03 0.000E+00 0.000E+00
2.732E+02 4.287E-02 0.000E+00 0.000E+00
8.117E+01 1.439E-01 0.000E+00 0.000E+00
2.718E+01 3.556E-01 0.000E+00 0.000E+00
9.532E+00 4.612E-01 0.000E+00 0.000E+00
3.414E+00 1.402E-01 0.000E+00 0.000E+00

S 9.532E+00 -1.542E-01 0.000E+00 0.000E+00
9.398E-01 1.057E+00 0.000E+00 0.000E+00

S 2.846E-01 1.000E+00 0.000E+00 0.000E+00
P 3.518E+01 0.000E+00 1.958E-02 0.000E+00

7.904E+00 0.000E+00 1.242E-01 0.000E+00
2.305E+00 0.000E+00 3.947E-01 0.000E+00
7.171E-01 0.000E+00 6.274E-01 0.000E+00

P 2.137E-01 0.000E+00 1.000E+00 0.000E+00

Table 2.1: Basis set for the oxygen atoms

ATOM TYPE EXP S COEF P COEF D/F/G COEF
Calcium S 1.231E+01 5.874E-02 0.000E+00 0.000E+00

4.393E+00 -4.013E-01 0.000E+00 0.000E+00
9.380E-01 5.929E-01 0.000E+00 0.000E+00

S 4.217E-01 1.000E+00 0.000E+00 0.000E+00
S 2.000E-01 1.000E+00 0.000E+00 0.000E+00
P 5.974E+00 0.000E+00 -8.230E-02 0.000E+00

1.567E+00 0.000E+00 3.465E-01 0.000E+00
6.562E-01 0.000E+00 5.601E-01 0.000E+00

P 2.585E-01 0.000E+00 1.000E+00 0.000E+00

Table 2.2: Basis set for the calciums atoms
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ATOM TYPE EXP S COEF P COEF D/F/G COEF
Cobalt S 3.417E+05 2.270E-04 0.000E+00 0.000E+00

4.885E+04 1.929E-03 0.000E+00 0.000E+00
1.040E+04 1.110E-02 0.000E+00 0.000E+00
2.719E+03 5.010E-02 0.000E+00 0.000E+00
8.197E+02 1.705E-01 0.000E+00 0.000E+00
2.839E+02 3.692E-01 0.000E+00 0.000E+00
1.110E+02 4.033E-01 0.000E+00 0.000E+00
4.648E+01 1.433E-01 0.000E+00 0.000E+00

SP 8.556E+02 -5.400E-03 8.800E-03 0.000E+00
2.065E+02 -6.840E-02 6.200E-02 0.000E+00
6.905E+01 -1.316E-01 2.165E-01 0.000E+00
2.727E+01 2.616E-01 4.095E-01 0.000E+00
1.154E+01 6.287E-01 3.932E-01 0.000E+00
4.202E+00 2.706E-01 2.250E-01 0.000E+00

SP 5.151E+01 1.820E-02 -2.870E-02 0.000E+00
1.889E+01 -2.432E-01 -9.370E-02 0.000E+00
7.719E+00 -8.490E-01 2.036E-01 0.000E+00
3.540E+00 8.264E-01 1.419E+00 0.000E+00

SP 1.495E+00 1.000E+00 1.000E+00 0.000E+00
SP 5.985E-01 1.000E+00 1.000E+00 0.000E+00
D 3.061E+01 0.000E+00 0.000E+00 6.170E-02

8.309E+00 0.000E+00 0.000E+00 2.835E-01
2.706E+00 0.000E+00 0.000E+00 5.290E-01
9.080E-01 0.000E+00 0.000E+00 4.976E-01

D 2.824E-01 0.000E+00 0.000E+00 1.000E+00

Table 2.3: Basis set for the cobalt atoms
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• FM2: the total magnetic spin is set at 2 µB for all cobalt atoms in the rocksalt
type subsystem, and set to 0 for the cobalt atoms in the CoO2 subsystem;

• FM3: the total magnetic spin is set at 2 µB for all cobalt atoms in the CoO2

subsystem, and set to 0 for the cobalt atoms in the rocksalt type subsystem;

• NM: a spin polarization is not allowed in the calculation.

• AFM1: an antiferromagnetic order is set for the cobalt atoms in the rocksalt
type subsystem and set to 0 for the cobalt atoms in the CoO2 subsystem;

• AFM2: an antiferromagnetic order is set for the cobalt atoms in the CoO2 sub-
system and set to 0 for the cobalt atoms in the rocksalt type subsystem;

• AFM3: an antiferromagnetic order is set for the cobalt atoms between the two
subsystems;

The linear mixing has been set at α = 0.01. We used a 6x3x3 k-point grid for sum-
mation over the Brillouin zone. The energy convergence criterium was set at 10−7

Hartree.

2.2 Thermoelectric properties

The present section is devoted to the theoretical formalism providing access to the
thermoelectric properties of Ca3Co4O9. We will present a brief description of the
theory, followed by the description of the software implementing it.

2.2.1 Boltzmann transport theory

As seen previously in the phenomenological description of thermoelectrics, those ma-
terials can be characterized by a dimensionless factor estimating their efficiency to
convert an applied voltage to heat and vice-versa, while having a very high eletrical
conductivitity and a very low thermal conductivity. This factor can be seen as the fig-
ure of merit ZT , and a crucial part in engineering functional thermoelectric materials
is to optimize this factor [8, 26] .

ZT =
S2σT

κe + κl
(2.41)

Modelizing such materials requires the ability to evaluate the different transport coef-
ficients which are involved. Those are:

• the Seebeck coefficient S;

• the electrical conductivity σ;

• the electronic thermal conductivity κe.

• the lattice contribution to thermal conductivity, κl
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It is possible to calculate these properties (except κl) from the Boltzmann transport
equation. This equation (eq.(2.42)) describes the statistical behaviour of a fluid not
being in the thermodynamic equilibrium. In the present case, we consider a fluid of
electrons. This time, for clarity, these equations will be written in SI units.

df(r,k, t)

dt
= ∇rf(r,k, t).vk +∇kf(r,k, t).

F

h̄
+
∂f(r,k, t)

∂t
=
∂f(r,k, t)

∂t

∣∣∣∣
scatt

(2.42)

with

• f(r,k, t) being the distribution of the electrons and can be both space and time
dependent (the r and k values are altered by external fields and collisions);

• εk is the energy of the electrons with a momentum k;

• F is the force giving birth to their group motion and originates from the applied
fields;

• ∂f(r,k,t)
∂t |scatt is the variation in distribution due to scattering;

• vk is the group velocity of electrons with a momentum k.

vk =
1

h̄
∇kεk (2.43)

The electrons are submitted to a temperature gradient and an electric field. Under
such constraints, the electron distribution change and reach a steady state. For the
steady state case with small temperature and/or concentration gradient and electric
field, the time variation of the distribution function is much smaller than the space
variation distribution, so the term ∂f

∂t is negligible. The Boltzmann equation can be
written as:

vk.
∂fk
∂T
∇T + vk.(−e)

∂fk
∂εk

E =
∂fk
∂t

∣∣∣∣
scatt

(2.44)

where (-e) is the charge of electron, T is the temperature and E is the electric field.
Under the relaxation-time approximation, which considers a linear evolution from equi-
librium to the steady state under a temperature gradient and an applied electric field,
it follows:

vk.
∂fk
∂T
∇T + vk.(−e)

∂fk
∂εk

E =
f0
k − fk
τk

(2.45)

f0
k =

1

e(εk−µ)/kBT + 1
(2.46)

where f0
k is the electronic distribution at the equilibrium, µ is the chemical potential

and τk is the relaxation time.
Now let us take a look to the transported quantities, i.e. the electric current and
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thermal current. Those currents are both due to the thermal gradient and the applied
electric field. We have the following expressions, associating the sources of motion and
their respective coefficients:

J = LEEE + LET∇T (2.47)

Q = LTEE + LTT∇T (2.48)

The electrical conductivity is defined under an electric field only (∇T = 0):

J = σE =⇒ σ = LEE (2.49)

The thermal conductivity is defined when there is no current (J = 0):

Q = −κ∇T =⇒ κ = −
(
LTT −

LTE .LET
LEE

)
(2.50)

The Seebeck coefficient is also defined when there is no current, and using equa-
tion (2.47) and (2.48) it follows that:

E = S∇T =⇒ S = −LET
LEE

(2.51)

Let us go back to Boltzmann’s equation (2.45). We have:

fk = f0
k − τkvk.

∂fk
∂T
∇T − τkvk.(−e)

fk
∂εk

E (2.52)

If we consider that the steady state is a small deviation from the local equilibrium
distribution function, we have fk ≈ f0

k and we can express the derivatives

vk.
∂fk
∂T
∇T ≈ vk.

∂f0
k

∂T
∇T = vk.

(
−εk − µ

T

)
∂f0

k

∂εk
∇T (2.53)

vk.(−e)
fk
∂εk

E ≈ vk.(−e)
f0
k

∂εk
E (2.54)

We now have a linearized Boltzmann equation:

fk = f0
k − τkvk.

∂f0
k

∂T
∇T − τkvk.(−e)

f0
k

∂εk
E (2.55)

Now, if we express the thermal current Q and the electric current J in term of the
steady state electronic distribution fk, only considering electronic transport, we have:

J =
1

Ω
(−e)

∑
k

vkfk =
1

Ω
(−e)

∑
k

vkvkτk

[
e
∂f0

k

∂εk
E− ∂f0

k

∂T
∇T
]

(2.56)

Q =
1

Ω

∑
k

εkvkfk =
1

Ω

∑
k

εkvkvkτk

[
∂f0

k

∂T
∇T − e∂f

0
k

∂εk
E

]
(2.57)

where Ω is the unit cell volume of the crystal. Expressions (2.56) and (2.57) show
that the coefficients LEE , LET , LTE and LTT in equations (2.47) and (2.48) can be
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calculated from the derivatives of the energies and the derivative of the equilibirum

distribution. As
∂f0

k

∂εk
takes significative values around the Fermi level, the electrons

who contributes to the conductivity are those with energies around the Fermi level.
As the different transport properties can be anisotropic, they need to be expressed

as tensors. Similarly to the density of states, the conductivity distribution tensor is a
distribution over the energies, is defined in equation (2.58) and is the contribution to
the conduction of electrons with an energy ε:

σαβ(ε) = e2
∑
k

τkvα(k)vβ(k)δ(ε− εk) (2.58)

Now, if we make the approximation that, for any quantum state k, the relaxation time
is constant, the conductivity distribution becomes

σαβ(ε) = e2τ
∑
k

vα(k)vβ(k)δ(ε− εk) (2.59)

From the conductivity distribution, the total transports properties can be calculated
by integrating all over the energies [26]:

σαβ =
1

Ω

∫ +∞

−∞
σαβ(ε)(−∂f

∂ε
)dε (2.60)

κeαβ =
1

e2TΩ

∫ +∞

−∞
σαβ(ε)(ε− µ)2(−∂f

∂ε
)dε (2.61)

Sαβ =
1

eT

∫ +∞
−∞ σαβ(ε)(ε− µ)(−∂f∂ε )dε∫ +∞
−∞ σαβ(ε)(−∂f∂ε )dε

(2.62)

2.2.2 BoltzTraP software and technical details

2.2.2.1 General features

BoltzTraP is a computational tool which makes use of this theory. It is based on
smooth Fourier interpolations of the band energies. The group velocities are calculated
as derivatives of the energies; therefore, the band energies must be well resolved. The
information about the energies are preliminary computed with Crystal09 and is taken
as input of BoltzTraP. The code uses the interpolated band structure to calculate the
derivatives necessary to evaluate the transport properties.

2.2.2.2 Technical details

Following the results of our various DFT calculations, the thermoelectric properties of
Ca3Co4O9 have been computed

• from an electronic band structure resolved on a 36x18x18 k-point grid;

• for chemical potentials ranging from −2 eV to 2 eV (the Fermi level being set at
0 eV ),
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• for temperatures from 5 K to 600 K.

Additionnal details about the electronic band structure used as input of BoltzTraP
will be explicited in Chapter 3.



Chapter 3

Results and discussion

In the present chapter we present the results we have obtained on Ca3Co4O9. We
will first describe the approximation we used to model the incommensurate crystal-
lographic structure of the misfit compound. Then, we will present and discuss the
ground state crystallographic, magnetic and electronic properties we obtained from
DFT calculations, comparing what we get within different approximations. Finally,
we shall presents the thermoelectric properties calculated within Boltzmann transport
theory.

As explained in Chapter 1, Ca3Co4O9 is an incommensurate crystal, while DFT
codes like Crystal09 make use of periodic boundary conditions to model it in practice.
Hence, it is necessary to use an approximate unit cell of the real structure. Rébola et
al [6] performed DFT and DFT+U calculations and obtained the electronic structure of
calcium cobaltite using successive rational approximants to model the incommensurate
nature of the crystal. As the ratio between the two lattice parameters b1 and b2 is rather
close to the golden ratio 1.618 . . .1, they performed calculations on many approximed
structure of Ca3Co4O9 whose ratio b1/b2 is the ratio between two consecutive Fibonnaci
numbers (i.e. b1/b2 = F (n+ 1)/F (n) = 3/2, 5/3, 8/5, . . . ) which resulted in an
approximated unit cell of composition (Ca2CoO3)2F(n)(CoO2)2F(n+1)... As n increases,
the ratio gets closer to its experimental value.

Similarly to Rébola et al [6], we computed the electronic structure of Ca3Co4O9

using two approximated commensurate structures with b1/b2 = 3/2 and b1/b2 = 5/3,
resulting respectively to primitive cells of composition (Ca2CoO3)4(CoO2)6 (a unit
cell containing 42 atoms) and (Ca2CoO3)6(CoO2)10 (a unit cell containing 66 atoms)
as shown in figure 3.1. The space group used for these two unit cells is Pm. These
approximated structures will be referred to by their rational approximant and respec-
tively labeled RA = 3/2 and RA = 5/3. Results will be presented for two functionals
(LDA and B1WC), as well as the rational approximant used to model the structure
as a periodic crystal. We will discuss the atomic structure, the magnetic properties,
the electronic structure, and finally, the transport properties and the thermoelectric
performances.

1We remind the reader that b1 = bRS and b2 = bCoO2

51
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Figure 3.1: Supercells (Ca2CoO3)4(CoO2)6 (left) and (Ca2CoO3)6(CoO2)10 (right).

3.1 Ground state properties

In this section, we discuss the ground state properties obtained from our DFT calcu-
lations. Three different sets of calculations were performed : the first within the LDA,
with RA = 3/2, the second using the B1WC hybrid functional, with RA = 3/2. The
good results from these calculations encouraged us to perform a third set of calcultions,
still using the B1WC functional, but with RA = 5/3 this time. We will successively
present the results for each set and then compare them in order to study the influence
of the functional used for the exchange-correlation energy and the rational approximant
used to approximate the crystallographic structure.

3.1.1 LDA calculations with RA = 3/2

Preliminary calculations were performed within the local density approximation in
order to see if we can reproduce Asahi’s results [23]. These calculations have only been
performed with the 3

2 rational approximant. Several magnetic ordering were tested as
discussed in Chapter 2.

3.1.1.1 Crystallographic properties

We performed the full relaxation of the lattice parameters and the atomic positions
of RA = 3/2 for different magnetic orderings (FM1, FM2, AFM1, AFM2, AFM3).
The optimized lattice paramaters are given in the following table 3.1. Within LDA,
the results are relatively insensitive to the magnetic order. For the AFM1 calculation,
relative errors on the a and c lattice parameters are respectively about −1.5% and
−0.5%. These lattice parameters are underestimated, which is consistent with the
usual trend of the local density approximation. The relative error on b1 is by far the
largest, being of about −5% for each calculation. The relative error on b2 is around
+2%. The biggest errors are so on the b parameters of the two subsystems. They come
from the 3/2 approximant which is far from the value of the golden ratio, obliging the
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a(Å) b2(Å) b1(Å) c(Å) β(◦)
Exp (300 K) [7] 4.830 2.820 4.560 10.840 98.130

FM1 4.747 2.877 4.315 10.793 97.784
FM2 4.746 2.876 4.314 10.795 97.777

AFM1 4.762 2.876 4.314 10.789 97.837
AFM2 4.763 2.875 4.313 10.789 97.842
AFM3 4.747 2.876 4.314 10.794 97.784

Table 3.1: Experimental and optimized lattice parameters for each magnetic ordering
within the local density approximation for RA = 3/2.

two layers to fit within the same unit cell, putting the rocksalt layer in compression and
the CoO2 planes in tension. The other calculations (FM1, FM2, AFM2 and AFM3)
provide similar results and errors.

The structural optimization of atomic coordinates gives results listed in table 3.2
in comparison with the experimental results of Miyazaki et al [7]. Our results are
generally in good agreement with the experimental fractional coordinates. However,
the fractional coordinates of O2 in the rocksalt-type subsystem along the a-axis and
O1 in the CoO2 subsystem along the c-axis are rather off compared to experimental
data. These errors may originate from the fact that we use an approximated unit cell,
and the “experimental” atomic positions only represent a structural model.

One can see in table 3.2 that the fractional coordinates are very similar between
all the magnetic phases we computed so that we can be confident in the fact that the
crystallographic structure does not depend on the magnetic ordering.

3.1.1.2 Magnetic properties

We next compared the energies of the different relaxed structures for different magnetic
orders of Co atoms for each subsystems. The results are summarized in table 3.3.

Despite some discrepancies, AFM1 and AFM2 actually converge toward the same
solution, as FM1, FM2 and AFM3 do. As one can see in table 3.3, AFM1 is the
calculation yielding the lowest total energy, and thus is assumed to be the ground
state at our level of approximation. This is why in what follows, we will focus upon
the ground state electronic structure yielding the antiferromagnetic order AFM1.

The magnetic moments for each cobalt atom in both subsystems are given in ta-
ble 3.4. One can see that, in our calculations, the magnetic properties are mainly
localized in the rocksalt type subsystem2. If we perform the average over the mod-
ulus of the individual magnetic moments of Co atoms for the whole system, we get
µave.tot. = 0.750 µB/Co, which is relatively far from the value measured by Masset et
al (1.3 µB/Co) [4]. It can be argued that as the rocksalt subsystem hold a non-zero
effective magnetic moment (−0.048 µB), our AFM1 calculation tend to reproduce the
ferrimagnetic state proposed for calcium cobaltite below 19 K [3, 20]. However, as ex-
plained in Chapter 2, we performed our spin-polarized calculations within the collinear

2The magnetic order obtained with all of our calculation is either ferromagnetic (FM1, FM2 and
AFM3 yield such an order) or antiferromagnetic (AFM1 and AFM2)
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System FM1 FM2 AFM1 AFM2 AFM3 Exp

CoO2

Co x/a -0.008 -0.008 -0.009 -0.009 -0.008 0.000
z/c 0.000 0.000 0.000 0.000 0.000 0.000

O1 x/a 0.357 0.358 0.356 0.356 0.357 0.363
z/c 0.090 0.090 0.090 0.090 0.090 0.008

O2 x/a -0.373 -0.373 -0.374 -0.374 -0.373 -0.364
z/c -0.091 -0.091 -0.091 -0.091 -0.091 -0.104

RS

Ca1 x/a 0.172 0.172 0.173 0.173 0.173 0.182
z/c 0.271 0.271 0.270 0.271 0.271 0.281

Ca2 x/a 0.311 0.311 0.312 0.312 0.311 0.312
z/c -0.272 -0.272 -0.272 -0.272 -0.272 -0.273

Co x/a -0.302 -0.302 -0.306 -0.306 -0.302 -0.298
z/c -0.500 -0.500 -0.500 -0.500 -0.500 -0.495

O1 x/a -0.305 -0.306 -0.304 -0.304 -0.305 -0.282
z/c 0.336 0.336 0.336 0.336 0.336 0.338

O2 x/a 0.295 0.294 0.299 0.300 0.295 0.183
z/c 0.500 0.500 0.500 0.500 0.500 0.497

O3 x/a -0.203 -0.203 -0.202 -0.202 -0.203 -0.163
z/c -0.337 -0.337 -0.337 -0.337 -0.337 -0.323

Table 3.2: Optimized fractional coordinates within LDA (RA = 3/2) and experimental
data [7].

∆E per unit cell (meV)
EFM1 − EAFM1 74.30
EFM2 − EAFM1 67.49
EAFM2 − EAFM1 1.7
EAFM3 − EAFM1 67.06

Table 3.3: Energy differences from the spin-polarized AFM1 calculation. AFM1 yields
the lowest total energy.

approximation, it is therefore impossible to obtain the incommensurate spin density
wave in the CoO2 subsystem as observed in experiments [3, 20]. The latter is nev-
ertheless expected to have no significant effect on the properties of interest in this
work.

3.1.1.3 Electronic properties

We then investigated the electronic properties of Ca3Co4O9 by plotting the band struc-
ture (figure 3.2) and the density of states around the Fermi level (figure 3.3, the positive
values are for the majority spin channel, the negative values are for the minority spin
channel), for the magnetic phase AFM1. In the band structure, the full black bands
are fully populated, the full red bands are partly occupied, and the black dashed bands
are unoccupied. As one can see in both figures, there is no band gap across the Fermi
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AFM1
CoO2 µs(µB) RS µs(µB)
Co1-1 -0.035 Co1-1 1.892
Co1-2 -0.023 Co1-2 1.733
Co2-1 -0.023 Co2-1 -1.836
Co2-2 -0.044 Co2-2 -1.836
Co3-1 -0.044
Co3-2 -0.030

Average -0.033 -0.012

Table 3.4: Individual magnetic moments for Co atoms belonging to the CoO2 and
rocksalt-type subsystem computed within the local density approximation, with RA =
3/2, for the AFM1 magnetic structure.

level and therefore, our LDA calculation suggests that calcium cobaltite is a metal.
To further study the electronic structure, and in regards to Takeuchi et al ’s results

about the role of the d orbitals of Co atoms in the conduction properties [22], we plotted
the partial density of states projected into d orbitals of Co for both CoO2 and rocksalt
subsystems (figure 3.4 and 3.5), resolved in local axis oriented along the octahedra in
the two different subsystems3. The Fermi level EF is shown with the vertical dashed
lines.

One can see that the contribution around the Fermi level comes from those d or-
bitals from both subsystems. However, the contribution at EF mainly comes from the
rocksalt subsystem, which is coherent with Asahi et al and Rébola et al ’s LDA calcu-
lations [6, 23], but ultimately fails to reproduce the experimental results of Takeuchi et
al [22] who found very little, if any, contribution from the rocksalt at the Fermi level:
they reported that, like NaxCoO2, the main contribution around the Fermi level comes
from the d orbitals of Co atoms in the CoO2 subsystem.

However, the splitting [24] between of the 3d orbitals of Co in the CoO2 as t2g (blue
plots in figure 3.4) and eg orbitals is well obtained (around 1.2 eV): the dxy and dxz
orbitals are mainly occupied, the dyz is not fully occupied, and the dz2 and dx2−y2 are
not occupied. The dyz is the one holding the hole involved in the electrical conduction,
in agreement with Klie et al ’s experiments [17] and with Soret and Lepetit’s quantum
chemistry calculations [24].

With these results, we confirm the failure of the local density approximation to yield
the correct electronic structure so we did not compute the thermoelectric properties
within this approximation.

3Co atoms are at the center of oxygen octahedra in both layers. In order to resolve the individual
d contributions, we used a set of local cartesian coordinates, aligned along the O-Co-O diagonals.
In practice, after structural relaxation the octahedra are deformed and the diagonals not exactly
orthogonal anymore. Thus, we consider a set of local cartesian coordinates that display good average
alignment with the diagonals.
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Figure 3.2: Electronic band structure of Ca3Co4O9 (AFM1) obtained within the local
density approximation with RA = 3/2, for each spin channel.

Figure 3.3: Total density of states of Ca3Co4O9 (AFM1) obtained within the local
density approximation with RA = 3/2, for each spin channel.
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Figure 3.4: Spin-up (positive values) and spin-down (negative values) partial density
of states projected into d orbitals of Co atoms in the CoO2 subsystem for the LDA
calculation AFM1 with RA = 3/2. The states of the t2g bands are the blue curves.

Figure 3.5: Spin-up (positive values) and spin-down (negative values) partial density
of states projected into d orbitals of Co atoms in the rocksalt subsystem for the LDA
calculation AFM1 with RA = 3/2.
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3.1.2 B1WC calculations with RA = 3/2

Then, we decided to use the B1WC hybrid functional to treat the electronic structure
of Ca3Co4O9. Our choice is motivated by the success [39] of B1WC to treat materials
containing manganese which is a transition metal such as Co. The main problem is that
cobalt presents 3d orbitals which are spatially localized: within the hybrid functional
formalism, we ought to better treat exchange effects on these orbitals. Using exactly
the same input parameters we used for the LDA calculations and still using the rational
approximant 3/2, we let the lattice, the atomic positions and the electronic structure
relax from different starting points as described by the previous chapter. Only FM2
and AFM1 managed to converge.

3.1.2.1 Crystallographic properties

The optimized and experimental lattice parameters are given table 3.5. The AFM1

a(Å) b2(Å) b1(Å) c(Å) β(◦)
Exp (300 K) [7] 4.830 2.820 4.560 10.840 98.130

FM2 4.822 2.861 4.292 10.924 97.924
AFM1 4.827 2.863 4.295 10.919 97.933

Table 3.5: Experimental and optimized lattice parameters for each calculations using
the B1WC functional for the exchange-correlation energy, with RA = 3/2.

results are globally closer to the experimental values compared to the FM2 ones. The
AFM1 calculation yields for the β parameter a result very close to the experimental
value, underestimated by 0.2%. The a parameter is underestimated by 0.1% while the
c parameter is overestimated of 0.7%. On the other hand, the relaxed b2 and b1 param-
eters show larger deviations from the experimental values, respectfully overestimated
by 1.5% and underestimated by 6%. The similarity with LDA results confirm that the
bad estimation of b1 and b2 is not a problem of functional but rather inherent to the
3/2 approximant that is relatively far from the value of the golden ratio.

The structural optimization AFM1 and FM2 yield results listed in table 3.6 and
are compared to the experimental values of Miyazaki [7]. The agreement of our results
with the experimental fractional coordinates is reasonable within a few percents. Once
again, the fractional coordinates of O2 in the rocksalt-type subsystem along the a-axis
and O1 in the CoO2 subsystem along the c-axis are rather off compared to experimental
data, which can be explained by our structural approximation. One can also observe
that the optimized crystallographic structure is totally independent of the magnetic
order.

Finally, the use of the hybrid functional B1WC allowed us to obtain more accurate
lattice parameters of Ca3Co4O9 in comparison to the experiment, but unfortunately we
were not able to correct the errors we already had with the LDA calculations and that
are related to the rational approximant. Overall, the choice of the exchange-correlation
functional does not seem to affect the agreement of the computed structures with the
experimental ones.
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Subsystem FM2 AFM1 Exp

CoO2

Co x/a -0.007 -0.007 0.000
z/c -0.001 -0.001 0.000

O1 x/a 0.357 0.357 0.363
z/c 0.091 0.091 0.008

O2 x/a -0.371 -0.371 -0.364
z/c -0.092 -0.092 -0.104

RS

Ca1 x/a 0.171 0.171 0.182
z/c 0.265 0.265 0.281

Ca2 x/a 0.314 0.313 0.312
z/c -0.266 -0.266 -0.273

Co x/a -0.302 -0.304 -0.298
z/c -0.500 -0.500 -0.495

O1 x/a -0.302 -0.301 -0.282
z/c 0.339 0.339 0.338

O2 x/a 0.282 0.285 0.183
z/c 0.500 0.500 0.497

O3 x/a -0.200 -0.199 -0.163
z/c -0.340 -0.340 -0.323

Table 3.6: Optimized fractional coordinates within B1WC (RA = 3/2) and experi-
mental data [7].

3.1.2.2 Magnetic properties

As mentionned earlier, our calculations were performed starting from several initial
configurations for all Co atoms in both subsystems, as described in Chapter 2, and
only FM2 and AFM1 managed to converge. In terms of relative energy between FM2
and AFM1, we got the following result: AFM1 has an energy 62.94 meV lower than
FM2, which is consistent with what Asahi et al previously found [23] and our previous
LDA calculations. Thus, we shall once again focus on the AFM1 structure.

Table 3.7 displays the effective magnetic moments for Co atoms in both CoO2 and
Ca2CoO3 subsystems.

With our calculations performed with the B1WC hybrid functional, we obtained
effective magnetic moments for Co atoms belonging to the CoO2 subsystem close to
zero. We find an average over the modulus of the individual magnetic moments for
Co atoms belonging to the rocksalt-type subsystem close to what Rébola [6] obtained
with his DFT+U calculations (around 2.65 µB). If we perform the average over the
modulus of the individual magnetic moments of Co atoms for the whole system, we
get µave.tot. = 1.055 µB/Co, which is quite close to the value measured by Masset et
al (1.3 µB/Co) [4]. Once again, we can argue that the antiferromagnetic ordering
and the resulting net magnetic moment in the rocksalt subsystem due to Co atoms
(−0.135 µB) is in line with the ferrimagnetic phase observed below 19 K [3, 20], and one
can see that its value increased from our LDA calculation, and this can be attributed
to the better treatement of the exchange-correlation energy expected from the hybrid
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AFM1
CoO2 µs(µB) RS µs(µB)
Co1-1 0.000 Co1-1 2.870
Co1-2 0.000 Co1-2 2.334
Co2-1 0.000 Co2-1 -2.669
Co2-2 0.001 Co2-2 -2.669
Co3-1 0.001
Co3-2 0.000

Average 0.001 -0.034

Table 3.7: Individual magnetic moments for Co atoms belonging to the CoO2 and
rocksalt-type subsystem computed with the B1WC functional, with the 3/2 structural
approximation.

functional formalism.

3.1.2.3 Electronic properties

In order to gain insight into the transport properties of Ca3Co4O9, we plotted the band
structure around the Fermi level EF (figure 3.6 for AFM1), as well as the density of
states (figure 3.7). The horizontal dashed line is the Fermi level, the full bands are the
occupied states and the dashed bands are the unoccupied states.

The AFM1 band structure displays bands far from EF that are the same for both
spin channels. However, near EF , the bands disperse differently for each spin channels.
The majority spin band structure present a gap of 1.25 eV, whereas the minority spin
channel has a band dispersing across EF (red band in figure 3.6), therefore this B1WC
calculation predict a half-metallic behavior. This result is in agreement with Rébola
et al ’s DFT+U calculations. Both spin channels taken into account, it seems that we
have a small gap just above the last partly occupied band, which could be related to
the gap predicted by Takeuchi et al [22]. However, a single band disperse across the
Fermi level, therefore, our system is predicted as a conductor, as our LDA calculations
predicted.

To further investigate the electronic structure, we plotted partial density of states
projected into d orbitals of Co for both subsystems in the same fashion we did in the
previous subsection (figure 3.8 and 3.9). The Fermi level EF is displayed with the
vertical dashed lines.

It turns out that the main energetic contributions near the Fermi level are from the
3d orbitals of Co atoms in the CoO2 subsystem and no contribution of the 3d orbitals of
Co atoms in the rocksalt-type subsystem is found, contrary to what is obtained in LDA
and which is in agreement both with Takeuchi’s experiment [22] and Rébola et al ’s
DFT+U calculations [6]. However, in contrast with Rébola’s et al ’s calculations, we
find as near as zero contribution of the d orbitals of Co atoms in the CoO2 subsystem
at the exact Fermi energy.

As one can see, the density of states below the Fermi level mainly originates from
the t2g bands, while the eg bands lies about 3.3 eV above the Fermi level and are
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Figure 3.6: Electronic band structure of Ca3Co4O9 (AFM1) calculated with the B1WC
functional for RA = 3/2, for each spin channel.

Figure 3.7: Density of states of Ca3Co4O9 (AFM1) calculated with the B1WC func-
tional for RA = 3/2.
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Figure 3.8: Spin-up (positive values) and spin-down (negative values) partial density
of states projected into d orbitals of Co atoms in the CoO2 subsystem. Calculations
performed within the B1WC functional (AFM1) with RA = 3/2. The blue curves
designs the t2g bands.

Figure 3.9: Spin-up (positive values) and spin-down (negative values) partial density
of states projected into d orbitals of Co atoms in the rocksalt type subsystem. Calcu-
lations performed within the B1WC functional (AFM1) with RA = 3/2.
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mainly unoccupied as predicted by the crystal field theory. The t2g bands are close to
EF of about 0.5 eV and therefore should contribute to the transport properties.

As one could notice in the LDA results, the splitting [24] between of the 3d orbitals
of Co in the CoO2 as t2g (blue plots in figure 3.8) and eg orbitals is once again obtained
(around 3.6 eV): the dxy and dxz orbitals are almost fully occupied, the dyz is not fully
occupied, and the dz2 and dx2−y2 are mainly unoccupied. The dyz orbital is the one
holding the hole involved in the electrical conduction, which could be seen as the a1g

orbital obtained from Soret et al ’s quantum chemistry calculations [24].

3.1.3 B1WC calculations with RA = 5/3

Following our calculations on the approximated commensurate structure with RA =
3/2, in the same fashion Rébola et al proceeded [6], we decided to compute the proper-
ties of the approximated commensurate crystal with RA = 5/3, still using the B1WC
functional for the exchange-correlation. This time, only the antiferromagnetic struc-
ture (AFM1) was relaxed since it was observed to be the ground state with the 3

2
approximant.

3.1.3.1 Crystallographic properties

As we did with our previous calculations, we fully relaxed the lattice, atomic positions
and electronic structure. The optimized lattice paramaters are given in table 3.8.

a(Å) b2(Å) b1(Å) c(Å) β(◦)
Exp (300 K) [7] 4.830 2.820 4.560 10.840 98.130

AFM1 4.821 2.756 4.593 10.876 98.12

Table 3.8: Experimental and optimized lattice parameters for each calculations using
the B1WC hybrid function with RA = 5/3.

One can see that the optimized values are overall closer to the experimental values.
We have errors of −0.01 % on β, −0.18 % on a, −2.27 % on b2, 0.72 % on b1 and
0.33 on c. The biggest errors are still on the b parameters. But these results are much
closer to the experimental data than our previous results with the 3/2 approximant.

The optimized fractional coordinates within Miyazaki’s model [7] are listed in ta-
ble 3.6 and are compared to the experimental data. All the values except the fractional
coordinates of O2 in the rocksalt-type subsystem along the a-axis and O1 in the CoO2

subsystem along the c-axis are close to the experimental values. The use of a bigger
supercell does not manage to correct the errors we already had with the 3

2 approximant,
which are attributed to Miyazaki et al ’s model [7] which does not take into account
the incommensurate nature of the real system.

3.1.3.2 Magnetic properties

The magnetic moments for each cobalt in both subsystems are given in table 3.10.
If we perform the average over the modulus of the individual magnetic moments

of Co atoms for the whole system, we get µave.tot. = 1.013 µB/Co, which is a bit lower
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Subsystem AFM1 Exp

CoO2

Co x/a -0.007 0.000
z/c -0.001 0.000

O1 x/a 0.355 0.363
z/c 0.092 0.008

O2 x/a -0.369 -0.364
z/c -0.094 -0.104

RS

Ca1 x/a 0.170 0.182
z/c 0.270 0.281

Ca2 x/a 0.313 0.312
z/c -0.271 -0.273

Co x/a -0.225 -0.298
z/c -0.501 -0.495

O1 x/a -0.302 -0.282
z/c 0.340 0.338

O2 x/a 0.292 0.183
z/c 0.499 0.497

O3 x/a -0.199 -0.163
z/c -0.341 -0.323

Table 3.9: Optimized fractional coordinates within B1WC (RA = 5/3) and experi-
mental data [7].

AFM1
CoO2 µs(µB) RS µs(µB)
Co1-1 -0.004 Co1-1 2.330
Co1-2 -0.001 Co1-2 2.830
Co2-1 -0.001 Co2-1 2.830
Co2-2 0.021 Co2-1 -2.285
Co3-1 0.021 Co3-1 -2.285
Co3-2 -0.002 Co3-2 -2.762
Co4-1 -0.002
Co4-2 0.021
Co5-1 0.021
Co5-2 0.789

Average 0.086 0.110

Table 3.10: Individual magnetic moments for Co atoms belonging to the CoO2 and
rocksalt-type subsystem computed with the B1WC functional, with RA = 5/3.

than what we had with the B1WC - RA = 3/2 calculation, but still close to the
value measured by Masset et al (1.3 µB/Co) [4]. One can see once again that, in
our calculation, all the magnetic properties are held within the rocksalt subsystem,
which hold an antiferromagnetic coupling between the Cobalt atoms, but with a non-
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zero total effective magnetic moment (0.659 µB), and thus tends to reproduce the
ferrimagnetic state observed in the Ca2CoO3 below 19 K [3, 20]. However, the Co in
the CoO2 subsystem have mostly weak effective magnetic moments, which nonetheless
improve in magnitude in comparison to our study of the 3

2 supercell within B1WC.
One can notice that a single cobalt possesses a high magnetic moment of 0.789 µB.
This could be explained by the mixed valences Co3+ and Co4+ in the CoO2 subsystem:
as shown in figure 1.15, the Co4+ ions are holding a single electron in the a1g orbital,
which results in a net magnetic moment for this atom. It seems consistent with the
mixture of Co3+ and Co4+ proposed by Yang et al [19].

3.1.3.3 Electronic properties

In order to gain insight into the influence of the approximant on the electronic structure,
we plotted the band structure around the Fermi level EF (figure 3.10) and the density
of states as well (figure 3.11). The horizontal dashed line is the Fermi level, the full
bands are the occupied states and the dashed bands are the unoccupied states.

The band structure for the majority spin channel has a gap of about 0.5 eV above
the last occupied band, yet the minority spin channel has its last occupied band slightly
dispersing across the Fermi level, confirming the half-metallic character of our com-
pound computed with the B1WC functional.

To further investigate the electronic properties of the 5/3 structure, we plotted
partial density of states projected into d orbitals of Co for both subsystems in the
same fashion we did in the previous subsections (figure 3.12 and 3.13). The Fermi level
EF is displayed with the vertical dashed lines.

The results are similar to what we presented in the previous subsection, except
that this time, there is an even stronger contribution of the 3d orbitals of Co from the
CoO2 subsystem which contributes to the Fermi level.

The splitting between the 3d orbitals of Co in the CoO2 as t2g (blue plots in
figure 3.12) and eg orbitals is once again obtained (around 3.6 eV), and we retrieve
somehow the population observed in the 3

2 structure: the dxy and dxz orbitals are fully
occupied, the dyz is not fully occupied, and the dz2 and dx2−y2 are majorly unoccupied.
The dyz is holding the hole involved in the electrical conduction, and thus cements the
results of Takeuchi et al [22],Klie et al [17], Soret and Lepetit [24].

3.1.4 DFT calculations : conclusions

We performed a set of LDA calculations (with RA = 3/2), and while the resulting
crystallographic and magnetic properties are somewhat close to experimental results
in spite of some errors on the individual b1 and b2 lattice parameters of the two sub-
systems, the electronic structure is not in agreement experimental results. Previous
LDA calculations [6, 23] yielded the same errors, and we can therefore conclude that
the local density approximation fail to yield the correct electronic structure.

Then, using the same structure RA = 3/2, we switched the exchange-correlation
functional from LDA to B1WC, allowing us to better treat exchange effects. The
crystallographic and magnetic properties obtained from this set of calculations are
closer to the experimental observations, and this time the electronic structure is in good
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Figure 3.10: Electronic band structure of Ca3Co4O9 (AFM1) with RA = 5/3, for each
spin channel.

Figure 3.11: Total density of states of Ca3Co4O9 (AFM1) obtained with the B1WC
functional with RA = 5/3.
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Figure 3.12: Spin-up (positive values) and spin-down (negative values) partial density
of states projected into d orbitals of Co atoms in the CoO2 subsystem. Calculations
performed within the B1WC functional (AFM1) with RA = 5/3. The blue curves
designs the occupied states.

Figure 3.13: Spin-up (positive values) and spin-down (negative values) partial den-
sity of states projected into d orbitals of Co atoms in the rocksalt type subsystem.
Calculations performed within the B1WC functional (AFM1) with RA = 5/3.
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agreement with Takeuchi et al ’s experiment [22]. The B1WC functional is therefore a
good alternative to the Hubbard correction used in DFT+U calculations.

Finally, still using the B1WC hybrid functional, we switched the approximated
crystallographic structure from RA = 3/2 to RA = 5/3. This allows us to better
treat the crystallographic properties, as the lattice parameters b1 and b2 are now closer
to their experimental values. In term of magnetic properties, a stronger magnetic
moment arises from a cobalt atom in the CoO2 subsystem, which can be related to the
mixed valence observed in that subsystem [19], but the rest of the magnetic moment
are relatively close to what has been observed in the RA = 3/2 structure. In terms
of electronic properties, we do obtain an even better agreement with Takeuchi et al
experiment, as more Co−3d states contributes to the density of states around the Fermi
level. Therefore, increasing the size of the supercell proves to be a good way to better
treat the individual lattice parameters and to give better insight upon the magnetic
properties localized in the CoO2 subsystem.

While we did perform the B1WC calculations both with the RA = 3/2 and RA =
5/3 supercells, we shall also discuss the importance of the incommensurate nature of
the compound. Unlike Asahi et al, Rébola et al approximed different primitive cells for
Ca3Co4O9, increasing in volume as the rational approximant get closer to the golden
ratio. However, this method is computionally intensive and would require too much
time. During our calculations using the 3

2 approximant, we noticed that translating
the rocksalt-type structure of 1

4b along the b direction (b being the lattice parameter
of the approximated unit cell) gave the same structure as before, but with inversed
a-axis and c-axis as shown in figure 3.14.

Figure 3.14: Our approximated RA = 3/2 supercell, with the rocksalt subsystem
untranslated (left) and translated along the b-axis of b

4 (right).

DFT calculations on this new structure yield the same total energy and the same
density of states. Seeing these results, we decided to play with the position of the
rocksalt-type subsystem, translating it along the b direction, and to study its influence
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upon the electronic properties. The calculations were performed using the configuration
yielding the lowest energy, AFM1. Taking the optimized structure and fixing it, we
successively translated the rocksalt-type subsystem of 1

16b, 1
8b, and 1

4b.
As one can see in figure 3.15, the relative positions of the two subsystems along b

does not affect much the density of states, and the contributions from the 3d bands of
Co stay at the same levels of energy. This would means that the transport properties
due to the electronic structure should not depend on the relative positions of the two
subsystems along b. Rébola also observed that the role of the rational approximant
did not affect much the density of states [6]. We can conclude from our calculations
that the relative positions of the CoO2 and rocksalt type subsystems does not affect
much the electronic structure of Ca3Co4O9, and the incommensurate character of the
compound does not seem to affect the electronic properties.

3.2 Thermoelectric properties

While Ca3Co4O9 generates increasing interest as a thermoelectric compound, there
has been to date only a restricted number of experimental characterization of its ther-
moelectric properties, and even less theoretical studies, the latter being restricted
to a characterization of the Seebeck coefficient in the framework of the Heikes for-
mula [6, 23, 24]. Here, we decided to go one step further and the present section is
devoted to the first extensive theoretical investigation of the transport and thermo-
electric properties of Ca3Co4O9 using Boltzmann transport formalism. As it is rather
difficult to obtain the lattice contribution to the thermal conductivity κl, we are unable

to study the figure of merit ZT = S2σT
κl+κe

from our calculations. Instead, we will focus

here on the power factor S2σ, and its individual contributions S and σ.
As the electronic structure with the B1WC functional on the RA = 3/2 proved

itself to be consistent already with experiments, we decided to perform calculations
with BoltzTraP on this structure and to obtain the thermoelectric properties as a
function of temperature and chemical potential.

3.2.1 Seebeck coefficient and power factor with respect to chem-
ical potential

First, we discuss the behavior of the Seebeck coefficient with respect to the chemical
potential, at different temperatures (figure 3.16) as well as the Power Factor S2σ
(figure 3.17). These quantities are in fact tensors: Ca3Co4O9 is displays strongly
anisotropic transports properties [4], related to its layered misfit structure. Hence,
the different components of the Seebeck and resistivity tensors are different. As the
interesting transport properties are expected to occur along the CoO2 planes, in the
following discussion, we will only focus on the averaged in-plane quantities that are
also those that are experimentally measured.

BoltzTraP can only yield the electrical conductivities time the inverse of the re-
laxation time τ , whereas we have direct access to the Seebeck coefficient, as seen in
equations (2.61) and (2.62). In order to estimate the relaxation time, we can fit our
calculated restistivity in order to reproduce the experimental value at a given temper-
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ature. We did so, using the experimental in-plane resistivity obtained at 300 K by
Massetet al [4] for an undoped compound. This give us an estimate τ ≈ 2.86∗10−16 s,
which we consider constant at our level of approximation in the following discussion.

Figure 3.16: Seebeck coefficient in function of chemical potential at temperatures from
100 K to 600 K.

Figure 3.17: Power factor in function of chemical potential at temperatures from 100
K to 600 K.

The Seebeck coefficient is reported in figure 3.16. Depending on the chemical
potential, the temperature dependence of S is can be absolutely different. At the
Fermi level (µ = EF ), the Seebeck coefficient is positive as the intrinsic charge carriers
are holes.
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A better insight upon the thermoelectric performance can be obtained by looking at
the power factor (figure 3.17). At the µ = EF , we have S2σ ≈ 3 µWcm−1K−2 at room
temperature, a value that could be even increased to 4.8 µWm−1K−2 by appropri-
ate hole doping. This is sizeable, although significantly below what can be observed in
Bi2Te3 (PF ≈ 40−50 µWcm−1K−2 at 300 K), one of the best thermoelectric available.
Interestingly however in Ca3Co4O9, the global trend in the range [−0.25 eV,+0.85 eV]
is that the power factor increases as a function of temperature, which is not the case
with Bi2Te3 [11]. This behavior combined with the chemical stability of Ca3Co4O9 at
high temperatures confirm the potential interest of this compound for pratical appli-
cations.

We also notice the presence of a wide peak beyond the Fermi level, which yield
even higher values than the ones located below the Fermi level. This highlights that
Ca3Co4O9, although previously overlooked, could also be a good n-type thermoelectric
when appropriately doped with electrons.

3.2.2 Intrinsic Ca3Co4O9

Let us now investigate more explicitly the temperature dependence of the transport
coefficients. Experimentally, specimens of Ca3Co4O9 are synthetized without explicit
doping and experimental studies performed since the discovery of Ca3Co4O9 focused
upon the temperature dependence of the thermoelectric properties, rather than trying
to optimize them with doping. As a first attempt we will so compare to experiment
looking at the temperature dependence of the Seebeck coefficient and the electrical
resistivity calculated for the intrinsic compound.

We did so by investigating the evolution of these coefficients with respect to the
temperature at the Fermi level (µ = EF ). First, let us analyze the behavior of the
Seebeck coefficient reported in figure 3.18. We have a value of S = 225 µVK−1 at
300 K which is consistent with precedent calculations performed by Rébola et al who
obtained, based on their LDA+U results and using the Heikes formula, a Seebeck
coefficient of 233 µVK−1 [6]. The behavior of our calculated Seebeck coefficient is
strikingly similar to prior measurements as one can see in figure 1.10. Unfortunately,
the order of magnitude is almost twice as large as what has been measured: all previous
experiments found values around 125 µVK−1 [2–4].

We also report the temperature dependence of the electrical resistivity at the Fermi
level. As one can see in figure 3.19, the highly anisotropic behavior observed by Masset
et al [4] is well reproduced as the out-of-plane resistivity is at least one order of mag-
nitude larger than the in-plane resistivity (see figure 1.11). However, the computed in-
plane resistivity ρab completely fails to present the anomalous temperature dependence
seen in measurements. One could wonder if this is related to the insulating-conducting
phase transitions observed below room temperature, and that fails to appear in our
theoretical curve. On the other hand, we can question if the as-grown samples used in
experimental studies are really intrinsic or if they present self-doping which can affect
the chemical potential.

The transport properties happens to be extremelly dependent on the chemical
potential, and we have no means to know this parameter for the experiments re-
ported in the litterature. However, the chemical potential is related to the number
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Figure 3.18: Seebeck coefficient in function of temperature when µ = EF .

of charge carriers. From measurements of the Hall resistivity at room temperature
(RH(300K) ≈ 7.6 ∗ 10−9 m3C−1) by Limelette et al [5] and using the following for-
mula:

RH =
1

ne
(3.1)

where n is the concentration of charge carriers and e the value of a single charge,
we estimate the concentration of charge carriers in Limelette et al ’s sample around
8.22 ∗ 1020 cm−3 at room temperature. Although the result given by this formula
is a simple estimate and should not be taken as the exact value4. It is two orders
of magnitude larger than the calculated concentration of intrinsic charge carriers is
nEF

300K = 5.41 ∗ 1018 cm−3 at room temperature. This strongly support the idea that
as-grown crystals are not intrinsic but strongly self-doped with holes. Comparison with
experimental data should therefore be perfomed at lower chemical potential holding
higher concentrations of holes.

3.2.3 Hole-doped Ca3Co4O9

In order to get better insight on how to correctly reproduce the experimental behavior,
we decide to look below the Fermi level where concentration of holes is closer to 8.22 ∗
1020 cm−3. If one take a look at figure 3.16, it appears that around µ−EF = −0.062 eV,
the Seebeck coefficient at room temperature actually corresponds to the experimental
value of 125 µVK−1. At this chemical potential, the concentration of charge carriers

4The use of this formula should be taken with caution since the concentration of the charge carriers
in oxides is known to be greatly temperature dependent, which is not properly taken into account in
this formula. The physics behind this temperature dependence is not yet known and unfortunately
no better estimation of the carrier concentration can be achieved to date.
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Figure 3.19: Seebeck coefficient in function of temperature when µ = EF .

at room temperature is equal to 5.19 ∗ 1019 cm−3, which is still about one order of
magnitude below what we estimated for Limelette et al ’s sample, but much closer (as
said previously, there is a huge uncertainty on this estimated value).

We report the temperature dependence of S at µ − EF = −0.062 eV to see if it
actually behaves as what has been observed experimentally. We do find the value of

Figure 3.20: Seebeck coefficient in function of temperature at different chemical po-
tentials.

S = 131 µVK−1 at 300 K, which is consistent with the experimental data. The global
behavior of the Seebeck coefficient is still rather similar to the experimental one and
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we even manage to retrieve a jump around 25 K. However, the plateau between 100 K
and 300 K is less pronounced than what is actually observed. The figure also report
the Seebeck coefficient at µ−EF = −0.075 eV. The concentration of charge carriers at
this chemical potential is still equal to 5.19 ∗ 1019 cm−3. The temperature dependence
of the Seebeck coefficient is the same as the the previous case.

In a similar fashion, we plotted the temperature dependence of the in-plane electri-
cal resistivity ρab (figure 3.21). This time, the in-plane resistivity displays a behavior

Figure 3.21: In-plane resistivity as a function of temperature at different chemical
potentials.

in much better qualitative agreement with what is observed in experiments, suggesting
that the non-monotonic behavior observed experimentally, which was attributed to
magnetic and structural phase transitions, can actually be intrinsic to the the ground
state phase. Such bold claim would require further investigation in order to be vali-
dated.

Although more systematic investigations should be performed, it seems that, by
playing with the chemical potential, we can reproduce the global behavior of the power
factor. In figures 3.20 and 3.21, one can see that the temperature dependence of the
Seebeck coefficient and the in-plane resistivity ρab is strongly correlated to the chemical
potential, and thus the concentration of charge carriers : at µ − EF = −0.056 eV
(n300K = 4.44 ∗ 1019 cm−3), the behavior of the in-plane resistivity around 0 K is
completely inaccurate, despite a number of charge carriers close to what we have at
−0.062 eV and −0.075 eV.

3.2.4 Thermoelectric properties - Conclusions

In conclusion, despite the the difficulty to make direct comparisons with experimen-
tal data related to the strong dependence upon the concentration of charge carriers
and our lack of informations about the specimens used in previous experiments, we
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managed to qualitatively reproduce, at our level of approximation, the behavior of the
Seebeck coefficient and the electrical resistivity with respect to the temperature within
Boltzmann transport theory.

We observe that at room temperature, the power factor of Ca3Co4O9 cannot di-
rectly compete with Bi2Te3 (PFCa3Co4O9

(300K) ≈ 3−4 µWcm−1K−2, PFBi2Te3(300K) ≈
40−50 µWcm−1K−2), but is large enough to generate interest: our results predict that
the compound can be used both as a p-type and n-type thermoelectric. Moreover,
the increasing behavior of the power factor with respect to the temperature allows
Ca3Co4O9 to be a good alternative to Bi2Te3 for high temperature applications.

By playing with the chemical potential, we can also observe that the qualitative
anomalous behavior of the in-plane resistivity is reproduced, suggesting that it is in-
trinsic to the ground state phase, whereas previous research groups suggested various
phase transitions as the origin of this peculiar behavior.

The next logical step will be to validate these findings on the RA = 5/3 structure.



Conclusions and perspectives

The misfit calcium cobaltite Ca3Co4O9 recently appeared as one of the most promis-
ing thermoelectric oxide compounds. It is a very complex material and, in spite of
recent experimental and theoretical studies, many questions remain open concerning
its properties.

In our work we have studied theoretically the properties of Ca3Co4O9. We investi-
gated its structural, electronic and magnetic properties within the density functional
theory using an original hybrid functional approach. Then, going beyong previous
theoretical studies, we characterized its transport and thermoelectric properties within
the Boltzmann transport formalism.

Our main results can be summarized as follows:

1. The hybrid B1WC approach properly reproduces the electronic properties and
constitutes a valuable alternative to the LDA+U method. Within this approach
the contribution to the electronic structure at the Fermi level mainly originates
from the t2g orbitals of Co in the CoO2 subsystem, whereas no contribution
from the rocksalt subsystem is found, which is in agreement with previous ex-
periments [22]. Within our calculations Ca3Co4O9 appears to be a half-metal in
which the CoO2 subsystem is the conducting layer, similarly to what happens in
other misfit compounds such as NaxCoO2.

2. The essentially antiferromagnetic order found in our B1WC calculations is con-
sistent with the ferrimagnetic phase in the rock-salt subsystem found below 19
K. This ground state was suggested by Asahi et al [23] on the basis of LDA calcu-
lations which fails in reproducing the electronic structure [22]. It contrasts with
Rébola et al who performed their calculations on a ferromagnetic structure [6].

3. We have shown that the relative position of the CoO2 and Ca2CoO3 subsystems
along the incommensurate direction has only weak influence upon the density
of states, suggesting that the incommensurate nature of misfit calcium cobaltite
does not play a significant role on its electronic properties. In that regard, we
agree with Rébola et al ’s proposal, who reached this conclusion by comparing
results on different supercells, whereas Soret and Lepetit [24] argued otherwise.

4. For the RA = 3/2 supercell, we managed to model the global behaviors and order
of magnitude of the Seebeck coefficient and the electrical resistivity within the
Boltzmann transport theory. Our computed transport and thermoelectric prop-
erties are in qualitative agreement with experimental data. They suggest that

77
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as-grown Ca3Co4O9 crystals are self-doped with holes. Our calculations sug-
gest that the anomalous behavior of the electrical conductivity in temperature
might be intrinsic to the ground state phase of Ca3Co4O9 rather than to a phase
transition. We propose that reducing or compensating partly self-doping might
increase the thermoelectric properties. Moreover, doping the misfit with elec-
trons might produce even larger thermoelectric properties. This feature, previ-
ously overlooked, still significantly increases the potential interest for Ca3Co4O9

on the basis of which it now appears that both good n-type and good p-type
thermoelectric properties can be achieved by appropriate doping as required for
pratical applications.

This is still a preliminary work and additional checks are still required to complete
this study:

• First, the thermoelectric properties should be confirmed at the level of the 5/3
approximant which better reproduce the structure of the real misfit compound.
Explicit comparison of the results with what was obtained with the 3/2 approx-
imant is needed to validate our conclusions.

• Second, we should check explicitly the influence of the magnetic order on the
thermoelectric properties.

• Third, we should confirm that the relative position of the two subsystems does not
significantly affect the thermoelectric properties. Although the electronic density
of states look rather insensitive to translation of one subsystem respect to the
other thermoelectric properties are dependent upon the derivatives of the band
structure so that apparently minor changes could eventually lead to different
transport and thermoelectric properties.

• Going further, it might be eventually interesting also to check if it is possible to
enhance the thermoelectric properties via other methods than doping, playing
for instance with epitaxial strain as it could be achieved by growing Ca3Co4O9

on an appropriate substrate...

As one can see, there’s still a lot to do with calcium cobaltite, and surely, the future
will reserve more surprises. . .
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