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Introduction

Brief history of the ferroelectricity

Ferroelectricity was discovered in 1920 by Valasek [281] who observed that
the polarization of Rochelle salt can be reversed by the application of an
external electric field. From the very beginning, the ferroelectricity aroused
joined scientific and industrial interests. With the passing years, distinct
families of ferroelectric crystals were identified. A tremendous lot of ex-
perimental data were accumulated and different theories were proposed to
explain the phenomenon. Ferroelectric materials are now currently used in
various technological applications [138, 103, 119, 274]. However, in spite
of many years of interest, there still remain many academic questions con-
cerning the fundamental nature of the ferroelectricity [171, 274] and some
of its related properties [171, 78]. Some of these questions are at the origin
of the present study. They will be reintroduced within a partial history of
the ferroelectricity, focusing on the ABO3 compounds.

The first series of isomorphous ferroelectric crystals was produced in
Zurich, during the thirties. It concerned a family of phosphates and ar-
senates. The most popular of these compounds is potassium dihydrogen
phosphate (KH2PO,), usually abbreviated as KDP. At that time, it was
commonly thought that the existence of a hydrogen bond was necessary,
if not sufficient, condition for the polar instability to occur. Consequently,
there was only very little motivation for looking for ferroelectricity in ma-
terials such as oxides which did not contain hydrogen.

The ferroelectric properties of barium titanate (BaTiOgz) were found in-
cidentally, in 1945, when searching for new dielectrics to replace mica [171].
Rapidly, it became by far the most extensively studied ferroelectric ma-
terial. On cooling, it undergoes a sequence of three successive structural
transitions from a paraelectric cubic phase to ferroelectric structures of
tetragonal, orthorhombic and rhombohedral symmetry. It was the first fer-
roelectric without hydrogen bonds, the first with a non-polar paraelectric
phase, the first with more than one ferroelectric state. In addition, its pro-

11



12 INTRODUCTION

totype crystal structure was cubic perovskite with only five atoms per unit
cell. Tt was therefore offering to physicists an opportunity to study the
onset of ferroelectricity from a very simple structure.

The sudden interest for BaTiOg broadened gradually to different ox-
ides of the ABOj family [171]. A ferroelectric activity was discovered in
KNbQOj3 presenting the same sequence of phase transitions than BaTiOs, or
in PbTiO3 that remains stable at low temperature in tetragonal symme-
try. Ferroelectricity was also observed in LiNbOj3 and LiTaOs, which do
not have the perovskite structure but still are ABOgs lattices with oxygen
octahedra (illmenite structure).

The great fascination for the ABOg perovskite structure is that, in addi-
tion to ferroelectric potentialities, it also readily undergoes non-polar struc-
tural phase transitions, associated with different tilts of the oxygen octahe-
dra. Moreover, the observed transitions are not necessarily ferrodistortive
(involving a T type displacement of the atoms of the prototype phase) but
may be antiferrodistortive (displacement associated to a non-zero vector
within the Brillouin zone). The most frequently observed case consists in
a cell doubling transition, associated to a Brillouin zone boundary type
displacement like in SrTiOs (non-polar distortion) or PbZrOs (antiferro-
electrics). Sometimes, like in NaNbQg, instabilities of different characters
are present and produce a chain of transitions of different natures: ferro-
electric, anti-ferroelectric, non-polar.

Due to the simplicity of the ABO3 perovskite structure, it was quite
natural to expect theoretical progress at the microscopic level in the under-
standing of ferroelectricity. A first important step was performed in 1950
by Slater [272] who suggested that the ferroelectric instability of BaTiOg
should be caused by long-range dipolar forces which, via the Lorentz local
effective field, tend to destabilize the high symmetry configuration favored
by local forces. It was the starting point for a “displacive” explanation of
the phase transition, as opposed to the more conventional order-disorder
description !'. The concept of “rattling” Ti ion was introduced in models
considering motion of the Ti atom in the rigid framework of the rest of the
lattice. It was a first neat picture, however questionable as all the atoms
were actually displaced after the ferroelectric transition has occurred. A
new breakthrough arrived in 1959, when Cochran [39] ? realized that the
theory describing the displacive lattice instability should be cast within
the framework of lattice dynamics, when considering one of the lattice
mode as the basic variable. His theory was exhibited in the framework

I The order-disorder description makes reference to a multi-well energy surface, yield-
ing macroscopically non-polar but microscopically polar paraelectric phase. In the dis-
placive model, the paraelectric phase is also microscopically non-polar [81].

2 A similar approach was taken independently by Anderson [3].
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of a shell-model approach. The concept of soft-mode was introduced. The
competition between short-range and Coulomb forces highlighted by Slater
reappeared coherently in this context as the origin of the softening of a par-
ticular transverse optic mode. Later, the ideas of Cochran were generalized
in the framework of microscopic effective Hamiltonians [171] and the soft-
mode became a central quantity in the description of different structural
instabilities.

Independently, we note that theory had also progressed rapidly at the
macroscopic level when focusing on thermodynamic concepts. An inter-
esting description of BaTiOs was, for instance, already reported by De-
vonshire [57] in 1949, from an expression of the free energy in powers of
polarization and strain. While the microscopic description of Cochran was
essentially concerned by the atomic displacements, one of the major con-
tribution of the thermodynamic approach was probably to emphasize the
crucial role of the macroscopic strain. Coupling between the soft-mode
and the strain, neglected in many of the microscopic models, appeared re-
cently as a major ingredient for a correct description of the successive phase
transitions in ABOz compounds [314, 289].

Since the sixties, the emphasis has been placed dominantly on the lat-
tice dynamical description of the ferroelectricity. There was an explosion of
experimental activity using techniques allowing to measure frequency and
temperature dependent properties of the soft-mode. A new step in the mi-
croscopic understanding of the ferroelectricity in ABOs compounds arose
from the fit of these experimental data within a shell-model approach. In
1976, Migoni, Bilz and Bauerle [196] suggested that the ferroelectric insta-
bility should originate in a non-linear and anisotropic polarizability of the
oxygen atoms. This gave rise to the “polarizability-model” [18, 25] that was
widely used to describe the dynamics of ABO3 compounds. The unusual
polarizability of the oxygen atom was discussed [196, 24, 18] and is still now
usually referred as the origin of the ferroelectricity [26]. In particular, it
was already suggested by Bilz et al. [196] that the anisotropy of the oxygen
polarizability should be induced by the dynamical hybridization between
oxygen p-states and transition metal d-states [196, 18]. As we will see later,
this intuition was correct and these hybridizations play a major role in the
ferroelectric instability. However, within their semi-empirical approach, it
was not possible to understand the mechanisms of interplay between the
electronic and dynamical properties.

At the same time, but in a different context, Comes, Lambert and
Guinier [46] reported diffuse X-ray scattering for crystals of BaTiOs and
KNbOg, in three sets of planes normal to the cubic axis. This feature was
assoclated to a static linear disorder, explained in terms of what is now
usually referred to as the “8-sites model”. This model is another mean-
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ingful picture currently invoked to visualize the mechanism of the phase
transition. It was however contested by Hiiller [125] who preferred to fa-
vor a dynamical explanation for the linear disorder. Independently of the
debate on the static or dynamical nature of the disorder, the existence of
chain correlations became well accepted, although its microscopic origin
remained unclear [180].

At the end of the seventies, different interesting features had therefore
been identified as playing an important role in the ferroelectricity of ABOg
compounds. Different models were available, well suited for qualitative
description of the ferroelectric instability within a specific context. Nev-
ertheless, accumulating the experimental data, it appeared gradually that
the ferroelectric transition was more complex than previously expected: for
instance, it was observed that the phase transition i1s not purely displacive
in the sense defined by Cochran, but has also an order-disorder character
around the transition temperature 3. Unfortunately, the theoretical models
available at that time had their limitations and were not accurate enough
to describe and investigate all the subtle features of the phase transition.

A first-principles approach

A new opportunity for addressing the remaining open questions concerning
the ferroelectricity was given recently when ABOj3 compounds became ac-
cessible to first-principles calculations performed within the Density Func-
tional Theory (DFT) [121, 147]. Indeed, such a technique does not restrict
to the description of the electronic properties of materials but is also par-
ticularly suited to investigate their structural properties. Earlier DFT cal-
culations on ABO3 compounds were reported by Weyrich [298, 299] during
the eighties. The recent renewal of interest in these materials is a conse-
quence of different theoretical advances combined with a gigantic jump of
computational power during the last few years.

A first crucial advance concerns the emergence of the modern theory
of polarization, pioneered by Resta [243] and King-Smith and Vander-
bilt [142, 283]. Until recently, the macroscopic electronic polarization was
indeed not directly accessible for periodic systems with continuous elec-
tronic distributions. This was a major impediment to a systematic study
of ferroelectric materials for which the polarization appears as the funda-
mental quantity. Now, the electronic contribution to the polarization can
be conveniently obtained from a Berry phase of the electronic wavefunctions
and is easily computed in the framework of DFT.

3The appearance of the order-disorder character originates in the evolution of the
thermal energy with respect to the height of the multi-well energy barrier [81].
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A second ingredient is the effective Hamiltonian approach to structural
phase transitions, developed by Rabe and Joannopoulos [227, 228, 229], in
which the parameters of the Hamiltonian are determined from the results of
first-principles calculations. Such an approach, first applied to GeTe [227],
was then generalized by Rabe and Waghmare [230, 232, 289] for general
phonon-related phase transitions, opening the door to a systematic first-
principles study of the ABOg family compounds. In this specific context,
the recent density functional perturbation theory (DFPT) [11, 91] appeared
as an important complementary tool for an efficient determination of the
parameters associated to the model Hamiltonians.

Since 1992, an impressive number of first-principles calculations have
been performed yielding a similarly impressive number of interesting re-
sults that will be reintroduced all along this work. The most spectacu-
lar achievement probably concerns a correct description of the sequence of
phase transitions for various ABOs compounds like BaTiO3 [314, 315, 211],
SrTiO5 [316, 317], PbTiO3 [233, 289, 235], PbZrOs [289, 290], KNbO3 [148],
CaTiOgz [284] or NaNbOg [284].

Starting from the “first-principles”, such kind of calculations was also a
clear opportunity to connect, within a rigorous approach, the macroscopic
properties of ABOs compounds to their intimate microscopic features.

The present work

In this context, our purpose will be to clarify the interplay between the
electronic and dynamical properties of BaTiOsz. In a discussion where
the Born effective charge appears as a central concept, we will see that
the ferroelectric instability is driven by anomalously large Coulomb forces,
themselves induced by dynamic changes of orbital hybridizations. Going
further, we will describe how these features lead naturally to the notion
of chain-structure instability. Independently, we will also address funda-
mental questions concerning the theory within which the results have been
obtained.

This work is organized as follows. In Chapters 1, we reinvestigate the
fundamentals of the density functional theory introduced by Hohenberg,
Kohn and Sham during the sixties. We will pay a particular attention to
the electronic exchange-correlation effects. In Chapter 2, we briefly describe
a “periodic-density” functional theory as it is usually implemented within
the local density approximation (LDA) for the description of crystalline
solids. In Chapter 3, we report some basic results concerning the electronic
and structural properties of BaTi0O3. We also reintroduce the problematics
of the phase transition in the context of our first-principle approach. In
particular, it will be checked if DFT-LDA calculations have the required
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accuracy to investigate the ferroelectric instability. In Chapter 4, we for-
mulate different quantities of interest as derivatives of the crystal energy.
We then describe the computation of these properties within a perturbative
treatment of the density functional theory. A particular emphasis will be
placed on the connection between the Sternheimer approach and the varia-
tional formulation. General equations will be obtained for the investigation
of the response of the system to electric field and atomic displacement per-
turbations. In Chapter 5, we discuss the concept of Born effective charge.
We first point out that it is a quantity distinct from the conventional static
charge, in the sense that it contains a dynamic contribution. It will be seen
that the Born effective charges are anomalously large in ABO3s compounds.
This feature will be described in terms of transfers of charge induced by dy-
namic changes of orbital hybridizations. In Chapter 6, we mention results
concerning the optical dielectric constant. This will be the opportunity to
recall a well-known failure of DFT-LDA calculations. In Chapter 7, we
discuss the dynamical properties of BaTiOgz, themselves directly associated
to the ferroelectric instability. Our purpose will be to identify how these
properties are directly associated to the electronic features. The balance
between dipolar and short-range forces will be quantified. The origin of the
transition will be assigned to giant dipolar forces induced by the anoma-
lously large Born effective charges. Full phonon dispersion curves will be
obtained in the cubic phase. The notion of chain-structure correlation will
be discussed. In Chapter 8, we come back to a more fundamental point
of view, questioning the validity of using a periodic-density functional the-
ory for the investigation of successive derivatives of the crystal energy with
respect to a macroscopic electric field and for the study of polar insula-
tors. This will lead to the introduction of a density-polarization functional
theory (DPFT). It will be argued however that periodic-DFT remains a
coherent approach within the LDA. Finally, we propose a summary of the
main results obtained within this work.

All along this manuscript, results concerning barium titanate alternate
with a discussion of the theory within which the calculations have been per-
formed. Readers only concerned by the physics of the ABO3 compounds
should focus on Chapters 3-5—6-7. People more interested by the funda-
mental aspects of the theory should concentrate on Chapters 1-2-4-8.



Chapter 1

Ground-state theory

1.1 Introduction

The description of macroscopic solids from first-principles is based on the
determination of the quantum mechanical ground-state associated to their
constituting electrons and nuclei. In this Chapter, we first reintroduce this
general many-particles problem, defining some of the notations that will be
used all along this work. We then address its resolution.

A first natural simplification arises from the large difference in mass
between electrons and nuclei, allowing the separate treatment of their dy-
namics using the so-called Born-Oppenheimer approximation. Considering
the 1onic core positions as fixed parameters, we then pay a particular at-
tention to the many-electrons problem.

We show that, as an alternative to the direct resolution of a Schrodinger
equation, the quantum-mechanical ground-state of the electrons can be
determined from the minimization of a functional of the electronic energy.
This electronic energy is, a priori, a functional of the many-body electronic
wavefunction. Thanks to the Hohenberg and Kohn theorem [121], it will
be reformulated as a functional of the electronic density. Within the Kohn
and Sham construction [147], it will also appear as a functional of one-body
wavefunctions associated to fictitious non-interacting particles.

It 1t this last, convenient, Kohn-Sham formulation that will then be used
all along this work. It will be emphasized that the Kohn-Sham electrons
are only fictitious particles, result of a mathematical construction. They
give however access to correct ground-state electronic energy and density.

Most of the reviews that were at the origin of the present Chapter are
mentioned in Section 1.10.

17
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1.2 The Born-Oppenheimer approximation

The ground-state of a system of N; nuclei and N, electrons in interaction
is determined from the following time independent Schrodinger equation:

H(r,R)®(r,R)=F®(r,R) (1.1)
where the Hamiltonian can be written as:
Hr,R)=T;(R) + Uy (R) + Te(r) + Uee(r) + Uie(r, R) (1.2)

T;(R) and U;;(R) are the kinetic energy operator and the potential energy
operator for nuclei. T.(r) and Ue..(r) are the kinetic energy operator and
the potential energy operator for electrons. U (r,R) is the interaction
operator between electrons and nuclei. The notation R is a short-hand for
the position of all nuclei (Rqq, for a = 1,2,3 and « = 1,..., N;), while r
denotes the position of all electrons (7jq, for  =1,2,3 and j =1,..., N.).

The different terms appearing in the previous Hamiltonian have the
following more explicit form ! :

LR) = V. (13)
S e i (1.4)
) = —Z§v3, (15)

Ue(r) = +Z|2_r]| (1.6)

1<J

Uie(r,R) = —Zﬁ (1.7)

Taking into account the large nuclei masses appearing in the kinetic
energy operator for nuclei, Ty (R) can be dissociated from the other terms
in the Hamiltonian and considered as a perturbation :

H(r,R) = Heyi(r,R) + T;(R) (1.8)
with

Hepi(r,R) = Te(r) + Uee(v) + Use (v, R) + Ui (R) (1.9)

LAll along this work, we make use of atomic units (i.e. m,— = [e7| = 1).
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The unperturbed Hamiltonian H.y; does not include differential operators
with respect to nuclear positions. Consequently, the nuclear positions can
be considered as classical variables and no more as quantum ones. The
problem has been reduced to the search of the solution of the electronic
system where positions of nuclei are parameters of the Hamiltonian. The
corresponding physical intuition is illustrated by the instantaneous and adi-
abatic adaptation of the electrons to the positions of the nuclei. It is the
Born-Oppenheimer approximation.

The eigenfunctions of the Hamiltonian H.y; verify the following Schro-
dinger equation for a given set of nuclear positions :

Hepi(r, R) o(r, R) = Ec1i(R) ¢(r, R) (1.10)

The energy E.4; is usually referred to as the Born-Oppenheimer energy of
the system.

As the nuclear positions are fixed parameters in the previous equation,
the ion-ion interacting term is fully determined and H.i; can still be de-
composed:

He+z'(I‘,R) IHel(I‘,R)—I—U“'(R) (111)
where the electronic part of the Hamiltonian is defined as:
Ha(x,R) =T (r) + Uee(r) + Uie(r, R) (1.12)

Similarly, the ground-state energy of the system E.4; can be split into two
parts:

Ee+i(R) = Eel(R) + E”(R) (113)

where E;;(R) is the potential energy of the ions, and F.;(R) is the energy
of the electrons in presence of the ions. FE;;(R) is formally equivalent to
the operator U;(R) that reduces to a scalar. FE¢(R) is made of three
contributions:

Ea(R) = K.(R) + E..(R) + Ei.(R) (1.14)

where K is the kinetic energy of the electrons, F.. is the electron-electron
interaction energy and Fj. is the electron-ion energy. Fy;(R) is fixed for
a given set of atomic position so that the only remaining unknown of the
problem is E¢(R). From now and all along this Chapter, we will be only
concerned by the calculation of this electronic contribution to the Born-
Oppenheimer energy.

Reference to the atomic positions are usually omitted in what follows.
They remain however implicit, and will be reintroduced when necessary.
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1.3 The many-body electron problem

The many-body electron problem that we would like to address can now be
reformulated as follows. We must solve the following Schrodinger equation:

Hea(r) p(r) = Ee p(r) (1.15)

The many-body wavefunction, solution of this equation, will be chosen in
order to satisfy the following normalization condition :

/|g0(1‘1,1‘2,...,1‘N)|2 dridrs...dry = 1. (1.16)

Moreover, it must be antisymmetric under exchange of any two electrons:
for any pair of ¢ and j particles,

p(r1, ..., v .., T, ., TN) = —@(T1, ..., Tj, ..., iy oo TN) (1.17)

We note that there is a phase freedom associated to the resolution of
such a set of equations: if ¢ is a solution,

p(r) (1.18)

is another solution, for any A, real. This indeterminacy of the phase corre-
sponds to what is called a “gauge” freedom. In practice, the phase can be
defined by fixing arbitrarily the gauge.

1.3.1 The variational principle

Instead of addressing directly the resolution of Eq. (1.15), a usual and
convenient approach for solving this problem consists in the variational
method. It assumes that H. has a lowest eigenvalue E.; and it states
that the expectation value of an operator cannot be smaller than its lowest
eigenvalue: for any normalized antisymmetric wavefunction, ¢,

Ea < Eale] = (plHealp), (1.19)

The ground-state wavefunction ¢, is a stationary point of the energy func-
tional Eg[p]: if

o) = o) + 1600, (1.20)
then

Fulg] = Fu + 0[(60)?] (1.21)
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The ground-state electronic energy may therefore be obtained from a min-
imization of a functional of the many-body wavefunction:

E = m;nEel[SD] = Hgn<30|Hel|30> (122)

within the subspace of wavefunctions that satisfy Eq. (1.16)—(1.17). The
ground-state electronic wavefunction is that which minimizes E¢;[¢].

It is straightforward to demonstrate that the search of the previous en-
ergy minimum is equivalent to solve Eq. (1.15). Using the Euler-Lagrange
multiplier technique to minimize E.;[¢] under the constraints that the wave-
function is normalized, we get:

6 ((plHelg) = Mlgle) = 1)

=0 1.23

— (1.2
so that, we recover the Schrodinger equation:

Hyp—XAe=0 (1.24)

where the Euler-Lagrange multiplier identifies with the electronic energy.
The search of the solution of the previous Schrodinger equation is there-
fore strictly equivalent to the minimization of a variational expression of
the electronic energy within the subspace of normalized and antisymmetric
wavefunctions .

1.3.2 Expectation values

In the framework of the variational approach, to the determination of the
total electronic energy, Fe[¢], requires the estimate of the following expec-
tation values:

Kelgp] = (p| Tt |)

Sl (-574) I

K3

> (el o) |e) (1.26)

7

Beelgl = (| Uc o) = > (gl

<]

Eiele] = (¢l Uie |p)

1
— |). 1.27
F— ) (1.27)
The operators constituting the Hamiltonian are rather simple: they are sum
of identical operators acting separately either on a single particle or on pairs
of particles. Convenient expressions can be obtained when introducing the
first- and second-order density matrices.
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The kinetic and electron-ion energy are defined through a one-body
operator. When introducing the first-order density matrix,

Yo (r1511) = N/go*(rlz,rz,...,rN) o(ry,re, ..., ryN), dro..dry  (1.28)
we can write:
1
ETle) = [am—r) (574 ) v dede (129)

(p|Uie|) /v(r) Yo (r;1) dr = /v(r) ne(r) dr (1.30)

We note that the electron-ion energy can already be estimated from the den-
sity ne(r), the diagonal part of v, (r;r’). At the opposite, the determination
of the kinetic energy explicitly requires the knowledge of the off-diagonal
terms of v, (r;r/).

The electron-electron interaction is associated to a two-body operator.
When introducing the second-order density matrix:

N(N=1) [,
W(I‘1';I‘2';I‘1;I‘2) = %/Sﬁ (1‘1',1‘2',1‘3,~~~,1‘N)
o(ry,r9,rs, ..., vN)drs...dry (1.31)

1t can be written as:
<§0|Uee|80> = /(5(1‘1/ - 1‘1) (5(1‘2/ — 1‘2)
dI‘ydI‘z/dI‘ldI‘Q

1
= /m’m(l‘l,l‘z;l‘lal‘z) dridrs

1

m Yo (T1/, 12711, 10)

1
= /m ne(r1, ro) dridrs. (1.32)

A two-particles density has been introduced:

N(N -1
netrirs) = ST [ ) gl )
dridradrs...dry. (1.33)

It gives the probability of finding a pair of electrons, one at the point rq,
and the second at the point rs.

The first and second order density appearing in the previous equations
are always positive. Moreover, they integrate respectively to the number
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of electron and to the number of pair of electron. They are related to each
other through:

2
ne(ri) = m/nw(rlaU) drs (1.34)

All these relationships will enable us to rewrite the expectation value of the
electron-electron operator.

1.3.3 The exchange-correlation hole

The conditional probability of finding an electron in rs, if we know that
there is already another one in rq is not equal to n,(r2) but must be written
as:

ne(ry,r2) + ny(ry,ra) 5 Ny (r1, 1)

Py(ralry) = ng(r1) ng(r)

(1.35)

The “exchange-correlation hole” is defined as the deficit of electron in
ry due to the presence of another electron in ri:

nic(rzh‘l) = P,(ra|r1) — np(ra). (1.36)
Its name originates from the property that it corresponds exactly to a deficit
of one electron when integrated over the all space:

/nic(rﬂrl)drz =1 (1.37)

The exchange-correlation hole is associated to a conditional probability.
It is not a purely quantum phenomenon and the same concept already exists
for classical particles without interaction (Fermi-Amaldi). The shape and
spreading of nic(rl |r2) are however strongly affected by the quantum nature
of the particles and by their interaction.

From the previous definitions, F..[¢] can be decomposed as:

(¢l Uee ) = Erlpl + Ercly] (1.38)
where
Euls] = » / ne(rne(rs) o0 (1.39)
2 |I‘1 — I‘2|
1 [ ng(ry)ng(ra|r)
Eye = = drydr 1.40
[¢] 2/ F— 1dry (1.40)
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The first term, Eg[p], is called the Hartree energy and corresponds to the
electron-electron energy that we would have if the presence of one electron in
ry was independent of the presence of another one in r1. The second, Fy.[¢],
will be referred to as the exchange-correlation energy of the many-body
system 2 and includes the deviations from Eg associated to the existence of
the exchange-correlation hole. Due to the isotropic nature of the Coulomb
interaction, we note that the exchange-correlation energy depends only on
the spherical average of the exchange-correlation hole [105]. The distinction
between exchange and correlation effects will appear naturally in the next
Section.

1.3.4 Variational electronic energy

Making use of the variational principle, the resolution of Eq. (1.15) was
recast into a minimization procedure (Eq. 1.22). From the previous def-
initions, the expectation value of the electronic energy takes form of a
functional of the many-body wavefunction:

1
(plHelp) = [ d(xr —r1) [ =5V, | Yo(ri;r) deydry
2
_|_

/v(r) ny(r) dr + %/Mdrldrz

1 / ny(ri)ng’(rary)

vy — 1o

+— dI‘ldI‘Q (141)

2 |I‘1 — I‘2|
Identifying the ground-state requires to minimize this expression under con-
ditions of normalization (Eq. 1.16) and exchange (Eq. 1.17) of the many-
body electronic wavefunction.

1.4 Slater determinants

The many-body electronic wavefunction, giving the amplitude of proba-
bility to find N, particles for every point of a three-dimensional space,
is a very complex object, so that the minimization of Eq. (1.41) would
be prohibitively difficult. Fortunately, a good insight in the properties of
many-particle systems can already be obtained from the study of effective
non-interacting particles models. In these models, the interacting electron
problem is replaced by a non-interacting system of particles in which the

2 Eyc[¢] is a quantity distinct from the DFT exchange-correlation energy, Eyc[n], that
will be introduced later.
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external field is replaced by an effective external field which incorporates
to some extent the interparticle interactions.

When the fictitious electrons are non-interacting, the different variables
can be separated in the wavefunction that basically takes the form of a
“Hartree product” :

e (ry,re, .., vn) = P1(ry) - Pa(re) o ovove e Yn(rN) (1.42)

The normalization of the one-body wavefunctions is defined in a manner
consistent with Eq. (1.16) :

/I%(P)Izdr:l (1.43)

In order to define a properly antisymmetrized wavefunction, the antisym-
metrizer operator Ay is simply acted upon the Hartree product. The re-
sulting many-body wavefunction can be obtained from an expansion in
terms of “Slater determinants” :

@s(r1,ra, ., rn) = VNIAN[(01) - tha(rs) - - N (rn)]

V(1) i(ra) oo Ya(rw)

— (V) det 1/)2(:1?1) 1/)2(:1?2) 1/)2(:1'N) (1.41)

1/)N.(1'1) 1/)N.(1'2) 1/)N(.I'N)

A Slater determinant is invariant under any unitary transform of the one-
body wavefunctions. These can therefore be chosen to be orthonormalized,

(Vily) = 4y (1.45)

and the Slater determinant describes the Hilbert space spanned by the
one-body wavefunctions ¢; (r).

The decomposition of the electron-electron interaction energy in terms
of Hartree, exchange and correlation contributions acquires more sense in
the context of this Section. The complexity of a Hartree product is much
smaller than the one of a full many-body wavefunction. The amplitude
of finding one of the particles at one point, using a Hartree product, does
not depend on where the other particles are located any more : there is
no inter-particle dependency and, within the limit of large systems, the
electron-electron energy associated to such a wavefunction restricts to the
Hartree contribution. In the case of the Slater determinant, the probability
of finding a particle at some point depends on the location of the other par-
ticles, but only due to the antisymmetry requirement applied to otherwise
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independent particles. Modification of F.. due to that type of dependency
will be referred to as “exchange” effects. The additional modification of the
electron-electron energy brought out by the extra dimensionalities of the
unrestricted antisymmetric wavefunction with respect to a Slater determi-
nant will be referred to as “correlation” effects. Exchange and correlation
energies are both negative. For real systems, we have typically the following
order of magnitude:

T., Eg ~ 10.|Ey| ~ 100.|E,| (1.46)

Different techniques have been proposed to recast the many-body prob-
lem into one-electron schemes. Each of them includes the exchange-correla-
tion effects to some extent. Some of these methods will now be discussed.

1.5 The Hartree-Fock approximation

The Hartree-Fock method basically consists in solving the Schrodinger
equation in the space of Slater determinants. The approximation results in
the fact that the method totally neglects the electron correlation. It has
however the advantage to include exactly the exchange effects as previously
defined.

For the Slater determinant of Eq. (1.44), we get (see, for instance,
Ref. [149]):

N

ne,(r1) = Z ¥y (r1)-¥i(r) (1.47)

i=1

Mz

P (r1).9i(r2) (1.48)

%Ps Iy, PZ

Ny, (r1,12) = ;[”w(rl)”w(rz) Vo (r1,12)7p (r2,11)]  (1.49)

The exchange hole can be obtained from :

_PyWs (1‘1,1‘2)7% (1'2,1'1) (150)

n® (ralry) =
o rabey) o (1)

Finding the ground-state expectation value of the Hartree-Fock Hamil-
tonian simply requires the minimization of Eq. (1.41) in which the previous
explicit formulation of ny,,, ng,and ng has been introduced. Compared to
the many-body case, the problem has been greatly simplified because E.;

appears now as a functional of orthonormalized one-body wavefunctions ;.
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It can be checked that the minimization procedure is strictly equivalent
to solve a set of coupled one-body Schrodinger-like equations 3. More in-
formations on this technique can be found in Ref. [149]. In what follows
we only point out some interesting results concerning the exchange energy,
obtained exactly at the Hartree-Fock level.

First, it can be checked that the “only”-exchange hole already integrates
to —1. Moreover, it has been shown that it intergrates to —1 over a mi-
croscopic region of space: in insulators, it goes to —1 exponentially in the
interatomic distance [238]. Consequently to this result, we deduce that the
correlation (neglected here) will only modify the shape of the exchange hole:
the correlation hole integrates to 0. However, it has not be proved that it
integrates to zero locally and it was recently suggested that it should be
partly delocalized at the surface of the materials [245]. This will be more
explicitly discussed in Chapter 8. For an homogeneous electron gas, it can
be checked that the exchange energy takes the form:

3

hom __
phom — _ =
T

(37%)5 /n%(r)drl (1.51)

This result will be used later.

1.6 The density functional theory

As in the Hartree-Fock method, the density functional theory (DFT) re-
duces the many-body electron problem to a series of coupled single particle
equations. In contrast, the formalism of the DFT is exact and the final
effective potential is local.

Instead of seeking directly the many-body wavefunction of the system
as in the previous methods, DFT adopts an intrinsically different point
of view: it considers the electronic density as the fundamental quantity
of the problem. So, it basically reduces the problem from 3 x N, to 3
spatial variables. The first aim of the present section will be to explain
how the many-body problem can be recast into another one involving only
the electron density, while density matrices were a priori needed to evaluate
the expectation value of the Hamiltonian [121]. Going further, we will show
how this density can be deduced from a non-interacting fictitious particle
system [147].

3The exchange potential appearing in this equation is non-local and has the form of
an integral operator.
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1.6.1 Hohenberg and Kohn theorem

The theoretical foundation of DFT has been laid by Hohenberg and Kohn
(HK) in 1964 [121]. Their result is formulated in the following context.
Suppose a set of Hamiltonians that have all identical kinetic T, and electron-
electron U, operators, but differ by their “external potential” wve(r), a
general one-body local potential :

Hel,v =T, 4+ Uce + Vext (I') (152)
The theorem states that :

The ground-state density n(r) of the many-electron system de-
termines uniquely the external potential vext(r), modulo a con-
stant.

The proof is relatively straightforward and is reported in Ref. [121], for a
system consisting of an arbitrarily large but finite number of electrons. It
will be re-investigated more carefully in Chapter 8, for the case of infinite
periodic solids.

Since the density uniquely defines the external potential #, that in turn
determines unambiguously the Hamiltonian H,, all the quantities that can a
priori be deduced when H, is fixed (wavefunctions, kinetic energy, electron-
electron interaction energy,...), can be de facto written as a functional of
the density.

Using this fundamental result and the variational principle, the whole
search for the ground-state of the many-body problem can now be reformu-
lated in terms of the density as the fundamental variable leading the total
energy to be expressed as follows :

mln{<g0|H |g0>} = H}Liﬂ{min{<80|Hv|80>}}

p—n

Eel,v

- mm{ Vet (1 )dr+m1n{<g0|Te—|—Uee|go>}}
_ mm{/vext (r) dr + Fln ]} (1.53)

We have introduced F[n], the Hohenberg and Kohn functional ® defined
as:

Fln) = min{ (|7 + Uecle)} (1:54)

4The shift in the potential may be fixed through a simple condition, i.e. the external
potential goes to zero at infinite distance.

5This functional, only defined by HK for v-representable densities, has been extended
by Levy to N-representable densities [169].
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Within DFT, the search of the ground-state therefore basically consists
in minimizing the following functional of the electronic density © :

Eeyln] = /vext(r) n(r) dr + F[n] (1.55)

under the constraint that the density integrates to the correct number of
electrons N.. Although it has been proved that the functional F[n] exists,
its exact form remains unfortunately elusive.

1.6.2 The Kohn-Sham equations

A scheme that breaks the Hohenberg and Kohn functional into convenient
parts allowing practical implementation was proposed by Kohn and Sham
(KS) [147]. Their technique lies on an assumption with respect to the HK
formalism and can be reformulated as follows.

We start by introducing a system of non-interacting particles moving in
an external potential v;. The Hamiltonian is Hy = Te + vs(r) (Uee = 0)
and the density is n(r). The ground-state of that system is described by
a wavefunction ¢, obtained as a Slater determinant of orbitals v; which
satisfy the equations:

=5V v (e (r) = o), (1.56)

while the electronic density is:

oce

n(r) = Z|¢i(r)lz~ (1.57)

Applying the HK theorem to this non-interacting system, we conclude that
there is at most one external potential, v, (within a constant), that gener-
ates the density n. For a given density, all the properties of the system are
determined and, in particular, Ts[n] and E[n] correspond to:

oce

Ll =30~ [ i Tidr (158)

E.s[n] = Ti[n] + / vs (r)n(r)dr (1.59)

6This result contrasts with Eq. (1.41), where E.; was obtained as a functional of the
wavefunction ¢.
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The functional Ts[n] is the Kohn-Sham kinetic energy. Tt is also the HK
functional F[n] for the case where U.. = 0. Tt satisfies:

T, [n] = min{(¢IT,- ) } (1.60)

p—n

The ground-state density of the previous system, constrained to be normal-
ized to Ng, 18 also solution of the following Euler-Lagrange equations:

J
0 = @) (Es[n]—us[/n(r)dr—]\fe]) (1.61)
_ 0Ti[n]
= Sam) + us(r) — pis (1.62)

Up to now for the non-interacting system.
Let us now go back to the real interacting system for which the energy
functional writes:

Eew[n] = /vext(r)n(r)dr + F[n] (1.63)
and let us define the exchange-correlation energy functional as:

Eyeln] = Fn] — 1/ oo () e 1] (1.64)
2 |I‘1 — I‘2|

As T[n] is only defined for the ground-state densities of non-interacting

systems, doing that we have implicitly assumed that for any ground state

density, n, of an interacting system, there exists a non-interacting system

with the same ground-state density n. Within this assumption, the Euler-

Lagrange equation of the interacting system is given by:

)
0 = @) (Ev[n]—u[/n(r)dr—]\f]) (1.65)
_ 0T[n]
= 5n() + Vext (1) + vn1(r) + vxe(r) — (1.66)

where the exchange-correlation potential is defined as

Ue(r) = dn(r) ’

(1.67)

and the Hartree potential corresponds to:

v (r) :/ ne (r') dy’ (1.68)

r—r|
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Comparing Eq. (1.62) to Eq. (1.66), we deduce that the non-interacting
system will give the same density as the interacting one under the constraint
that

Us (1) = Vext(r) + v (r) + vxe (r). (1.69)

Following the previous procedure, the real many-body electron problem
has been mapped onto another independent-particle system, with the same
exact ground state electronic density. In practice, this density can therefore
be obtained from one-body wavefunctions solution of the following set of
equations (Eq. 1.56— 1.57- 1.69) to be solved self-consistently:

[—3V2 4] W) = e [)

Us(r) = Ve (1) + [ B dry 4 2Pl (1.70)

n(r) =320 47 (0) di(r)

under conditions of orthonormalization of the one-body wavefunctions:
<1/)Z |1/)]> = 62]

However, the ground-state electronic energy Eq. (1.55) is not equal to the
sum of the fictitious independent particles eigenenergies that overcounts
the effects of the electron-electron interactions. It can be deduced from the
ground state self-consistent density as [147]:

oce

Z — —/ dI‘ldI‘Q
|1“1 - 1“2|

6Exc[ ]
Sn(r) n(r) dr

+Eye[n] — (1.71)

We note that the form of the exchange-correlation potential to be used
is unknown, as that of Fy.[n]. In practical applications, Fx.[n] must be
approximated. In the next Chapter, we will describe some of the usual
approximations, the most popular of them being the local density approx-
imation (LDA).

1.6.3 A Kohn-Sham variational formulation

Instead of solving the previous set of coupled one-body Schrodinger equa-
tions, the ground-state electronic energy can also be obtained from the
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variational principle. Making use of Eq. (1.55)—(1.58)-(1.64), the varia-
tional expression of the electronic energy may be written as a functional of
one-body wavefunctions :

oce

1
palo] = 3 (6|39 [ v nie)ar
1 [ n(r1) n(rse)
— [ ——=drid FEye 1.72
+ 2/ To— ridrs + [n] (1.72)
to be minimized under the following orthonormalization constraints :
(i) = di;

It is interesting to establish the connection between the previous mini-
mization procedure and the search of the solution of the Kohn-Sham (KS)
equations. The Euler-Lagrange equation associated to the previous con-
strained minimization, can be written:

0
0= 57 () ( Tiln] + / Vext () (x)dr + Epr[n] + Exc[n]
=D A (Wil —52;7')) (1.73)
or equivalently:
(- %v2+veXt +vn + vxe) [i) = ZAij|1/)j> (1.74)

where vy and vy are the potentials that were previously defined. Following
this procedure, we recover something similar to the set of KS equations,
that however have been mixed together. Such a freedom is inherent to
the set of constraints related to any independent-electrons scheme *. It is
associated to a “gauge freedom” much wider to than the one obtained by
simply changing the phase of each KS orbital [96]. Tt corresponds to the fact
that the electronic density and total energy are invariant under any unitary
transform within the subspace of the occupied one-body wavefunctions.
In practice, we can fix the gauge [96] so that :

Aij = (52']'62' (175)
in which case Eq. (1.74) takes the form of a KS equation and the ; become

identified with the KS orbitals. The KS eigenenergies are therefore obtained
as the eigenvalues of the Euler-Lagrange parameter matrix,

Ay = (i H|vy). (1.76)

7A similar freedom appears within the Hartree-Fock method
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1.6.4 The exchange-correlation energy

From the construction outlined in the previous Section, it appears that
the exchange-correlation energy F,.[n] of the Kohn-Sham formalism is not
equivalent to that of the many-electron interacting system F,..[,] obtained
from the exchange-correlation hole. The difference originates in a transfer
of part of the many-body kinetic energy to the exchange-correlation term
within the KS formalism. If ¢, is the electronic wavefunction of the inter-
acting system of density n, and ¢, those of the associated non-interacting
system minimizing the expectation value of H,, it follows from the varia-
tional principle that

<80n|H8|80n> <805|Hs|s05> (1~77)
(allilon) + [nnde > Tial+ [ )o@ (119

v

so that
Telpn] > Ti[n] (1.79)

In the context of the Kohn-Sham formalism, we can therefore define the
exchange-correlation part of the kinetic energy as:

Tre[n] = Telon] = Ts[n] > 0 (1.80)

and the Kohn-Sham exchange correlation energy takes the form:

Eye[n] = Toe[n] + 1/ no(r)ng (ralry) oo (1.81)

2 |I‘1 — I‘2|

The additional kinetic contribution makes the exchange-correlation density
functional even more complex than it was first a prior:t expected. An in-
teresting exact relationship is however satisfied by E,.[n], known as the
“adiabatic connection formula”[158, 105]. This result can be obtained as
follows. Let us consider the following family of Hamiltonian with different
electron-electron interaction governed by a single parameter A varying from
0 to 1:

Ha(\) = To 4+ A Uee + 2 (1.82)

For A = 1, we have the fully interacting system with vy = wveyx; and the
ground state density n. The electronic energy is:

Ea(l) = Ts[n] + / Vext (¥)n(r)dr + Epg[n] + Egpcn] (1.83)
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For 0 < A < 1, we define vy in such a way that the density n remains un-
changed. For A = 0, we have vy = v;, the Kohn-Sham potential associated

to the density n. The energy is given by:
FEe(0) = Ts[n] + /vs (r)n(r)dr (1.84)
From the two previous relations we deduce:
Ea(1) = Eq(0) = FEg[n]+ Eyn] + /[vext(r) — v (r)]n(r)dr (1.85)

Independently, this difference can also be obtained as:

pa) - ra0) = [ Py (1.56)

If we denote ¢, the ground state associated to the coupling constant A,
using the Hellmann-Feynmann theorem we obtain:

dEg(N) dH (M)
) = <80>\|T|80>\>
= {ea|Uecelior) + dci\ / A(r)n(r)dr. (1.87)

Therefore:

VdE (A 1
/Acu _ /<¢A|Uee|sox>cu
0 0

d\
—|—/[vext(1‘) — vs(v)]n(r)dr

YdA
= FEgn]+ - / (r: fo  (rars) dridrs
2 |I‘1 — I‘2|
—|—/[vext(1‘) — vs(v)]n(r)dr (1.88)
Comparing Eq. (1.85) to Eq. (1.88), we finally deduce:
1 ny(r1)n*c(rary)
Eye[n] = = 4 drydrs, 1.89
[n] 2/ F— 1dry (1.89)

where

n(ra|ry) :/0 nw(r2|r1) A (1.90)
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Figure 1.1: The Kohn-Sham exchange-correlation energy, Ey.[n], is ob-
tained as the exchange-correlation energy of the truly interacting system,
Ey.[¢], modified from a positive quantity equal to the transfer of kinetic
energy (Tyc[n]) all along the path of integration of the coupling constant A.

This approach literally “connects” the non-interacting KS system to the
fully interacting real system through a continuum of partly interacting sys-
tems (with interaction strength Ae?), which have all the same density. The
exchange-correlation hole of DFT| ny. is not the exchange-correlation hole
at A = 1, but is the average of the correlation function for A ranging from
0 to 1. The integration over A generates the kinetic part of Fx.[n].
Another insight on this result is provided in Fig. 1.1. In absence of
correlation (A = 0), the only remaining electron interaction energy origi-
nates in the exchange effects. It is convenient to define the exchange energy
of the system from Eq. (1.50) as within the Hartree-Fock method but on
the basis of the Kohn-Sham wavefunctions [248]. The correlation energy
appearing at A = 1 may be identified as the additional quantity with re-
spect to the exchange contribution calculated at A = 0. The Kohn-Sham
exchange-correlation term Ey.[n] differs from the exchange-correlation en-
ergy at A = 1 (equal to Ey.[¢]) from a positive quantity equal to Ty.[n],
and corresponding to the transfer of kinetic energy all along the path of
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integration of the coupling constant A.

1.7 The Green’s function approach

Up to now, we have focused on the determination of the ground-state of the
system. We should also be interested in its optical properties that involve
the identification of excitation energies. In particular, the energy gap must
be defined from the energies of the quasi-particles of the system.

Within many-body theory, it can be shown that the quasi-particle en-
ergies are solution of the following Dyson equation [130]:

[—%Vz + Vext () + vH(I‘)] U, (r)
+ / Ype(r,v's By) U, (x') dv' = E; U, (r) (1.91)

where the operator ;. is called the exchange-correlation self-energy opera-
tor: 1t is linear, non-local, non-hermitian and energy-dependent. This is an-
other reformulation of the many-body problem through one-body Schrodin-
ger like equations. It is also an alternate approach giving access to the
correct ground state electronic density. A good review on the basics of this
method is proposed in Ref. [130].

The complexity of X, has been the main reason for the difficulty of first-
principles calculations of quasi-particle energies. Nevertheless, some realis-
tic calculations have been reported within the GW approximation [130] &.
Some recent results obtained within this approximation have shown that
the X, operators of various semiconductors have some common features
and can be schematized through a relatively simple expression [83]. From
this analysis, it was suggested that the non-locality of X, is essential in de-
termining the quasi-particle energy gap, while the energy dependence more
greatly alter the dispersion of the individual bands (see also Appendix D).

1.8 The DFT bandgap problem

1.8.1 Kohn-Sham eigenenergies

There is a formal resemblance of the Dyson equation giving the quasi-
particle energies, to the Schrodinger equation for the effective one electron

8 This approximation is so called because it restricts to the first term of an expansion of
Y. in terms of the screened Coulomb interaction W and the one-particle Green’s function

G.
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eigenvalues of DFT. This has suggested that there might be a connection
between the quasi-particle energies E; and the eigenvalues ¢; for the ficti-
tious, non-interacting particles of the Kohn-Sham system.

It can be shown that the ionization energy of a system (the work function
for a metal) is given correctly by the energy of the highest occupied Kohn-
Sham orbital [2]. No further exact relationship is however known for the
other KS eigenenergies.

In spite of any formal evidence, in practice [83], it is observed that the
DFT and quasi-particles wavefunctions are nearly identical. Similarly, the
valence energy bands are usually well reproduced within DFT. At the op-
posite, it is well known that the fundamental energy gap of semiconductors
is usually much larger than its DFT estimate from the N-particle system.

1.8.2 Bandgap problem

Let us now investigate more carefully the origin of the bandgap prob-
lem [89] as it was explained by Sham and Schiiter [257, 258] and Perdew
and Levy [214]. The band structure in a semiconductor can be rigorously
defined as the energies of one-particle excitations, which are in turn related
to the difference between total energies of states differing by one electron.
The fundamental bandgap is defined by:

Ey=¢€—¢ (1.92)

where lowest conduction band and higher valence band are related to quasi-
particle energies:

ECIEN+1—EN ; EUIEN—EN_l (193)

Making use of Janak’s theorem [132], it can be shown that within DFT we
must write [258]:

ce=ent1i(N+1) | e =en(N) (1.94)

where epr(P) is the M-eigenenergy of the P-electron system. The energy
gap is therefore related to the Kohn-Sham eigenenergies as:

B, = exi (N +1) - en(N) (1.95)
and may differ from the bandgap of the N-particle system:
G = enar(N)—en(V) (1.96)
We write the deviation as:

Ey= g+ Ape (1.97)
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The appearance of a gap ¢; in the KS eigenenergy spectrum is related
to the existence of a discontinuity in the kinetic energy functional deriva-
tive [258]. Similarly, the contribution A, originates from a discontinuity
in the exchange-correlation potential upon addition of an electron to the
system [214, 257, 258]. Such a discontinuity may be large and is typically of
the same order of magnitude than ¢;. The inclusion of such a discontinuity
is intrinsic to the optimized effective potential (OEP) method [69]. Tt is
however not reproduced within the usual local implementation of the DFT
(LDA, GGA). These approximations seems however to describe correctly
€4 in comparison to what would be expected in exact DFT [82]. From the
distinction between F, and ¢,, it was suggested that an insulator might
be described as a metal in exact DFT [84]. This surprising feature will be
rediscussed in Chapter 8.

1.9 Conclusions

In this Chapter, we gave a brief overview of the approximations required to
identify the ground-state of a system of electrons and ions in interaction.
Making use of the adiabatic approximation to separate the dynamics of
the electrons from that of the ions, we focused on the many-body electron
problem. We have shown that, as an alternative to the direct resolution of a
Schrodinger equation, the quantum-mechanical ground-state can be conve-
niently determined from the minimization of a functional of the electronic
energy. Different approaches have then been explored.

The electronic energy was first formulated as a functional of the many-
body wavefunction (Eq. 1.41). As a second step, the Hohenberg-Kohn the-
orem allowed to reformulate the problem in terms of a more convenient
density functional (Eq. 1.55). Finally, within the Kohn-Sham approach,
the energy became accessible from a functional of one-body wavefunctions
(Eq. 1.72) associated to non-interacting particles.

The Kohn-Sham formulation of the many-body problem is a very conve-
nient approach, giving access to the correct ground-state electronic energy
and electron density. It was however emphasized that the Kohn-Sham inde-
pendent electrons are fictitious particles that cannot be formally connected
to the quasi-particle of the system.

From now, we will focus on the Kohn-Sham formalism that will be used
all along this work.
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Chapter 2

A periodic-DFT

2.1 Introduction

Starting from the general results obtained in the previous Chapter, we are
now investigating more carefully how the density functional formalism can
be adapted for the case of periodic solids when considering functionals of
the periodic part of the density. First, we will present some usual approxi-
mations of the exchange-correlation density functional. Then, we will pay
a particular attention to the technical approximations that are currently
introduced in practical calculations. We will describe how the electronic
wavefunctions can be conveniently expanded from a finite plane-wave basis
set, when making use of pseudopotentials. Our discussion will contain some
specific informations concerning BaTi0O3. Finally, explicit expressions will
be proposed for the different terms of the electronic energy functional.

The electronic problem being solved, we will show how the total crystal
energy can be obtained as a sum of the electronic and ionic energies. Struc-
tural optimization will then naturally arise within the scope of our theory:
it will basically consist in a minimization of the total energy in terms of
the ionic degrees of freedom considered up to now as parameters. We will
briefly describe how this structural optimization may be facilitated thanks
to the Hellmann-Feynmann theorem.

Good reviews concerning the concepts presented in this Chapter are
mentioned in the last Section.

41
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2.2 The local density approximation

The formalism of the density functional theory i1s a priori exact. However,
as 1t was pointed out in the previous Chapter, the form of the universal
exchange-correlation energy functional to be used is unknown and, in prac-
tice, it must be approximated. The estimate of Ey.[n] is the only uncon-
trolled approximation introduced in practical calculations and is a source
of systematic errors. In this Section, we present some common approxima-
tions: in particular, we describe the local density approximation that will
be used all along this work.

From the Hohenberg and Kohn theorem [121], the exchange-correlation
energy is expected to be a universal functional of the density everywhere.
The local density approximation (LDA) [147] assumes (i) that the exchange-
correlation energy per particle at point r, €;.(r), only depends on the den-
sity at this point and (ii) that it is equal to the exchange-correlation energy
per particle of a homogeneous electron gas of density n(r) in a neutralizing
background:

E,[n] = /n(r) eEDAyY dr (2.1)
with
LD (1) = chom () (22)

re - Exc

The form of €29™[n] used in the calculation may be borrowed from various
sources. The exchange part can be obtained analytically from the Hartree-
Fock technique. We have seen that it scales like (Eq. 1.51):

3

C4r

b ) =

(37%)1/3 pt/3 (2.3)

For the correlation part, one may rely on accurate values obtained by
Ceperley-Alder [29] from Monte-Carlo simulations of the energy of the ho-
mogeneous electron gas. In our study, we used a polynomial parametriza-
tion of the previous data as proposed by Teter [280]. Other approximations
(Wigner, X-alpha, Gunnarson-Lundqvist...) are also referred to as local
density approximations. They rely on the same exchange part but consider
slightly different treatments of the correlation term.

The LDA is probably one of the crudest approximation that we may
do. It has however the advantage of the simplicity. Moreover, it already
allows to describe structural and dynamical properties of materials with
surprising accuracy [136, 218] * : calculated bond lengths and bond angles

IThe LDA exchange-correlation hole intergates to —1. This simple feature should be
a first intuitive argument to explain its success.
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reproduce the experiment within a few percents; phonon frequencies are
usually obtained within 5-10 %. Well known exceptions are however the
cohesive energy and the dielectric susceptibility.

Different techniques were proposed that are going beyond the LDA. A
first alternative, but connected approach, is to build a “semi-local” func-
tional that does not only depend on the density at r but also on its gradient,
or on higher order gradient expansion. Different forms have been proposed
that are summarized under the label of Generalized Gradient Approxima-
tions (GGA). They are based on a functional of the type [50, 140]:

ExGCGA [n] = /n(r) . GxGCGA [n(r); |Vn(r)|; Vzn(r)] dr (2.4)

This kind of approximation improves the computed value of the cohesive
energy. It can also improve the description of bond lengths and lattice
parameters even if the gradient correction usually overcorrects the LDA
result [51, 87]. Finally, the correction has a rather limited effect on the
dielectric constant [51]. The GGA remains a quasi-local approximation
that cannot include any long-range density dependency of Ey.[n]. We will
see in Chapter 8 that this should explain why it cannot significantly improve
the description of the dielectric susceptibility [74].

Different other functionals also exist like the average density approxi-
mation (ADA) [106] or the weighted density approximation (WDA) [106].
It was recently argued that WDA should be intrinsically unable to improve
LDA results [31]. For ABO3 compounds, it seems however that this last
technique is an interesting alternative to the LDA (see Chapter 4) [269].

Without being exhaustive, let us finally mention that another inter-
esting scheme consists in a mixing of Hartree-Fock and and local density
functionals justified from the adiabatic connection formula [13].

2.3 The periodic solid

2.3.1 Periodic boundary conditions

All along this thesis, we will be interested in periodic systems, built from a
basic unit cell that 1s periodically repeated in the three directions of space.
In this context, the atomic position R, . of atom « within unit cell a can
be conveniently dissociated as:

R,.=Rg;+ 7, (2.5)

where R, is a lattice vector and 7, 1s the vector position of the atom within
the unit cell.
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A macroscopic solid would basically consists in the limit of a finite sys-
tem of increasing size. Since long, however, physicists do usually prefer to
investigate solids from infinite truly periodic systems defined by imposing
Born-von Karman periodic boundary conditions [4]. The approximation
seems reasonable and was widely used because it presents numerous con-
ceptual and practical advantages. In the context of this Chapter, it leads
to what we will refer to as a “periodic-DFT” | in which the energy appears
as a functional of the periodic part of the density.

However, for such infinite solid, the surface (and the associated sur-
face charge) has artificially disappeared. We will see later that, within the
particular context of Kohn-Sham calculations, imposing periodic bound-
ary conditions is not necessarily equivalent to considering a finite solid of
increasing size (Chapter 8).

In this Chapter we describe the results obtained within a “periodic-
DFT”. It will be argued later that it constitutes a coherent procedure within
the LDA (or even within other semi-local approximations like the GGA’s)
that remains a standard for DFT calculations.

2.3.2 Bloch functions

In infinite periodic solids obtained by imposing periodic boundary condi-
tions, the electronic wavefunctions have the Bloch form and can be written
as the product of a plane-wave by a cell periodic function:

Ui (r) = (NQ0)~H2 ey (x) (2.6)

where N is the number of unit cells repeated in the Born-von Karman
periodic box, and 2y 1s the volume of the basic unit cell. A normalization
factor has been introduced, such that the normalization condition imposed
to ¥,k now writes in terms of wu,y:

when the scalar product of periodic functions is defined as:

o) = — [ F@)gr)dr. (2.8)

Qo Ja,

In our infinite solid, k may have any value. Basically, the Bloch theorem
has reduced the problem of calculating an infinite number of electronic
wavefunctions to the determination of a finite number of electronic states
but at an infinite number of k points. Similarly to the fact that each
electron of the solid must be taken into account, the occupied states at
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each k point contribute to the electronic density and to the potential in
the bulk solid. However, as a consequence of the periodicity in real space,
the k-space is also periodic [4] so that, in practice, the only k-vectors to be
considered are those which are within the Brillouin zone (BZ). From our
conventions, the electronic density reads in terms of the periodic functions :

oce

1 *
n(r) = TP /BZ ;5 W (1) U () dk. (2.9)

where s is the occupation number of states in the valence band (in spin-
degenerate systems s = 2).

2.3.3 Brillouin zone sampling

The use of Bloch functions has to be associated with integration over the
Brillouin zone and would a priori require to compute different quantities at
a large number of k-points. Fortunately, the electronic wavefunction at k
points that are close to each other are almost identical so that it is possible
to represent the electronic wavefunction over a region of k space by that at
a single k point. Consequently, integrations over the entire Brillouin zone
can be conveniently replaced by sums on a limited number of k points.

Efficient sampling methods have been proposed by different authors [30,
63, 197] to obtain accurately the density, the electronic potential and the
contribution to the total energy from the knowledge of the electronic states
on a very restricted set of “special” k-points. In our calculations we made
use of the technique developed by Monkhorst and Pack [197, 198]. As it is
discussed in Appendix A, our study of BaTiOgs typically required a 6 x 6 x 6
mesh of special k-points. This is relatively dense in comparison with what
is usually needed for other typical insulators. In contrast, for metals, larger
meshes are required in order to define precisely the Fermi surface.

We note that the error induced by the k-point sampling is not the conse-
quence of any physical approximation but consists in a computational error.
Its magnitude must be checked and can always be reduced by increasing
the size of the k-point mesh.

2.4 A plane-wave pseudopotential approach

2.4.1 Plane-wave basis set

The Bloch theorem relates the electronic wavefunction #,x to a periodic
function wu,x, that satisfies:

Unk(r) = tnk(r+ R) (2.10)
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for any vector R satisfying the lattice periodicity. As a consequence, upy
can be conveniently expanded in terms of a plane-wave basis set.

Typically, the Fourier transform of a periodic function is indeed identi-
cally zero except on the reciprocal vector G defined as G.R = m.2w, where
m is an integer. The function is therefore related to its Fourier transform
by the following relationships:

un(r) = D unk(G) e G (2.11)
G
we(G) = Qio [ () e S (2.12)

In this context, the global electronic wavefunction can also be written as a
sum of plane-waves:

Unk(r) = (NQ0) ™2 ) i (G) e TSI (2.13)

From a mathematical viewpoint, the sum appearing in the previous equa-
tion is an infinite one. However, in practical calculations this sum must be
restricted to a limited number of G vectors. The conventional choice is to
consider only plane-waves that have a kinetic energy smaller than a chosen
cutoff energy: %|k—|— G|? < Feur.

The plane-wave basis seems only very poorly suited to expand the elec-
tronic wavefunctions because a very large cutoff is a prior: needed to de-
scribe the tightly bound core orbitals or to follow the rapid oscillations of
the valence wavefunctions in the core region due to the strong ionic poten-
tial. In practice, a plane-wave basis set will only become tractable when
considering simultaneously the pseudopotential approximation that will be
described in the next Section. For all electron calculations, other expan-
sions of the electronic wavefunction must be preferred (LAPW, LMTO...).

The truncation of the infinite basis set at a finite cutoff energy introduces
a second computational error. Similarly to what was discussed for the k-
point sampling, the amplitude of such an error can always be reduced by
increasing the value of the cutoff energy.

The plane-waves basis has the computational advantage to be associated
to convenient fast fourier transform. Also, it will be particularly suitable
for the calculation of the response to external perturbations (Chapter 4).
However, one difficulty arises in practical calculations at a finite cutoff due
to the incompleteness of the basis set. Change in size of the unit cell
will modify abruptly the number G vectors inside the cutoff sphere, and
consequently, the number of plane-wave included in the basis set. As the
total energy 1s monotonically decreasing with the number of plane-waves,
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this phenomenon will be associated to discontinuous jumps in the total
energy. The values of the energy for different unit cells, obtained at a fixed
cutoff, are associated to slightly different basis sets and cannot be directly
compared: they require to include a correction factor usually referred to as
a “Pulay correction” [67, 247].

2.4.2 Pseudopotentials

Two major impediments have been identified to the use of a plane-wave
basis set. They were associated to the difficulty (i) of describing the tightly
bounded core states and (ii) of following the rapid oscillations of the valence
bands orbitals inside the core region. We now briefly explain how the first-
problem may be avoided within the frozen-core approximation. The second
requires the use of pseudopotentials.

The frozen-core approximation is based on the following observations.
In many situations, the physical and chemical properties of solids are essen-
tially dependent on the valence electrons. On the other hand, it 1s expected
that the core electrons that do not directly participate to the chemical bond-
ing are only slightly affected by modifications of the atomic environment.
It may therefore reasonably be expected that the configuration of the core
electrons within the solid 1s equivalent to that of the isolated atoms. In
term of the density, the frozen-core approximation corresponds to assume
that:

n(r) = n¥"(r) + ny(r) (2.14)

Within this approximation, the problem of treating the core electrons is
considered as being solved (i.e. it has been solved at the atomic level),
while the study restricts to the investigation of the behaviour of the valence
electrons within the ionic potential, partly screened by the core electrons.

We note that the segregation between core and valence electrons so in-
troduced is not necessarily similar to that usually considered by chemists.
In practice, electrons from deep energy levels can always be treated as va-
lence electrons and the partitioning must be performed in order to validate
the frozen-core approximation. For instance, in our study of BaTiOg, the
5s, bp and 6s levels of barium, the 3s, 3p and 3d levels of titanium, and
the 2s and 2p levels of oxygen have been treated as valence states (see

Appendix A).

The second problem, associated to the oscillation of the valence wave
functions inside the core region is solved from the pseudopotential approx-
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imation. The latter basically consists in a mathematical transformation
in which the ionic potential screened by the core electrons is replaced by
another fictitious potential such that the valence wavefunctions remain un-
changed beyond a given spatial cutoff distance but are replaced by smoothly
varying pseudo-functions inside the core region. The pseudopotential, gen-
erated for isolated atoms, is built in such a way that the eigenenergies of
the pseudo-problem remain that of the real system. It is then expected
that such a potential is transferable to the solid or, in other words, that
the similarity between the real and pseudo-problem remains valid whatever
the modifications of the ionic environment within which the frozen core
approximation remains valid.

At the beginning, the pseudopotential approach was relatively empiri-
cal. Now, it has become a well-controlled approximation. The potentials are
generated from first-principles atomic calculations [218]. Their construction
1s submitted to a series of constraints that ensure their transferability from
one chemical environment to another: norm conservation [7, 107], extended
norm conservation [263], chemical hardness conservation [65, 279]. In this
context, the pseudopotential is usually not a local potential anymore but
has the more general form of a non-local operator, commonly of a separable
type [90, 145]. Recently, some progresses were also made for the design of
ultra-soft pseudopotentials requiring a minimum number of plane-waves to
expand the wave function [236, 282]. A good overview of the pseudopoten-
tial concept may be found in the review of Pickett [218]. A summary of the
most recent trends is reported in Ref. [32].

In our calculations on BaTiOs, we adopted extended norm-conserving,
highly transferable pseudopotential, as proposed by M. Teter [279, 280]. For
the oxygen, in order to increase the transferability, we included a chemical
hardness correction [279]. More information concerning these pseudopoten-
tials can be found in Appendix A.

Within the pseudopotential approach, the external potential appearing
in the DFT consists in the pseudopotentials from all atoms inside each
repeated cell with lattice vector Ry :

Vext (1, 1) :Zvn(r—rn—Ra,r/—Tn—Ra) (2.15)

Each atom contribution is made of a local and a non-local contribution:

ve(r, 1) = vl°(r)d(r — ') + 5P (x, 1), (2.16)

K

The local part is long-range, with asymptotic behavior —Z, /7, where Z is
the charge of the (pseudo)ion. Usually, the non-local part is of a separable
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type [145]:
VP (1,1) = ) eunCun ()€ (1) (2.17)
1

where only a few separable terms, labeled by p, are present. The functions
Cur are short-range, and should not overlap for adjacent atoms.

A major contribution to transferability in pseudopotentials came from
Louie, Froyen and Cohen [175], who realized that the deletion of the elec-
tron density of the core states removed by the pseudopotential construc-
tion results in a non-linear error in the exchange-correlation potential in the
LDA. By restoring the core density n¢,r¢, they were able to show that atoms
would respond correctly over a wider range of conditions (core correction).
The pseudo-core density from each atom can be build at the same time
as the pseudopotential. The total core density is made of non-overlapping
contributions from each atom:

ne(r) =3 nes(r — 75 — Ra). (2.18)

This contribution is known, as soon as the ionic positions have been as-
signed.

2.5 Total crystal energy

The total energy of a crystal is defined as the energy difference between the
condensed system and a system where all the electrons and ions constituents
are separated by infinite distances. Within the Born-Oppenheimer approx-
imation, this energy corresponds to F.i;(R). This crystal energy can be
dissociated into two terms:

Ee+i(R) = Eel(R) + E”(R) (219)

The first term, associated to H., involves the electrons placed in the po-
tential of the ions (Feo = Te + Fee + Eie). The second is due to the ion-ion
interaction (%;;), and is fully determined when the atomic positions are
fixed. We can now investigate the more explicit form of these two terms for
a periodic solid, when the many-body electron problem is treated within
the density functional formalism, a plane-wave pseudopotential approach
and the local density approximation.

2.5.1 The macroscopic limit

In Section 2.3, we have introduced the notion of infinite periodic solid ob-
tained by imposing Born-von Karman periodic boundary conditions. As
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highlighted by Makov and Payne [182], we must however be careful when
switching from finite to infinite solid. In particular, we must be sure of the
convergence of the electrostatic energy, obtained by summing contributions
from the different unit cells. Two cases of convergent sums are possible.
(i) The sum is absolutely convergent, in which case the potential energy
will have converged for large systems and extending the sum to infinity
will not affect the result. In this case, the surface terms make a negligible
contribution. (ii) The sum is only conditionally convergent and depends on
the order of summation. By that they mean that the surface charge has
a non-negligible contribution that must be taken into account to obtain a
convergent result.

From the expression of the electrostatic energy, only zero- and first-
moment of a multipole expansion of the charge may give a sizable con-
tribution to the energy at large distance. Consequently, the electrostatic
energy will be absolutely convergent only if the lowest non-zero multipole
is a quadrupole.

The zero-order term corresponds to a charge and would produce a di-
vergence. However, it is zero in a charge neutral system. The first moment
corresponds to the dipolar terms and is never present for Bravais lattices
with inversion symmetry. For polar solids however, Makov and Payne [182]
have shown that, due to this term, the electrostatic energy 1s only condi-
tionally convergent: it remains undetermined until the surface contribution
has been explicitly defined. In practice this requires to impose an additional
boundary condition. Calculations can be performed under the condition of
zero macroscopic electric field, in which case it can be shown that there
will be no contribution from the surface ?. Stricly speaking, the energy
considered in that case is an electric enthalpy.

In the framework of this Chapter, the surface contributions are induced
by the G = 0 terms and the previous convergence problem is associated to
the G = 0 divergence of F.., F;. and Ej;;. For a neutral system under the
condition of zero macroscopic electric field, there is no surface contribution
to be included (i.e. the different divergences must cancel out) so that ,
in practice, the G = 0 contributions can be omitted in each of these three
terms 5.

We note that, when considering pseudopotential, the Coulombic be-
haviour of the ionic potential has been modified and a residual charge
contribution appears. As such a component is constant in real space, it
1s of no importance for the generation of the wavefunctions and the density
(only the mean of the potential is affected) and it is usually included in the

2This will appear more clearly in the framework of Chapter 4.
3A “prime” will be typically added to quantities from which the G=0 term has been
removed.
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lon-lon term.

2.5.2 The electronic energy

In terms of our periodic Bloch functions, the KS equations associated to
the valence electrons, placed in pseudopotential associated to the ions and
core electrons may be written in compact form, as:

Hyexltumx) = €mx [tmx). (2.20)
where
Hyx = Tk + Vext kx4 vi + 224, (2.21)

The associated variational expression of the electronic energy is:

Q occ
Faltl = gy [ 3 s st vese sl

+ Eylu] + EEPA]. (2.22)

Because of their different mathematical formulation, the different terms of
the previous equation may be more conveniently treated either in real or in
reciprocal space, while transformations of the wavefunctions from one space
to the other are carried out by means of fast Fourier transforms. Let us
now go through a brief description the different terms. The valence charge
density is obtained from Eq. (2.9).

The kinetic energy is computed in reciprocal space where its operator
is diagonal:

k+ G)?

T x(G,G') = 7

feTel (2.23)

The external potential is a non-local operator within our pseudopo-
tential approach and has been separated into local and non-local parts.
The Coulomb divergence associated to the local term must be removed by
subtracting the G=0 contribution. The local potential in real space is
obtained from the following Fourier components:

1 —iG.T loc
: B Qs Do €  v2°(G) when G #£0
Uoe(G) = { 0 when G =0 (2.24)

This operator is naturally applied in real space since it is diagonal in that
representation. The separable part keeps the same form as in the previous
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Section. A separable potential could be treated efficiently either in real
space or in reciprocal space. In our case, it is treated in reciprocal space so
that finally:

occ

Qo
Eie[u] = W /BZ ; s <umk|vsep,k,k|umk>dk

+ /ﬂ n(r)v,.(r)dr (2.25)

The Hartree potential is conveniently defined in reciprocal space.
Subtracting, the G = 0 divergence,

, n(G)
va(G) = ST whenG # 0 (2.26)
0 whenG =0
The Hartree energy can be written as:
: n(G)[?
Bylu] = 27Q0 ) G (2.27)

G#0

The exchange correlation energy is obtained, within the LDA, as
an integral of the density n(r) times the mean exchange-correlation energy
per particle ¢£P4(r) of the homogeneous electron gas of density n(r). How-
ever, when combined with pseudopotentials, this simple definition has to
be modified, in order to take into account that only valence states are used
to build the density : the contribution of the core electrons (n.) should be
included, because of the non-linear character of the exchange-correlation
energy functional [175]. The functional then reads

Eyolu] = /ﬂ (n(r) + nc(r)) . €£CDA[n(I‘) + ne(r)] dr (2.28)

where the pseudocore density n. 1s made of non-overlapping contributions,
built at the same time as the pseudopotential (Eq. 2.18).

To summarize, the global Hamiltonian for the electrons has been re-
cast as:

Hyex = Tk + (vsep,k,k + vlloc) + v;{ + Uxe (2.29)

and the associated total electronic energy functional can be written as:

occ

Qo
Eel[u] = (271')3 /BZ Z s <umk|Tk,k + vsep,k,k|umk>dk
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n(G)I*
|GJ?

—1—/ n(r)v{oc(r)dr + 27 Z
Qo

G#£0

o[ (00 0) A e e 230

In practical calculations, the integrations over the BZ are replaced by
sums on a mesh of special k-points, and the periodic functions {u} are
expanded in a sum of plane-waves that have a kinetic energy smaller than
a given cutoff.

The ground-state electronic energy is obtained by minimizing the pre-
vious energy functional with respect to the {u} degrees of freedom under
the orthonormalization condition given by Eq. (2.7). The valence density
is computed from Eq. (2.9).

Different computational techniques are available to perform such a min-
imization. In our calculations, the minimization was performed thanks to
a band by band preconditioned conjugate gradient algorithm as described

in Ref. [212, 278].

2.5.3 The ion-ion energy

In our system where the position of the ions are considered as fixed pa-
rameters, the ion-ion energy reduces to a well defined quantity. Within our
pseudopotential approach, the ion-ion energy may be separated into two
terms:

E”(R) = EEw(R) + Fres. (231)

Egy 18 the bare Coulomb ion-ion electrostatics energy as recast when
using Ewald summation technique, and from which the G=0 term has been
removed from the reciprocal space summation:

Fee®) = =3 2720 ( 3 —= PG T =T ) (= O
v 2470 &o WG 4A?
= AR (Ad g ) — 2 NG — (2.32)
- ’ ﬁ QoAz

Fres comes from the non-cancellation of the different Coulomb terms
at G = 0 when using pseudopotentials:

1\ ZxClo
FRes = 52 o (2.33)

KE!
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where C); describes the deviation from the purely Coulombic behaviour of
the local part of the pseudopotential of atom «:

Cy = /(U}SC(r) + é) dr (2.34)

r

2.5.4 Crystal energy

The previous results may finally be synthesized as follows. The Born-
Oppenheimer total energy of a neutral crystal, under the condition of zero
macroscopic electric field 1s calculated as:

Ee+i(R) = Hbin Eel(R, [u]) + EEw(R) + FRes. (235)

The electronic energy is implicitly dependent on the atomic positions that
are reintroduced in the notations. It is determined through a minimization
procedure within our DFT approach (Eq. 2.30). The electrostatic energy
of the ions is obtained from Ewald summation technique (Eq. 2.32). The
pseudopotentials require the inclusion of a constant residual electrostatic
energy contribution (Eq. 2.33).

2.6 Structural optimization

In the previous Section, we have obtained an explicit expression for the crys-
tal energy in terms of the atomic positions considered as parameters. Such
a result therefore opens the door to structural optimizations by searching
the energy minimum within the parameter space of the atomic positions
(3 x Nyt degrees of freedom). In periodic solids, the problem can be recast
into the determination of the unit cell lattice parameters and of the atomic
positions within this basic unit cell.

Interestingly, the Hellmann-Feynman theorem [64, 115] (see Chapter
4) teaches us that not only the total crystal energy, but also its first-order
derivatives with respect to atomic displacements are directly accessible from
the ground-state wavefunctions. Calculation of these energy derivatives
will be of appreciable help to perform efficient structural optimizations.
In periodic solids, such derivatives are indeed associated to well known
physical quantities. The force on atom & in direction « is related to the
first-oder change of the total energy with respect displacement of atom &
in direction a:

_ dEe+i

Fro = (2.36)

dTeo
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Similarly, the stress tensor o, is related to the first-order derivative of the
crystal energy with respect to a macroscopic strain £q4:

dE.4;
Uqﬁ — et

o (2.37)
The forces are accurately described within our plane-wave approach. The
stress tensor however always requires an additional Pulay correction [247]
in order to compensate for the incompleteness of the finite basis set.

In practice, efficient structural optimizations are performed from a fi-
nite number of ground-state calculations for different atomic configurations
expected to be close to the optimal configuration. The ground-state ionic
positions are determined from the energy minimum reached thanks to the
informations on crystal energy, stresses and atomic forces obtained at each
calculation.

2.7 Conclusions

In this Chapter, we have detailed a practical method for total energy calcu-
lations based on the density functional formalism. This method was taking
advantage of the translational symmetry of periodic solids. It also required
some technical approximations. Equations were obtained in the framework
of a plane-wave pseudopotential approach and within the local density ap-
proximation.

Since a few years, this kind of techniques is currently applied, in comple-
ment to experiments, to investigate the ground-state properties of different
class of materials. In most cases, it yields very accurate results. However,
it does also require substantial amounts of computational time.

The equations developed in this Chapter will now be used to investigate
the ground-state properties of barium titanate. In particular, it will be
checked if, in spite of the approximations that have been introduced, DFT-
LDA calculations have sufficient accuracy to describe correctly the essential
features of the BaTiOgz total energy surface.
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Chapter 3

Ground-state properties

of BaTiOs3

3.1 Introduction

Barium titanate crystallizes in two distinct polymorphic forms. One is the
well known and most extensively investigated perovskite structure. The
other is a hexagonal phase first observed by Megaw [193, 288] in 1946 L.
Each polymorph undergoes its own sequence of phase transition. Both
of them are ferroelectric [307], but exhibit different ferroelectric properties.
All along this work, we will be only concerned with the perovskite structure.

The perovskite form is stable at high temperature in a simple cubic
lattice containing five atoms per unit cell. This cubic phase is paraelectric
and is the reference prototype 2 structure. Its space group symmetry is
Pm3m. The experimental lattice parameter a, 1s equal to 4.00 A.

As the temperature is lowered, BaTiO3 undergoes a sequence of three
ferroelectric phase transitions (see Fig. 3.1). Around 130°C, it transforms
from cubic to tetragonal structure (P4mm). This phase remains stable until
about 5°C, where there is a second transformation to a phase of orthorhom-
bic symmetry (Pmm2). The last transition arises around —90°C. The low
temperature ferroelectric phase is rhombohedral (P3m1). Each transition
is accompanied by small atomic displacements and a macroscopic strain.
In the successive ferroelectric phases, the polar axis is aligned respectively

IThe hexagonal structure of BaTiOs was then characterized by Burbank and
Evans [21].

2This name is usually given to the highest symmetry phase, in terms of which the
ferroelectric phase(s) can be described by small perturbational structural changes.

57
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Figure 3.1: The four phases of BaTiOs. In the cubic phase, the Ba atom
is located at the corner of the cell, the Ti atom at the center and the O
atoms in the middle of the faces.

along the <100>, <110> and <111> directions.

In this Chapter, we report results concerning the ab initio structural
optimization of the four phases. We also describe the electronic proper-
ties of the cubic and rhombohedral structures. We finally reintroduce the
problematics of the ferroelectric instability in the context of first-principles

calculations. Technical details concerning the calculations are reported in
Appendix A.

3.2 Structural optimization

The structural optimization is easily performed within the density func-
tional formalism presented in the previous Chapter. It is based on the
computation of three quantities directly accessible from the ground-state
electronic wavefunctions: the total energy and its first-order changes with
respect to atomic displacements (the forces) and to macroscopic strains (the
stress tensor).
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Figure 3.2: Determination of the optimized lattice constant of cubic

BaTiOg.

3.2.1 Cubic phase

In the cubic phase, the positions of the atoms in the unit cell are imposed by
symmetry. Choosing the barium atom as reference, these atomic positions
are (in reduced coordinates):

Ba : (0.0,0.0,0.0)
Ti : (0.5,0.5,0.5)
0, : (0.5,0.5,0.0)
05 : (0.5,0.0,0.5)
Os : (0.0,0.5,0.5)

The only degree of freedom that must be relaxed is therefore the lattice
parameter a,. Its equilibrium value can be determined ab initio as the one
which minimizes the total energy. Equivalently, it can be obtained as the
value for which the hydrostatic pressure on the material is zero. Within a
plane-wave approach, such calculations require an additional “Pulay cor-
rection” [247].

The results of our calculation are presented in Fig. 3.2. We deduce
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for the equilibrium lattice parameter a value of 3.943 A. This result is
similar to that reported from other previous LDA calculations (a,=3.94
A from Ref. [41], a,=3.95 A from Ref. [141]). It only slightly underesti-
mates the experimental lattice constant of 4.00 A. We note that a better
agreement was recently reported within a “weighted density approxima-
tion” (WDA) [269, 270]. The Bulk modulus, deduced from the curvature
of the energy curve around the minimum, is estimated to 197 GPa.

For this cubic phase, we also calculated the cohesive energy as the dif-
ference between the energy per unit cell of the solid and the energy of the
respective free atoms. At the experimental volume, we estimate F.o to
—38.23 eV/cell. A previous value equal to —31.16 eV /cell was reported by
Weyrich and Siems [296, 298], in better agreement with the experimental
value of —31.57 eV/cell. In their calculation, Weyrich and Siems deter-
mined the free atom energies from non-spin-polarized LDA; in our case,
the spin-polarized correction decreased the value of F.o by 5.17 eV /cell.
The value that we report is only indicative. An accurate prediction of the
cohesive energy usually requires to go beyond the LDA.

3.2.2 Ferroelectric phases

In the ferroelectric phases, the specification of the unit cell requires more
than one parameter. Moreover, the atomic positions are still not fully deter-
mined by symmetry, but must be relaxed simultaneously. The tetragonal,
orthorhombic and rhombohedral structures contain respectively 5, 6 and 5
degrees of freedom.

A full structural optimization would require to relax together all the
different degrees of freedom. However, as it was pointed out by many au-
thors [41, 43, 141, 224], the ferroelectric instability of ABOs compounds is
strongly sensitive to the volume. In this context, the volume underestima-
tion of the LDA | even if small, appears problematic 3. It was observed that
the correct simulation of different properties of ABO3 compounds (like the
phase transition temperature [314]) requires to work at the experimental
lattice constants. As they are accurately obtained from X-ray diffraction
data [153], we chose to keep the experimental lattice parameters, without
optimization. The results obtained by Singh [269, 270] suggest that the
use of a WDA should be a promising way to eliminate these experimental
parameters from the calculation in the future.

Contrary to the lattice parameters, all the atomic positions have been
relaxed together until the residual forces on the atoms are smaller than 10~°

3We attempted a full relaxation of the rhombohedral structure. However, in the
optimized structure that we obtained, the ferroelectric instability had quasi completely
disappeared: the associated microscopic strains became anomalously small.
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Table 3.1: Atomic positions (in reduced coordinates) in the three ferroelec-
tric phase of BaTiOs.

Phase Atom Position
Tetragonal Ba (0.0, 0.0, 0.0)

Ti (0.5, 0.5, 0.54+A7_7;)

01 (05, 0.5, 0.0—I—AT_Ol)

O (05, 0.0, 0.5—|—AT_02)

O3 (00, 0.5, 0.5—|—AT_02)
Orthorhombic Ba (0.0, 0.0, 0.0)

Ti (0.5, 0.5+A0_7, 0~5+AO—Ti)

04 (05, 0.5+A0_o1, 0.0—|—Ao_02)

(O (05, 0.04+A0_02, 0.5—|—Ao_01)

O3 (00, 0.5+A0_o03, 0.5—|—Ao_03)
Rhombohedral  Ba (0.0, 0.0, 0.0)

Ti (0.5—|—AR_TZ', 0.5+Agr_75, 0'5+AR—Ti)
01 (0.5+ARr_01, 0.54+AR_01, 0.0+AR_02)
0y (0.5+Agr_01, 0.04+AR_02, 0.5+AR_01)
O3  (0.0+Agr_02, 0.54+AR_01, 0.5+AR_01)

Hartree/Bohr. Similar theoretical optimization of atomic positions were re-
ported previously for the tetragonal and rhombohedral symmetry [141], but
keeping the lattice parameters of the cubic phase. In the present work, we
perform the structural optimization at the experimental lattice parameters
corresponding to each phase. Moreover, for the tetragonal and rhombohe-
dral symmetry, we also investigate the influence of the macroscopic strain,
associated to the phase transitions. Qur calculation have been performed
on a 6 x 6 x 6 mesh of special k-points, that was verified by different authors
to be sufficiently accurate [141, 292].

The atomic positions in reduced coordinates are reported for the dif-
ferent phases in Table 3.1. The Ba atom has been chosen as the reference
and remains localized at (0,0,0). In each phase, the Ti atom is slightly dis-
placed from its central position, along the polar axis. Due to the symmetry,
only two oxygen atoms are equivalent in the tetragonal (O2 and Os) and
orthorhombic (O and Oz) structures. In the rhombohedral phase, all the
oxygen are equivalent, as in the cubic phase. Results of the optimization
are reported in Table 3.2, Table 3.3, and Table 3.4.

In the orthorhombic structure (Table 3.3) our atomic positions com-
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Table 3.2: Lattice parameters (A) and atomic displacements (see Table 3.1)
in the tetragonal phase of BaTiOs.

ap co Ar_mi Ar_o1 Ar_oo Reference
3.994 4.036 0.0143 -0.0307 -0.0186 Present

4.00 4.00 0.0129 -0.0248 -0.0157 Present

4.00 4.00 0.0138 -0.0253 -0.0143 Ref. [141]
3.986 4.026 0.015 -0.023  -0.014 Ref. [260]
- - 0.014  -0.0249 -0.0156 Ref. [68]
- - 0.0135 -0.0250 -0.0150 Ref. [108]
- - 0.0135 -0.0243 -0.0153 Ref. [117]
3.994 4.036 0.0215 -0.0233 -0.0100 Ref. [153]

Table 3.3: Lattice parameters (A) and atomic displacements (see Table 3.1)

in the orthorhombic phase of BaTiOs.

Present  Ref. [153] Ref. [153] Ref. [260]
ag 3.984 3.984 3.981 3.990
b 5.674 5.674 5.671 5.669
co 5.692 5.692 5.690 5.682
Ao_r;  0.0127 0.0079 0.0143 0.010
Ao_o1  -0.0230 -0.0233 0.0228 -0.016
Ao_p2 -0.0162 -0.0146 0.0106 -0.010
Ao_os -0.0144 -0.0145 -0.0110 -0.010
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Table 3.4: Lattice parameters (A) and atomic displacements (see Table 3.1)
in the rhombohedral phase of BaTiOs.

ap « Ap_1i Ap_o1 Agr_o» Reference
4.001 89.87° -0.011  0.0133  0.0192 Present
4.00 90.00° -0.011  0.0129 0.0191 Present
4.00 90.00° -0.012  0.0105  0.0195 Ref. [141]
4.001 89.87° -0.013 0.011 0.018 Ref. [117]
4.004 89.87° -0.011 0.011 0.018 Ref. [259]
4.003 89.84° -0.013 0.011 0.019 Ref. [153]

pare well with the experiment. We probably slightly overestimate the Ti
atom shift. However, there is a large dispersion on the experimental Ti
displacements, reported by Kwei et al. [153], so that part of the observed
discrepancy should come from the experiment.

For the rthombohedral phase (Table 3.4), our results are close to those
of King-Smith and Vanderbilt [141]. The difference observed for Ar_o1
should be due to the better accuracy reached in our calculation *. In
addition, it is observed that the macroscopic strain, small for this phase,
has no influence on the atomic positions.

On the contrary, for the tetragonal distortion (Table 3.2), we observe
that the elongation of the ¢ axis favors a larger displacement of Ti and O.
This result confirms the important role of the macroscopic strain in the
stabilization of the tetragonal structure [43, 44]. Keeping the lattice pa-
rameters of the cubic phase, our displacements are in good agreement with
those deduced by King-Smith et Vanderbilt as well as with experimental
data. Unfortunately, considering the experimental tetragonal unit cell, we
overestimate the atomic displacements of Ti and O. Similarly to the un-
derestimation of the lattice constant, this feature should be assigned to the
LDA, which usually shortens the bond lengths. This problem might be
more stringent for the tetragonal structure for which the Ti displacements
are along a relatively covalent bond.

Globally the results presented here are in satisfactory agreement with
the experiment [117, 153]. In particular, they are sufficiently accurate to

4Contrary to us, King-Smith and Vanderbilt only relaxed the atomic positions until
forces are less than 102 Hartree/Bohr. This criterion seems not sufficient to guarantee
a well converged result, since the forces computed at the experimental atomic positions
are already of the order of 10~2 Hartree/Bohr.
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pursue further investigations. However, it must be noted that a better
precision is usually achieved in other materials. The relative inaccuracy
originates in the fact that the potential well in which the atoms move is
very flat in BaTiOs. In this context, it was observed that the exchange-
correlation part constitutes the major contribution to the lowering of the
total energy in the ferroelectric phases. It is therefore not surprising that
our result is more strongly sensitive than in other compounds to the ap-
proximate description of this term within the LDA. The problem is briefly
discussed in Appendix A.3.

3.3 Electronic properties

The Kohn-Sham electronic band structures can be easily computed for the
different phases. Their analysis reveals some interesting features of BaTiOg
that will have some relevance to the understanding of the different results
presented in the next Chapters. We pause therefore to investigate them in
some details.

We show in Fig. 3.3 the electronic energy band structure of the cubic
phase. Its form corresponds to that expected for a rather ionic material.
The band structure is globally composed of well separated sets of bands,
located in the same energy regions than the different orbitals of the isolated
atoms. Each of these sets of bands as a marked dominant character and is
commonly labeled by the name of the atomic orbital that mainly composes
this energy state in the solid.

The position of the different energy levels can be compared to the ex-
perimental data [124]. The results presented in Table 3.5 show a good
agreement with the experimental findings, despite a systematic underes-
timation of the energy separation from the valence edge as a well-known
consequence of the LDA.

In spite of its main ionic character, BaTiOs has also some covalent
features. We will see later that this mized ionic-covalent character is at the
origin of some of its interesting properties.

First, there is a well known hybridization between O 2p and Ti 3d
orbitals. The four electrons of the Ti 3d orbitals are not completely trans-
ferred to the oxygen atoms, but remain partly delocalized on Ti. In terms
of band theory, this means that there is some admixture of Ti 3d char-
acter to the O 2p bands. This feature was already clearly identified from
the overlap integrals in early LCAO band structure calculations on ABOg
compounds [137, 190]. Tt was often considered as an essential feature to
explain the ferroelectricity in these materials [196]. Tt was confirmed by
recent experiments [124] and was also clearly illustrated from DFT by the
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Figure 3.3: (a) Brillouin zone of cubic BaTiOs. (b) Kohn-Sham electronic
band structure of cubic BaTiOs along different high symmetry lines of the

Brillouin zone.
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Table 3.5: Top, center and bottom values (eV) of the different electronic
bands of cubic and rhombohedral BaTiOs.

Band Ref. [124] Cubic Rombohedral
Ti 3d R 4.23 R 4.49
2.98 3.39
r 1.72 r 2.29
O 2p 0 R 0 R 0
—2.27 —-2.21
—-5.5 I —454 r —4.42
Ba 5p A =941 X —-9.40
—12.2 —10.02 —10.02
R -10.63 R -10.61
O 2s X —15.56 X 1552
—18.8 —16.20 —16.15
X -—-16.84 X —16.78
Ba 5s R —24.46 R 2445
—-27.0 —24.60 —24.59
r —24.73 r —24.72
Ti 3p M 3247 r —32.22
—34.4 —32.50 —32.25
X —32.53 X —32.28
Ti 3s R —55.89 R —55.60
—55.89 —55.60
I' —55.89 I  —55.60
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analysis of partial density of states (DOS) [296, 43, 44].

Less spectacular, and sometimes controversial, is the hybridization be-
tween Ba 5p and O 2p orbitals. In simple models, Ba is indeed usu-
ally considered as a perfect ion in BaTiOz. The interaction of Ba with
other atoms was however detected in LCAO calculations [216], and even in
DFT from partial DOS [296, 43]. Tt was discussed by Pertosa and Michel-
Calendini [216] who have shown that it has only small consequences on the
band structure. However, it might have a more important influence on other
properties. For instance, it was suggested that its presence should enhance
the Ti-O interaction [205]. In Chapter 5, it will be invoked to explain the
origin of some non-negligible contributions to the Born effective charges.
This further study will even reveal some additional small hybridizations at
the level of O 2s and Ba 5s semi-core states.

The computed bandgap is indirect (R — T') and equal to 1.72 eV. The
direct gap at ' is of 1.84 eV. However, these values cannot be compared to
the experiment due to the well-known DFT bandgap misfit °.

Due to a different reason, the identification of the experimental value of
the bandgap was also for long under discussion. In ABOgs perovskite mate-
rials, the interband absorption edge displays Urbach-rule behaviour [295]:
the absorption coefficient increases exponentially with increasing photon
energy, so that no uniquely defined bandgap can be extracted from ab-
sorption measurements. A realistic value around 3.2 eV was nevertheless
estimated by Wemple [295] in the cubic phase. It was attributed to the
direct gap at the T' point [28].

Going now from cubic the thombohedral structure (Fig. 3.4), significant
changes in the bands are observed, especially when considering the small
atomic displacements involved in the phase transition. First, the energy
gap increases from 1.72 eV to 2.29 eV. This evolution is consistent with
an intensification of the O 2p — Ti 3d hybrndization, as expected when
going from the cubic to a ferroelectric phase [299]. Such a trend in the hy-
bridization was confirmed from partial DOS for rhombohedral KNbOs and
KTaO3 [224]. As for BaTiOs, it was accompanied by a small reduction of
the O 2p bandwidth. Moreover, while the position of the Ba bands remain
unaffected, we observe a small but significant chemical shift of the Ti 3s
(0.25 eV) and Ti 3p (0.29 eV) levels. This feature corroborates a modifi-
cation of the electronic environment of the Ti atom in the rhombohedral
structure.

5The bandgap problem is a well-known feature of the DFT that was discussed in
Chapter 1. In spite of its spectacular character, this discrepancy only concerns the
excitation energies; it does not influence the accuracy obtained on the ground-state
properties discussed in the next Chapters, and that should be obtained correctly within
DFT.
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Figure 3.4: Comparison of the Kohn-Sham electronic band structure of
cubic and rhombohedral BaTiOs along different high symmetry lines of the
Brillouin zone.
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The reinforcement of the covalent character is not a particular feature
of the rhombohedral phase. A modification of the O 2p — B d hybridiza-
tions have been observed in the tetragonal structure of different ABOgs
compounds [299, 43] ¢. A similar evolution is expected when going from
the cubic to the orthorhombic phase.

3.4 The ferroelectric instability

As the structural and electronic properties previously discussed, the prob-
lematics of the ferroelectric structural instability of BaTiOg is also within
the scope of DFT. In this Chapter, we would like to adopt the simple
approach that was considered in pioneer ab initio calculations on ABOj3
compounds. In this context, we shall reintroduce some of the open ques-
tions that have motivated this thesis and which were briefly mentioned in
the Introduction. It will give us a first flavor of the discussions that will
arise in the next Chapters.

For computational reasons, the full investigation of the energy surface
of a macroscopic solid in term of the entire parameter space defined by
the atoms (3 X Natom variables) cannot be addressed directly from first-
principles. Fortunately, the ferroelectric phase transitions only involve
small transformations. The idea is therefore to capture the essential physics
of the material by focusing only on some pertinent cross-sections of the po-
tential energy surface around a reference position defined by the prototype
cubic structure.

Since Cochran, the phase transition is usually visualized by the soften-
ing of a given phonon in the cubic structure. It is therefore quite natural
to expect that a first insight on the phenomenon should be given by freez-
ing, in this cubic structure, the atomic displacement pattern associated to
the ferroelectric phonon mode. The earlier computations of this type were
reported by Weyrich [299] on BaTiOs and SrTiOs. More recently, Co-
hen and Krakauer followed the same approach to understand the origin of
the ferroelectricity in BaTiOg [41, 42] and to investigate the reasons of the
different sequence of phase transitions in BaTiO3z and PbTiOsz [43, 44]. Cal-
culations of this type are now numerous and have been reported indepen-
dently for different ABOs compounds like BaTiO3 [143], KNbOs [267, 224],
KTaO3 [224, 268], LiNbO3 [129], or even BaBiOs [151, 191].

The major output of this kind of investigation is an energy diagram,
similar to that plotted in Fig. 3.5 for the case of BaTiOgz. Freezing, in
the cubic structure, a specific atomic displacement pattern along different

8For indication, in our calculation, the indirect gap between A and I' becomes equal
to 2.27 eV in the tetragonal phase.
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Figure 3.5: Calculated energy as a function of the amplitude of the soft-
mode distortion A., frozen in the experimental cubic phase of BaTiOs,
where n = [§(Ba) = —0.002, §(Ti) = —0.096, §(O;1) = 40.158, §(02) =
d(03) = +0.071]. The different curves are associated to atomic displace-
ments frozen along the < 100 >, < 110 > and < 111 > directions, and
correspond respectively to a tetragonal, orthorhombic and rhombohedral
distortion.

directions points out the existence of double-wells in the potential energy
surface. It so demonstrates that the prototype cubic phase, with the atoms
at their high symmetry positions, is not the lowest energy configuration but
is in fact an unstable structure. Moreover, neglecting the eventual coupling
with the macroscopic strain, it already suggests that the rhombohedral
phase will be the most stable, the tetragonal and orthorhombic structures
appearing only as saddle points of the potential energy surface.

The small amplitude of the energy differences involved in Fig. 3.5 un-
derlines the requirement of high quality calculations. It partly explains the
limited success of different empirical approaches developed since the six-
ties. It seems now commonly accepted that the relief of the BaTiO3 energy
surface is not steep enough to be described by approximate methods. As
an example, a pair potential calculation reported by Edwardson [62] looks
globally similar to the ab nitio results in ABO3 compounds. However, it
predicts that the displacement of the B atom alone is already unstable,
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while we will see, later in this work, that it is not the case. It is the lack
of accuracy of previous simpler approaches that has motivated the use of
computationally more intensive first-principles methods.

The results presented in Fig. 3.5 were a first crucial test: they demon-
strate the ability of DFT calculations, performed within the LDA, to re-
produce the ferroelectric instability of BaTiOs. Similarly, in Ref. [143],
calculations have been reported that correctly predict the low temperature
phase of various ABOs compounds. The door is therefore open to further
more sophisticated investigations.

The challenges concerning BaTiOg are numerous. In what follows, we
would like to address more specifically two family of questions that naturally
arise from the analysis of Fig. 3.5.

The first kind of problem concerns the understanding of the microscopic
mechanisms responsible of the ferroelectric instability and refer to the rela-
tionship that should exist between the electronic and dynamical properties.
How is it possible to relate the structural instability, associated to the exis-
tence of the double well of Fig. 3.5, and the electronic properties previously
described in this Chapterl' What is the origin of the energy lowering associ-
ated to the ferroelectric displacement patternl’ These questions will be first
re-introduced in Chapter 5. They will then be more extensively discussed
in Chapter 7.

A second interesting family of problems concerns the range of the fer-
roelectric instability. The double well presented in Fig. 3.5 was indeed
assoclated to a specific pattern of atomic displacements that were corre-
lated in the different unit cell. Is the crystal unstable with respect to a
single, isolated, atomic displacement or at the opposite does the appear-
ance of the instability require a collective movement of all the atoms at
a macroscopic scalel' In other words, what is the kind of correlation in
the atomic displacements that is really required to produce the transitionI’
This problem will be discussed in Chapter 7.

To address the previous questions will require to investigate more care-
fully the form of potential energy surface. Up to now, the energy was
parametrized in terms of the atomic positions. As long-wavelength atomic
displacement may induce macroscopic electric fields, we will need to intro-
duce such a field as a new parameter of the theory. Questions also concern
the tools that will be used to characterize efficiently the potential energy
surface in our parameter space. The “frozen-phonon” approach that was
used in this Section should be generalized to some extent. In what fol-
lows, we prefer however to work within the perturbative approach that is
described in the next Section.
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3.5 Conclusions

In this Chapter, we have proposed an overview of the ground-state prop-
erties of barium titanate. First, we have reported the optimized structural
parameters associated to its 4 phases. Then, we have discussed its elec-
tronic properties. BaTiO3 was identified as a relatively ionic material that
exhibits however some covalent features, well summarized by the interac-
tions between O 2p and Ti 3d orbitals. It was observed that the structural
transition from the cubic to the rhombohedral phase is accompanied by
non-negligible modifications of the orbital hybridizations. We would like
to stress that the mixed ionic-covalent character of the bonding, illustrated
here for BaTiOgs, 1s an essential feature of the family of perovskite ABO3
compounds. We will see later how it is related to some of their interesting
properties. Finally we have exhibited the ability of DFT-LDA calculations
to reproduce the ferroelectric instability of BaTiOs. Some of the challenges
for DFT are now in the investigation of the potential energy surface in
the vicinity of the cubic phase. Such a study will be facilitated within the
perturbative approach described in the next Chapter.



Chapter 4

A Density Functional
Perturbation Theory

4.1 Introduction

Up to know, we focused on the description of the ground-state properties
of periodic solids within the density functional formalism. Postulating that
this problem has been solved, we will now be interested in the efficient
prediction of various responses of this periodic system to small external
perturbations. In our work, we will restrict our investigations to the re-
sponse to small atomic displacements and to applied macroscopic electric
fields. However, the same line of thought is also usually applied for the
response to a macroscopic strain [12, 53] or even to the transmutation of
an atom from one chemical species to another (the “alchemical” perturba-
tion [54, 55]).

Our interest in perturbative responses of the system to different orders
lies essentially in the fact that many interesting quantities are directly re-
lated to successive derivatives of the total energy with respect to different
perturbations. This was already illustrated in Chapter 1, where the forces
and the stress tensors were connected to a first-derivative of the total energy.
In this Chapter, we will pay a particular attention to the formulation of the
dielectric tensor, Born effective charges or the dynamical matrix in terms
of second derivatives of the total energy. We will then address specifically
the determination of these quantities within DFT.

There are basically two techniques to determine the successive deriva-
tives of the total energy with respect to different perturbations. The first
one is direct: 1t consists in freezing the change of external potential asso-

73
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ciated to a small but finite perturbation in the unperturbed system and to
compute the successive derivatives from finite differences. This approach
has been widely used to investigate the response to atomic displacements
and to build the dynamical matrix, giving access to the phonon frequencies.
The practical advantage of this method is that it only requires ground-state
calculations. One of its drawbacks is that it is impossible to handle per-
turbations incommensurate with the periodic lattice or potentials linear
in space, corresponding to homogeneous electric fields '. Moreover, the
response to perturbations of increasing wavelength requires supercells of
increasing size with concomitant evolution of the computational time.

The alternative approach consists in investigating the response to an
infinitesimal perturbation within perturbation theory. Incommensurability
1s not a problem for this kind of techniques any more. The early attempt in
this direction was based on the computation of the inverse dielectric matrix
(IDM) [217, 255, 256]. However, the whole spectrum of the valence- and
conduction-band wavefunctions was required in this kind of calculations.
The inversion of a large dielectric matrix was computationally intensive.
Moreover, the response to atomic displacements was not accessible in the
case where the electron-ion interaction is represented by a nonlocal pseu-
dopotential. More recently, Baroni, Giannozzi and Testa [11] avoided all
these problems thanks to an interesting merging of DFT and perturbation
theory. A different algorithm, based on a variational principle, was pro-
posed by Gonze, Allan and Teter [91], providing more accurate expressions
for the energy derivatives and giving even access to non-linear responses
thanks to the (2n+1) theorem [88]. These techniques will be referred to as
Density Functional Perturbation Theory (DFPT).

In this Chapter, we first investigate carefully how different quantities of
interest can be formulated in terms of derivatives of the microscopic total
energy. In Section 4.3, we recall some basics of perturbation theory. In
Section 4.4, we introduce these results in the framework of DFT in order to
build a DFPT. In Section 4.5, we reformulate the equations for the case of
periodic solids and incommensurate perturbations. Sections 4.6 and 4.7 are
devoted to the calculation of the first-order changes of the wavefunctions
in the specific case of atomic displacement and electric field perturbations.
Finally, in Section 4.8, we discuss briefly how to compute a general mixed
second derivative of the energy. The specific calculation of the Born effective
charges, dielectric tensor and interatomic force constants will be addressed
in the next three Chapters.

LA technique, making use of Wannier functions, has been proposed recently by Nunes
and Vanderbilt [208] to investigate the response of a periodic system to a finite field. It
is a promising approach even if it was still only applied to model systems.
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4.2 Perturbations and physical properties

Our first-principles calculations are based on a microscopic expression of
the total energy: Fey;. On the other hand, some interesting quantities, like
the polarization or the dielectric tensor, are introduced in electrostatics
within a macroscopic context. In this Section, we would like to clarify
the connection between such macroscopic concepts and our microscopic
formulation of E.4;.

As the quantity of interest in electrostatics is not the applied field but
the total screened electric field, we will need to introduce a new quan-
tity [50]: the electric enthalpy. As a first step, we will relate this electric
enthalpy to Fey;. In asecond part, we will show that interesting quantities
are directly related to successive derivatives of the electric enthalpy: we
will be able to formulate them in term of F.y;.

4.2.1 The electric enthalpy

In the previous Chapters, we have considered a closed form of the total
energy as a function of the atomic positions. This total energy was obtained
from a microscopic expression of the energy of the electrons and of the ions:

Eeti(Rx) = min Eeyi (R, [¢]) (4.1)

Now, we would like to introduce the macroscopic electric field as a new
independent parameter of the theory. In solids, due to the intimate struc-
ture of the medium, electric fields are submitted to microscopic fluctuations
at the atomic scale. By macroscopic field, we refer to the electric field ap-
pearing within the electrostatics [157]: it is a mean quantity that average
out the microscopic fluctuations and basically corresponds to the G = 0
Fourier component of the fluctuating field. Isolating this macroscopic field,
our purpose will be to extract out the associated macroscopic contribution
to the total energy in order to stay with a remaining part for which the
thermodynamic limit is well defined.

In presence of a macroscopic, external, applied electric field, &upp, the
total energy of the system is that of the electron and the ions in presence
of the field plus the own electrostatic energy associated to the applied field:

1 .
Ee+i(ngapp) = Sr / |gapp(r)|2dr + m;nEeH(RK,Sapp, [30]) (42)

Within the solid, the applied electric field induces a macroscopic po-
larization field P, associated to another depolarizing field £qep. In what
follows, we will consider our solid as the macroscopic limit of an ellipsoid.
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For that case, it can indeed be shown [157] that the different fields (Eapp,
P, E4ep) are homogeneous within the solid, a situation presenting some ev-
ident practical advantages. Also for that case, the depolarizing field within
the solid simply writes :

Edep,i = —4mn;P; (4.3)

where n; are well defined form factors [157], that summarize the dependency
of &gep on the shape of the material.

The part of the electrostatic energy due to the macroscopic fields, Fiac,
can now be written in terms of the total electric field, &:

1
BnaclEan ) = 5= [ 1200

= o [l e P )

For an ellipsoid, it is equal to [92]:
1 Ar S
Eimac(&app P) = &= / |Eapp (x)[Pdr — VEapp P + 7X/Z;nﬂz? (4.5)

where V' is the volume of the macroscopic solid. The first term 1s the own
energy of the applied field. The second and third terms are due to the
interaction of this field with the material: in Eq. (4.2), they were included
in Eeyi(Rx, Eapp, [¢]). Interestingly, we have now a relationship between the
external field &pp and the macroscopic polarization P in which the only
coupling term has a very simple form. This suggests that, combined with
Eq. (4.5), functions of &, should alternatively be written as functions of
P.

In this context, let us introduce:

Ee-l-i(RK’gapp’P) = ;IE% Ee-l-i(ngapp’ [30]) (4'6)

such that:

m&n Eeti(Ry, Eapp, [¢]) = H}Jin Eeyi(Ry, Eapps P) (4.7)

We can now define a new function from which the contribution due to the
macroscopic fields has been removed:

- 4 3
Eeti(Ru, P) = Beil Rs Eapp P) = (= VEupyP + 5V Y 0iP?)  (48)
i=1
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This function is independent of &,pp,. It is also independent of the shape of
the material (n;). Ee_H is a quantity for which the thermodynamic limit
is well defined. Moreover, from its definition, we still have the following
connection:

Ee-l—i(R/mP) = ;IE% ES‘H(R“’ [SD]) (49)

where Ee_H corresponds in fact to the crystal energy F.y; from which the
macroscopic contributions, involving the polarization have been removed 2.
From Eqgs. (4.5)—(4.8)—(4.9), the total energy now finally writes:

Ecyi(Ry, Eapp) = min | Emac(&app, P) + min By (R, [¢]) (4.10)
P p—P

This expression is interesting in the sense that all the macroscopic quanti-
ties have been isolated from the other energy contributions. The last term
has no dependence on &,y as well as on the shape of the material any more.
The only remaining problem is that the electrostatic energy is formulated
in terms of the applied field and the macroscopic polarization, while one
usually prefers to consider expressions involving the observable total ho-
mogeneous electric field inside the body, on which conditions can be easily
imposed.

For that purpose, instead of minimizing the total energy F.,;, one usu-
ally prefer to work with the electric enthalpy, F.y;, defined as:

» 1
Fepi(Re, &) = BEYL i (Re, Eapp) — E/é‘(r).i)(r)dr (4.11)

where Eé’j_l is the part of the energy inside the body 2 and the displacement
field is equal to:
D(r) = E(r) + 47P(r) (4.12)

From the previous definitions, the electric enthalpy corresponds to:

_ . _V 2 . ad .
Feyi(Re &) = H};H[S—F|5| —Vgp‘i'fg%Eeﬂ(Rm[sﬁ])] (4.13)

=V . s
= G+ minl-VEP 4 min Eeyi(Re, [e)] (4.14)

2For a macroscopic neutral periodic solid, these polarization contributions identify
with the G = 0 term of the electrostatic energy (E;; + E;c + Ep), that must be omitted.

3T corresponds to Eq. (4.10) but in which Emac restricts to its contribution inside
the body in Eq. (4.4).
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The electric enthalpy appears therefore as composed of two terms. The
first one is the proper electrostatic energy of the effective field inside the
body. The remaining part concerns the crystal energy within this field, and
contain a macroscopic contribution —VEP. Under the condition of zero
macroscopic electric field, we obtain the final expression:

Feri(Rk, € =0) = min[min Ee+z’(Rm [¢])]
P =P

= min Eeyi(Re, [¢]) (4.15)

Under the condition of zero macroscopic electric field, the electric enthalpy
Feoq; of the system corresponds therefore to the minimum of E.4;. It is the
quantity that has been considered in Chapter 2.

4.2.2 Derivatives of the electric enthalpy

The Taylor expansion of the electric enthalpy up to second order, as a
function of the atomic positions and macroscopic electric field 4, can be
written as [50]:

Fe+i(ng) = Fe-l—i(RKDa 0)

~V > Pa(Re,,0)E5 =Y > Fra(Re,,0) ATy
v
= Zﬁ: € Ea Ep — Zﬁ: Z 7% o ATio Es

1 !
—1—5220045(&,5) AT o AT g+ ... (4.16)

af kr!

The electric field £ is the total (screened) electric field inside the solid and
AT; o = (Rx — Rxo)a- Our purpose is now to identify the coefficients
appearing in this expression (egoﬁ, wg(k, &), Z* ocﬁ) with the well known

physical quantities to which they refer.

The dielectric tensor

Within the electrostatics, the macroscopic displacement field, D, the macro-
scopic polarization, P, and the macroscopic electric field, &, are related to
each others within the following expression:

D, = &, + 47P, (4.17)

4This expression can be generalized in order to include the strains as a third set of
variables
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and the dielectric tensor of insulators is introduced as:

oD, P,

From Eq. (4.13), we deduce that:
OFcy; =V -V

9. = amieVPa=7Pa (4.19)
so that
—Ar 32Fe+i
o = — . 4.2
Cap V08,085 (4.20)

This identifies the coefficient appearing in Eq. (4.16) with the dielectric
tensor introduced in electrostatics. Using now Eq. (4.14), we can make the
connection with Fey;:

PF.; =V ?Eeoyi
- . , 4.21
08,08, 4n 0" T 38,08, (4.21)
so that finally ® :
4w O FEoyi
€as 7O By (4.22)

Sop — — .
7TV 08,08,

The Born effective charge tensor

The Born effective charge is defined as the change of polarization induced
by an atomic displacement:

dPs
* = 4.2
K,aB VaTn,oc ( 3)
From Eq. 4.19, it writes:
aEz+i
7 = —-—— 4.24
wel 0507, o (4.24)
or equivalently:
aE~16+i
. = -0 4.25
wel 0507, o (4.25)

5In the following, E~'e+,' will be usually considered as an energy per unit cell so that
V will have to be replaced by £2,, the unit cell volume.
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The harmonic force constants

The interatomic force constants are defined as:

OFy o
Cop(r, k) = 37 I’ﬁ. (4.26)

and they correspond to second derivatives of the electric enthalpy as appear-
ing in Eq. 4.16. In absence of macroscopic electric field, E.4; is equivalent
to Ee4i so that we simply obtain:

0?Feoyy

Caﬁ(lf,lf/) = m (427)

4.2.3 Summary

In this Section, we have reintroduced the concept of electric enthalpy and
we have shown how it can be connected to the crystal energy. The different
quantities, that will be discussed in the next Chapters, have been formu-
lated as second derivatives of the electric enthalpy. Alternatively, they are
also directly related to second derivatives of the crystal energy as defined
in Chapter 2. We will now be interested in the explicit formulation of such
second derivatives.

4.3 Basics of perturbation theory

In Chapters 1 and 2, we have addressed the determination of the ground
state of periodic solids within density functional theory. In Chapter 3, this
formalism has been applied to barium titanate. From now, we postulate
that the ground-state problem has been solved, and that all the associ-
ated ground state quantities are known (energy, wavefunctions, density,...).
Starting from that assumption, we consider that a small external perturbat-
ing potential, characterized by the parameter A, 1s applied to the system.
The new problem is described by the family of Schrodinger equations:

HA) p(N) = EQ) [e(A) (4.28)

Within perturbation theory, the external potential veyt 1s expanded in

terms of the parameter A, and is supposed to be known to all orders:
Vext (A) = vé?(,): + /\vé)l(,): + /\Zvéi% + ... (4.29)

Similarly, the other physical quantities (energy, electronic density, electronic
wavefunctions...) are expanded in terms of A :

X(A) = X© 4 ax® 4 22x® 4 (4.30)
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In this general context, our purpose is to describe how we can determine the
successive derivatives of the total energy, directly connected to interesting
quantities, by solving the expansion of Eq. (4.28) up to different orders.

In this Section, we recall some basic results of perturbation theory. For
the sake of clarity, they will be exhibited for a system of independent elec-
trons, described by a set of one-body Schrodinger equations. Two different
perturbative approaches will be considered: the first one makes use of a
Sternheimer equation (see for instance Ref. [181]), the second is based on a
variational principle (see for instance Ref. [95]). In the next Section, both
will be generalized in the context of DFT.

Interestingly, we already note that, for case of one-state wavefunction,
the A-expansion is not unique. One has indeed complete freedom for the
phase factor of ¢(A), in the sense that :

B(A) = 7™ o) (4.31)

is also solution of Eq. (4.28), whatever would be the real function f(A),
called the “gauge”. In what follows, we will pay a particular attention to
this phase freedom, that becomes even more pronounced in independent
electrons schemes when several states are occupied, because one-body oc-
cupied wavefunctions can form linear combinations as previously discussed
for the ground-state (Chapter 1).

4.3.1 The Sternheimer approach

As previously mentioned, for the purpose of the illustration, we consider
here a system composed of independent electrons that is described by a set
of one-body Schrodinger equations:

[H(A) — ea(N)] [¥a(A) =0, (4.32)
and submitted to orthonormalization conditions of the wavefunctions:
(Wa(A) g (X)) = dap, Ve, € {occ}. (4.33)

The different quantities appearing in the previous equations are now ex-
panded in powers of A.

Single-band case

Let us start with the even more simple case of a single one-body Schrodinger
equation. At the first-order of perturbation, the problem writes as a Stern-
heimer equation, submitted to a normalization condition:

(H =) O |98 = —(H — )™ |9 ), (4.34)
WMy + @Oy = 0 (4.35)
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Without loss of generality, the first-order wavefunctions may be expanded
in terms of the complete set formed by the ground-state wavefunctions,
supposed to be known:

e = o) + 3 eJug) (4.36)
o

(1)

Our problem therefore basically consists in determining the coefficients Cop
that satisfy Eqs. (4.34)—(4.35).

Projecting first the Sternheimer equation in the subspace spanned b
) g q p p Y
<1/)&0) |, we recover the Hellmann-Feynman theorem:

EW = (O HO|[p®) (4.37)

Applying the same technique to second order (or differentiating the previous
equation), we obtain similarly:

E® = (@HO D)
g [WOHOWO) + OO (@3

Continuation of the process leading to Eqs. (4.37)—-(4.38) points out a (n+1)
rule: the knowledge of the wavefunctions up to order n is sufficient to com-
pute the energy derivative up to order n+1. In particular, we have obtained
a general expression for the second derivative of the total energy, involving
only the zero- and first-order of the wavefunctions. Up to now, however, we
did not obtain any information on the first-order wavefunctions, involved
in the last expression.

Projecting now the Sternheimer equation on the subspace perpendicular

to <1/)&0)|, we get:

PoalH =€) P_ailD) = —P_oHO [y, (4.39)

In this equation, P_a|1/)&1)> is the only unknown. As (H — ¢,)() is non-
singular within the subspace perpendicular to <1/)&0)|, the contribution to

<1/)&1)| within this subspace can be 1solated:
LA
Poalvf) =2 —
=2 T )

(1)

The only remaining unknown is caq.

14 (4.40)

(1)

The normalization condition Eq. (4.35), imposes for the real part of exa
to be zero. However, the projection of the equation in the subspace spanned
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by <1/)&0)| did not give us any additional information. This corresponds to
the fact that it remains a phase freedom associated to the resolution of Eq.
(4.34), that can only be suppressed by imposing the gauge. The “parallel
transport” gauge is defined by imposing to the imaginary part of c(oélo)( to be
zero. Within this gauge, the normalization condition Eq. (4.35) must be
replaced by:

WOy =0 (4.41)

To summarize, within the “parallel transport” gauge, the problem to be
solved has been replaced by:

PLalH = )@ P_Jel) = P H 0 @), (142)
@)y =0 (4.43)

The first-order wavefunctions are equal to:

<1/)E30)|H(1)|1/)&0)>1/}(0)

(1) — 4.44
1/)04 ﬁz;é; (Eog _ Eﬁ) 8o ( )
and the second energy derivative writes:
E® = (@O0
(R H Oy [ H D)
4.4
> (e — <o) 49)

Up to now, for a single band problem.

Many-band case

As we had seen for the ground state, for the case where there is more
than one occupied band, the phase freedom is more pronounced due to
the invariance of total energy and density under any unitary transform
within the space of the occupied wavefunctions. For the many-band case,
starting from Eq. (4.32)-(4.33), we obtain at the first order of perturbation
a set of one-body Sternheimer equations submitted to orthonormalization
conditions of the occupied wavefunctions:

(H — ea)® [0) = —(H — ea) D [4) (4.46)
@O + @) =0, Ya, g€ focch.  (447)
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Expanding the first-order wavefunctions, in terms of the complete set of
ground-state wavefunctions, we can identify two different sub-spaces, cor-
responding respectively to the occupied ({occ}) and unoccupied ({emp})
bands:

{occ} {emp)
e =3 el + 3 eyl (4.48)
8 ¥

Projecting the Sternheimer equations on the subspace spanned by |1/)((XO)>,
we recover the Hellmann-Feynmann theorem and do not get any informa-
tion on c&lo)(. Projecting on the subspace of the other occupied bands, we
obtain:

) (1) &0)
ijﬁ) _ (g ' [HW | >. (4.49)

€3 — €y

The orthonormalization conditions put however an additional requirement
within the subspace of the occupied bands: it imposes for the real part of

(1)
apf
so that the contribution to |1/)((xl)> from the subspace of the occupied bands
will not affect the total energy or the density. We can always find a uni-
tary transform that aligns PU|1/)&1)> with 1/)&0). For this particular choice,
the contribution originating from the subspace of the occupied bands is
summarized in c&lo)(. Due to the phase indeterminacy associated to this co-
efficient in the resolution of Eq. (4.46), we can arbitrarily impose to its
imaginary part to be zero. This condition defines the “parallel transport”
gauge [96]. To work within this gauge corresponds therefore to replace the
normalization condition by:

¢y to be zero. The previous coefficients are therefore purely imaginary

<1/)((xo)|1/)£al)> =0, Vo, f € {occ}. (4.50)
in which case cfxlg = 0 for any («, 8) within the subspace of the occupied
bands.

Within the “parallel transport” gauge, the problem only consists in
identifying the projection of the first-order wavefunction within subspace
of the conduction bands. The set of Eqs. (4.46)—(4.47), has been replaced
by:

Po(H =€) Pelyp(l)) = =P.HW |9 ) (4.51)
Va, B € {val} - (47 ]p)) = 0 (4.52)
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Similarly to the single band case, we obtain:

{emp} <wgo)|H(1)|¢&0)> o

() _ , 4.53
v Zﬁ: (€a — €5) v (4.53)

and the second energy derivative writes:

E® = Z(<w&0>|H<2>|w&0>>

j%”’ R H Oy [ H D)
5 (€a —¢p) '

(4.54)

The previous set of equations gives the correct density and energy ex-
pansion. However, the unitary transform performed within the subspace
of the occupied bands has mixed the different first-oder Sternheimer equa-
tions, so that the 1/)&1) obtained within this gauge do still not satisfy any of
the single Eq. (4.46). In other words, if 1/)(()(0) is associated to a single orbital

of the unperturbed problem, 1/)(()(1) does not describe the first-order change
of this single orbital but also contains contributions from other orbitals.
As 1t will be discussed in Chapter 7, for the purpose of identifying band
by band contributions all along a path of A, the valence band contribution
(Eq. 4.49) must be added. This corresponds to work within what is referred
to as the “diagonal” gauge [96].

4.3.2 The variational approach

For the ground-state, we had seen in Chapter 1 that, as an alternative to
the direct resolution of the Schrodinger equation, it was also possible to
directly minimize the total energy with respect to the ground-state wave
functions. Similarly, in perturbation, an alternative to the direct resolution
of a Sternheimer equation consists in minimizing a variational expression
of successive energy derivatives. This approach, based on an early work of
Sinagolu [266] who generalized the minimum Hylleraas principle [128] at
different orders of perturbation, was recently reinvestigated by Gonze [95].

Variational theorems

When perturbation theory is applied to a quantity for which a variational
theorem holds (as it is the case for the ground-state total energy), two
major variational perturbation theorems can be derived:
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(i) A variational principle can be exhibited for the even order of pertur-
bation. It states that:

— mm{E Z /\2300 4+ An (n)]}(2n) (4.55)

Lp(")

This theorem establishes, for example, that the first-order wavefunctions
can be derived from a minimization of a variational expression of E(2).
Moreover, it teaches that the error on the second derivative, evaluated
from approximate trial wavefunctions, is quadratic in the error on the wave
function and smaller than that inherent to any other non-variational ex-
pression.

(i1) Going beyond the (n + 1) rule previously mentioned, a (2n + 1)
theorem can be demonstrated:

Fon ) {E ZA%}%H (4.56)

It states that the energy up to order (2n 4 1) can be expressed through an
expression which requires only the knowledge of the wavefunctions up to
order n.

These theorems have been demonstrated in Ref. [95]. They hold for
constrained as well as for unconstrained functionals. It can nevertheless be
shown that, for our purpose, the use of a constrained functional (i.e. making
use of orthonormalization conditions) yields simpler expressions [95].

Independent-electrons problem

For the independent-electrons problem, previously discussed, the search of
the ground-state can be formulated through the minimization of a varia-
tional expression:

oce

£ (0 m § 0)
o (%31)1 { >}’ (4.57)
under the constraint that:

(WO = g, Vo, B € {occ). (4.58)

The variational approach to perturbation theory is based on the ex-
pansion of the previous equations. The second derivative of the energy and
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the first-order wavefunctions can be determined simultaneously through the
minimization of the following variational expression:

B = min { SO0 = ) @) + (01 0

(1)
HeOED D) + @OIEORON} (459)
under the constraints:
@M + @D e5) =0, Va, g € {occ}. (4.60)

It is interesting to investigate the connection between this minimiza-
tion procedure and the resolution of a Sternheimer equation. The Euler-
Lagrange equation associated to the minimization under constraint of the
previous expression can be obtained as the expansion of the Euler-Lagrange
equation obtained for the ground-state. It writes:

oce

(H — ) Oty = = D0y = ST AN (). (4.61)
B

The projection of this equation on the subspace of the conduction unper-
turbed wavefunction allows to recover a first-order Sternheimer equation:

P = ea) O Py = — PH ) (4.62)

This demonstrates that the minimization of a variational expression of
E®) under the more drastic constraints:

@Op5) =0, Va, B € {occ) (4.63)

1s formally equivalent to solve a first-order Sternheimer equation within the
“parallel transport” gauge. Both approaches can therefore be used without
distinction.

4.4 Merging of DFT and perturbation theory

The two previous methods of addressing perturbation theory can now be
introduced in density functional theory. Each of them will give rise to
a self-consistent algorithm allowing an efficient determination of the first-
order wavefunctions. Interestingly, these techniques still do not require the
explicit knowledge of the whole spectrum of unoccupied wavefunctions of
the unperturbed system, as it was the case with the IDM technique.



88 CHAPTER 4. DFPT

4.4.1 The Sternheimer approach

In Chapter 1, we had presented a set of Kohn-Sham (KS) equations to be
solved self-consistently for determining the KS ground state wave functions.
Similarly, in perturbation theory, Baroni et al. [11, 12, 50] proposed to solve
self-consistently a set of first-order Sternheimer equations in order to get
the first-order wavefunctions.

The new set of equations can be trivially obtained by expanding the
set of Eq. (1.70) to first-order. As it was previously discussed, within the
“parallel transport” gauge we are only interested by the projection of the
Sternheimer equation on the conduction bands, while the normalization
condition has been modified. This yields the following system, to be solved
self-consistently:

P-4V 40l — D P 0y = Pl [pl)
o () = o (x) + [ 2 gy w6
+ J Kxe(r,en)n (1) dey + vfg) o (v),
() () = 20 [8" (1) (1) + 95 (1) 0 ()]
under the constraints:
WOy = 0, Va, 8 € {occ}. (4.65)

Following the notations introduced for the ground-state, we now define:

(1)
) = 7|lr1 Erh) dry (4.66)
v (X)) = / Ke(r,r1)nM (1) dry (4.67)

Two new quantities have been introduced:

(1) _ d 3By[n] d By [n'V)]
YHxco (I‘) - ﬁ (I‘) |n(0)(r) + EWLL(D)(P) (468)
(0)
Kelr, I‘/) = Sn(r )([5 (I‘}) |n(0) (4.69)

(1) (0) (0)

vHXCO(I‘) summarizes the A-dependence of vy’ and vx.’. The Hartree
part will always be zero within the present work where we investigate only
the response to atomic displacements and applied macroscopic electric field.
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It may however be non-zero in some cases, like in the response to a macro-
scopic strain [12]. There will be an exchange-correlation contribution, for
instance, when investigating the response to an atomic displacement in
presence of non-linear core corrections.

Kxe(r,r') is usually referred to as the exchange-correlation kernel. Within
the LDA it reduces to a local operator:

delDA
KEPA ) = £5¢ ) 6(r —v). (4.70)

XC dn
In Chapter 8, we will discuss some consequences of this approximation and
investigate more carefully what would be the form of this kernel within
“exact” DFT [74].

4.4.2 The variational formulation

Similarly, the variational formulation can be applied to the density func-
tional theory [91, 96]. We obtain that Eélz) is the minimum of the following
expression:

E@RO 01 = ST pWOHE® — g0y + (0O [0

+(y 0|v£,i2|w1> + (v |vext|w )y
< | HXC0|1/) >+< | HXC0|1/) >]

%// Fye(r,r') n () nD (') dr dr’

) 1 d EHXC
drdr’ + = 4.71
// |I‘ — I‘/| : + 2 dA n(0) ( )

where the first-order changes in wavefunctions, 1/)&1), are varied under the
constraints

l\DI»—k

@Oy =0, Ya, 8 € {occ}. (4.72)

As in Section 4.3.2, it can be checked that the minimization of Eq. (4.71)
under the set of constraints Eq. (4.72) is equivalent to solve a set of Stern-
heimer equations within the parallel transport gauge (Eq. 4.64-4.65).

The practical minimization of the previous expression can be performed
in a similar spirit to that mentioned for the ground state in Chapter 2. A
band-by-band conjugate-gradient algorithm, inspired from that used for the
ground-state problem, but adapted to the minimization of E(?) is detailed
in Ref. [100].
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4.5 Incommensurate perturbations

As mentioned in the Introduction, one of the practical advantages of per-
turbation theory is that it allows to treat perturbations, characterized by
a wavevector q that is incommensurate with the unperturbed periodic lat-
tice. We will now briefly describe how to deal with such perturbations (see
Ref. [100]). We will show that, independently of q, the perturbed prob-
lem can always be formulated in a way that presents the periodicity of the
unperturbed system.

4.5.1 Energy expansion

The periodic ground-state potential operator is invariant upon translations
by a vector R, of the real space lattice ©:

v (r + R, v’ + Ry) = ol (r, 1) (4.73)

ext ext

The perturbing potential operator, characterized by a wavevector q, 1s now
such that,

v (4 Ra,t’ + Ry) = 4Byl (3, (4.74)

ext,q ext,q

When 2q is not a vector of the reciprocal lattice, such a perturbing
potential is non-hermitian and should be used together with its hermitian
conjugate counterpart. At the level of the linear response, there is basically
no consequence of working separately with the potential and its hermitian
conjugate, since the response to their sum is simply the sum of the response
to each perturbation separately. However, as we are also interested in the
variational property of the second-order change in energy, we cannot afford
a non-hermitian external potential.

The problem is solved by considering a complex parameter A, and the
following specific expansion:

ver(N) = vl (wl] g Xl ) (4.75)
(A0 g 2N AN )

(2)

where one has imposed that vey; o _q 18 hermitian and equal to v
A similar expansion applies now to the energy:

(2) 7

ext,—q,q

EN) =E® + QEP +xEY)

+ WEQ 420 EP 4 a2p)

Q.9 Q,—qa —q,—q) (476)

We introduce a linear operator in order to be able to treat non-local pseudopotentials.

(

7This is always possible since Uext(/\) and ve?()t are hermitian and the other terms are
two by two hermitian conjugate from each others.
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Applying a translation to the first-order wavefunctions and densities,
one observes the following behaviors :

¢$?k,q(r +R,) = ikt Ra ¢$?k,q(r) (4.77)
and '
n) (x4 Ro) = €9 n ) (r) (4.78)

Due to the requirement of invariance of the total energy under translation
of the whole system, one derives, when q and 2q are not vectors of the
reciprocal lattice, that

) _ ) _ g2 - p&  _
E{) =BY =E3 =EY, _,=0, (4.79)
so that we finally obtain:
-
EQN) = EO 4223 EY (4.80)
E((f)_q is therefore the only non-zero second-order quantity in the A-
expansion of the energy Eq. (4.76). As U(E,)zn);,q,—q is hermitian, E((f)_q is a

real quantity. It is variational with respect to changes in the first-order
wavefunctions. It 1s this quantity that must be minimized for the case of
incommensurate perturbations.

(2)

From now, we will only be concerned by Ey .

4.5.2 Factorization of the phase

Due to the lattice periodicity of the solid, we have seen in Chapter 2 that
the ground state wavefunctions have the Bloch form and can be written as a
periodic function only affected by a phase factor. We now show that in the
previous expression of the second derivative of the energy to be minimized,
the phase factor associated to an incommensurate perturbation can be fac-
torized out and re-introduced in the phase factor of the Bloch function, so
that the problem finally keeps the periodicity of the unperturbed system .
Inspired by Eqs. (4.77) and (4.78), one defines the periodic functions

“g?k,q(r) = (NQg)/2emilkta)r 1/)&)1{701(]?) (4.81)
and '
ny) () = 79T (), (4.82)

8 The factorization of the phase is associated to the basic idea that, within the parallel
transport gauge, a perturbation of wave vector q only couples valence states at k to
conduction states at k-4q.
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The second derivative of the energy Eq. (4.71) now becomes:

B q i) =
Qo / ZS < |H 0) |u(1) )
(271.)3 Bz < mk M k+qk+q T "mkl¥mk,q
1 1 1
+<u£nl)<,q|v£x1): k+q, k|umk> + < mk|vext,k,k+q|u£nl)<,q>
1
‘|‘<U( 1)<,q|vcho k+q,k|“mk> + <Umk|vcho,k,k+q|U£nl)<,q>

+<un3k |ve>2(t,k,k|un3k>) dk
l/ / Kxc<r,r'>ﬁ£3>*<r> Q) (') e ) dr i’
Qo

nq n (I'/) —iq-(r— ) 1 d EHXC
drdr’' 4 = 4.83
//ﬂu |1“— I“'| ’ "3 Dax n(0) (483)

It satisfies a minimum principle with respect to variations of the first-order
(1)

nk,q under constraints

wavefunctions u

<u(0) |u

mk+q y=0, ¥Ym,n € {occ}. (4.84)

n,k,q
while the first-order change in density is given by

occ

q (r) 271- /BZZSU m yq(r)dk. (4.85)

3 |

At this stage, we have all the ingredients for the determination of the
first-order wavefunctions through a minimization of a variational expres-
sion of E(?), for the case of periodic solids and perturbations of arbitrary
wavelength. We will now investigate the more explicit form of these equa-
tions for the specific case where the perturbation is associated to an atomic
displacement or to a macroscopic external electric field (see also [101]). The
equations will be written within the LDA. The different terms will be for-
mulated in real or reciprocal space, depending of how they are computed
in practice. The notations will also be slightly modified in such a way that
the superscript referring to the order of the perturbation will be identified
by the name of the perturbation itself (double superscripts correspond to
second order).
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4.6 The phonon-type perturbation

4.6.1 Change of external potential

In this Section, we will consider the perturbation created by the displace-
ments of atoms in sublattice x, along the a axis, multiplied by the infinites-
imal A (eventually, a complex quantity), multiplied by a phase determined
by the cell to which they belong: the o component of their vector position
is changed from 7, o + Ro o 10 Tho + Ra,a + Ae'@Ra  Atoms in the other
sublattices are not displaced °. For reasons given in Chapter 7, we consider
q wavevectors that are not equal to 0.

For the atomic displacement previously described, the first-order change
in the external potential operator is

T ; 0
v (T r') = Z e Ra mv,@ (r—7,—Rs,v' — 7, — Ry) (4.86)

a

while the second-order change writes:

. 2

v ) = %af—2v“ (r—7,—Rg,v' =7, —Ry)  (4.87)
a K,a

More explicit expressions associated to these changes of the external poten-

tial will not be detailed here but are reported in Ref. [100]. In presence of

non-linear core correction, the exchange-correlation potential will also be

influenced by the atomic displacement at the first and second order.

4.6.2 Variational expression

Having obtained the first- and second- derivatives of the potentials, we
are able to write the variational expression of the associated second-order
electronic energy:

B [ u ] =
Qo N (e (O (0) 1,/ 7we
(27)3 Jpy Z § <umk,q|Hk+q,k+q - 6mk|umk,q>

- - (0) (0) ), Tha -
+<u;’bk,q v;—xt,k+q,k|umk> + <umk|v;—xt,k,k+q|u;@k,q>

0) | TeoTra, (0
L) )

9All these collective displacements can be generated from q wavevectors restricted
inside the Brillouin zone, the only ones that will be considered.
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w5 [ (1 Oz o6+ e ez o)

1 LD A IRT ﬁgf"(G)P
—1—5/00 Ko7 (e, x) g (v)[*dr + 2700 EG TaTGE
1 d?Fye
— 4.
3 ANV | o (4.88)

As we have supposed q to be non-zero, there 1s no divergence for G = 0
in the Hartree term and in the local part of v 5 . The case q = 0 will be
discussed in Chapter 7.

The minimization of the previous expressions allows to determine the
first-order wavefunctions u™=. Within the “parallel transport” gauge, this
expression 1s minimized under the constraints that:

<U£731)<+q|U:ﬁ§q> =0, Vm,n € {occ}. (4.89)

The minimization of the previous expression is equivalent to solve the
following first-order Sternheimer equation:

0 0 Ko
Pc,k+q (Hl(c-lzq,k+q - Em,) )Pc,k+q |u;1,k,q>

k
o PR el niRrRa PERE Xe ] 0
= _Pc,k+q (v;—xt,k+q,k + v;l,q + v:(—c,q + U)ZCO,q) |u£n,)k> (490)

where
- _ ng(G)
Uqu(G) = 4r m (491)
Tg(r) = KP4 r) g (r) (4.92)

4.7 The electric field perturbation

4.7.1 Change of external potential

Similarly to what was done in the previous Section, we now would like to
deal with the response to an homogeneous static electric field. However,
in this case, the problem is more tricky because the change of external
potential is linear in space and breaks the periodicity of the crystalline
lattice: for a macroscopic field along direction «, it writes

AN T (I‘) = gapp To- (493)

The long-wave method is commonly used to deal with this problem.
Within this approach, the previous linear potential is obtained as the limit
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for ¢, tending to 0 of

. 28In(qo 7o
Avext(r) = qgﬁogapp%
i(qa'ra) _i(qa'roz)
. e e
= (- ST) ae

A second complication also arises in case of macroscopic electric fields
from the fact that the central quantity that must be considered is not the
applied field but the total screened field £. In this context, it was shown
in Section 4.2 that the electronic contribution to the dielectric tensor is
connected to a second derivative of Eel with respect to &. It is therefore
this quantity that we need to compute. Basically, it will appear as a con-
ventional expression of Eilz), but in which: (i) the field appearing in the
electron-ion term is the total screened field &, (ii) the G = 0 to the Hartree
term has been omitted.

The first- and second-order change of potential associated to the screened
field have a form similar to those of the applied field and can now be written
as:

c. _ ] eti'Ta_e—ti'Ta
vsa(r) = qggl0< i . ) (4.95)
vt (r) = 0 (4.96)

There 18 no non linear core correction for this case.

We will see that the determination of the first-order change of the wave
function with respect to an electric field proceeds in two steps. Indeed,
another unknown appears in the expression to be minimized: the first-
order change of the wavefunction with respect to their wave-vector. This
quantity can be obtained by another independent minimization procedure.

4.7.2 Variational expressions
Derivative of the wavefunctions with respect to an electric field

Introducing the change of potential associated the macroscopic electric field
in the general expression of the second-order energy and using the fact that
in the limit of ¢, — 0 '°:

elda T

(Wial

Oy _ i, g, (0)
iQOc |1/)mk> - Jo <um k+gqo |umk>

10We are also explicitly using the fact that, within the parallel transport gauge,

(uSg i) =0
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the second energy derivative can be written as:

occ

~ere Q
B L= n [ POt ( s 1L — s

—|—<u§1"k|iui§k> + <iui@"k|u;"k>) dk
1

+ f’LDA<r,r>|n£a<r>|2
2 on

2100 |” (4.98)
G#0

where uk"k = dumk/dka. Within the parallel transport gauge, it is mini-
mized under the constraints

<u$?k|ui‘1’<> =0, Vm,n € {occ}. (4.99)
The Sternheimer equation associated to this problem writes:
0 0
Pex+q (H1(<+)q,k+q - 6£n,)k)PC,k+01 |u§1a,k q>

0
~Peerq (i + v + 052) Ju k) (4100)

with
ngo‘(G)
e 47 when G # 0
vy ” = IG[? 4.101
H (a) { 0 when G =0 ( )
vee(v) = KP4 (e,r) nfe(x) (4.102)

Derivative of the wavefunctions with respect to their wavevector

Unfortunately, the expression to be minimized in order to obtain the first-
order wavefunctions with respect to the electric field perturbation, contains
other unknowns: ui@"k. In the parallel-transport gauge, these first-order
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changes of the wavefunctions can be determined from a previous indepen-
dent minimization of

= <“mk|Hk,k — e Ui
ko ke Ea 0 0) |k ke Ea

i Tk — vext,k,k|u£nl)<> + <u£nl)<|Tk,k — Vs ke ke[ Ui (4.103)
with the constraints

Vm,n € {val} : <u£}31)<|ufl‘1’<> =0. (4.104)

Tkk and vsep Kk A€ the first derivative of kinetic energy operator and
external potential. Their explicit expression is reported in Ref. [100].
The Sternheimer equation associated with the minimization procedure

Eq. (4.103) is

Pe(Hyy — ) Pee lufer) = = Posc(Ts + ok, lul). (4.105)

)

4.8 The case of mixed perturbations

At this stage, we have described how the first-order electronic wavefunctions
can be obtained from the minimization of a variational expression of E(2).
Explicit expressions have been obtained for the specific case of electric field
and atomic displacement perturbations.

Before closing this Chapter, we would like now to describe briefly how
these first-order wavefunctions can be used to determined a general mixed
energy derivatives [100, 101]. This concerns explicitly the mixed derivative
with respect to electric field and atomic displacement perturbations but
also the second derivative with respect to the same perturbation for two
different directions of space. In the next three Chapters the basic results
presented in this Section will be applied to the determination of the Born
effective charge tensors, the optical dielectric tensor and the dynamical
matrices.

When two or more Hermitian perturbations are considered simultane-

ously, the Taylor-like expansion Eq. (4.29) can be generalized as follows 1:
vext - vext + Z /\]1 ext + Z /\]1/\]21)‘(1,)1({2 T (4106)
Jij2

For this case, it can be shown [101] that the mixed derivative

0*°E

. 1
Eél]2 J—
! 20X, 0N,

(4.107)

1 The indices j1 and j» are not exponents, but label the different perturbations.
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1s obtained from

phis = (ngjz 4 ngjl) , (4.108)
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(4.109)

]2 n(0)

The last equation appears as the natural generalization of Eq. (4.71) for
the case of a mixed second energy derivative. In particular, it reduces
to Eq. (4.71) when j; = jo. Interestingly, Eq. (4.71) was a variational
expression: supposing that the first-order wavefunctions and densities are
not exact, the error on Eélz) was quadratic in the error on the first-order
quantities. For the case of a mixed perturbation, we only have a stationary
statement: Eqgs. (4.108) and (4.109) give an estimation of EY//?> that has
an error proportional to the product of errors made on the first-order quan-
tities associated to the first and second perturbation. If these errors are
small, their product will be much smaller. However, the sign of the error is
undetermined, unlike for the variational expressions.

The following expressions do not have this interesting properties: their
error is of the order of the errors made on the first-order wavefunctions or
densities, and not of their mutual product. However, they present an alter-
native practical advantage: they allow to evaluate £7}7* from the knowledge

of the derivatives of wavefunctions with respect to only one perturbation:

Egllj2 = _Z< 1/)]1| ext > < |vext|1/)]1>
0 o 42+ 0 2 )
N o (4.110)

non—var
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where

. A c 1 d°F
i1z — E (0) [,d132,,(0) - & PHxc 4.111
non—var <1/)oc |vext W)oc >+ 2 d/\hd/\]2 () ( )

(a4

The time-reversal symmetry allows to simplify further these expressions.
For example,

occ

B = 3k ol o) 4 B (4112)

These results are generalizations of the so-called “interchange theorem” [52].
This theorem will be demonstrated for the specific case of the Born effective
charges in Chapter 5. It will also be exploited in Chapters 6 and 7.

4.9 Conclusions

In this Chapter, we first paid a particular attention to the formulation
of the dielectric tensor, Born effective charges and dynamical matrices in
terms of second derivatives of the total energy as obtained in Chapter 2.
We then investigated how such second derivatives of the total energy can
be efficiently computed within the density functional formalism.

Starting from basic results of perturbation theory, we have formulated
a variational approach to density functional perturbation theory. We have
then more specifically addressed the response of the system to macroscopic
electric fields and atomic displacements. For each case, we have reported
how the first-order wavefunctions can be computed from a minimization of
a variational expression of E(?). We finally described how these first-order
wavefunctions can be used to determine a general mixed second-derivative
of the energy.

From now, we will make the assumption that the first-order wavefunc-
tions are known and we will detail how they can be used to compute different
interesting quantities. The next three Chapters, will address successively
the case of the Born effective charges, dielectric tensor and dynamical ma-
trices.

The present formalism will be applied to BaTiOs. Continuing the dis-
cussion initiated in Chapter 3, from now we will be more essentially con-
cerned by the physics of this material.
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Chapter 5

The Born effective charges

5.1 Introduction

For a long time, there has been a continuing interest in the definition of
atomic charges in solid state physics as well as in chemistry [40, 202, 300,
194]. This interest lies essentially in the fact that such a concept is helpful
for a simple description of solids and molecules.

The large diversity of frameworks in which a concept of atomic charge
naturally arises (IR spectrum analysis, XPS chemical shifts analysis, the-
ory of ionic conductivity of oxides, determination of electrostatic potential,
definition of oxidation states...) underlines its central role. However, it
also reveals a concomitant problem: inspired by various models or by the
description of various physical phenomena, many different definitions have
been proposed that, unfortunately, are not equivalent [194]. Tt seems glob-
ally possible to separate the different concepts into static and dynamic
charges .

The static charge is an intuitive concept, usually based on a partitioning
of the ground-state electronic density into contributions attributed to the
different atoms. It is however an ill-defined quantity that depends on the
convention chosen to affect a given electron to a particular ion [40, 202].
On the other hand, the dynamic charge is directly related to the change
of polarization (or dipole moment, for molecules) created by an atomic
displacement. This change of polarization is a well-defined quantity that
can be experimentally measured, at least in principles. Recent studies of
the statistical correlation between different definitions of atomic charges

!Equivalently, Cochran made in Ref. [40] the distinction between what he called
respectively the ionic charge and the lattice dynamical charge.

101
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using a principal component analysis shown that these are not independent
but correspond to different scales driven by a unique underlying physical
factor [194]. We will argue that the dynamic charge should not reduce
to one physical factor, as the static charges but should also depend on
an additional parameter: the rate of transfer of charge, influenced by the
bonding with the other atoms of the system.

The Born effective charge Z* (alias transverse charge, alias dynamic
effective charge) 2, was introduced by Born [19] in 1933. In solid state
physics, it is since a long time considered as a fundamental quantity be-
cause 1t monitors the long-range Coulomb interaction responsible of the
splitting between transverse and longitudinal optic phonons [19]. During
the seventies, the Born effective charges were already investigated and dis-
cussed within empirical approaches (see for example Harrison [113]). Now,
it is possible to compute them accurately from first-principles [11, 91, 142]
and it seems interesting to rediscuss them in this new context.

In our study of BaTiOgs, the investigation of Z* acquires a more funda-
mental motivation. Recently, it was indeed emphasized that Z* are anoma-
lously large in various ABOs compounds [242; 70, 313]. It was observed
that their values can reach twice that of the nominal ionic charges. This
surprising feature gave rise to many questions and engendered a wide cu-
riosity.

In this Chapter, we would like to summarize our results concerning
BaTiO3 and SrTiO3 in order to illustrate how a careful analysis of the Born
effective charges can teach us interesting physics concerning these com-
pounds. Tt reveals the mixed ionic and covalent character of the bond [71,
221]. Tt allows to visualize the mechanism of polarization as electronic cur-
rents produced by dynamic changes of orbital hybridizations [113, 221]. Tt
also clarifies the origin of the giant destabilizing dipole-dipole interaction
producing the ferroelectric instability of these materials [73].

In Section 5.2 and 5.3, we make a brief overview of the concept of
atomic charge. We emphasize the fundamental differences between static
and dynamic charges and we reintroduce the Born effective charge that is
at the center of the present discussion.

In Section 5.4, we describe how the Born effective charge can be com-
puted within the density functional formalism, establishing the connection
between the linear response and Berry phase approaches. We also pay a
particular attention to the significance of this charge in terms of Wannier
functions.

In Section 5.5, we report various results obtained within different frame-

2 A similar concept was introduced by chemists for molecules and is referred to as the
“atomic polar tensor” [16, 199, 200].



5.2. THE CONCEPT OF STATIC CHARGE 103

work for the cubic phase of BaTiO3 and SrTiOs. We discuss the origin of
the large anomalous contributions in terms of dynamic changes of orbital
hybridization. A decomposition of the role played by the different bands is
reported in Section 5.6.

Section 5.7 is devoted to the evolution of the Born effective charges in
the three ferroelectric phases of BaTiOgs as well as in the cubic phase under
i1sostatic pressure. This points out the role of the anisotropy of the atomic
environment on the amplitude of Z*. We also report (Section 5.8) the
evolution of the effective charges all along the path of atomic displacements
from the cubic to the rhombohedral phase and we estimate the spontaneous
polarization of the three ferroelectric phase of BaTi10s3.

Finally, in Section 5.9, we emphasize the role of the Born effective charge
on the lattice dynamics making the connection between the microscopic
consideration previously discussed and the ferroelectric phase transition.
This role of Z* in the ferroelectric instability will be more intensively dis-
cussed in Chapter 7.

5.2 The concept of static charge

Intuitively, the atomic charge first appears as a static concept. The charge
of an isolated atom is a well defined quantity. The purpose of defining
atomic charges was therefore to extend this notion to molecules and solids.
For these cases, the challenge basically consists to replace the delocalized
electronic density by localized point charges associated to each atom. This
could a priori be performed from electronic density maps obtained experi-
mentally or theoretically. However, as already mentioned by Mulliken [202]
in 1935, “there are some difficulties of giving exact definition without ar-
bitrariness for any atomic property”. During the seventies, Cochran [40]
similarly emphasized that the partition of the electronic distribution into
atomic charges can only be done unambiguously when “boundary can be
drawn between the ions so as to pass through regions in which the electron
density 1s small compared with the reciprocal of the volume inclosed”. This
1s never the case in practice, and especially when there i1s appreciable cova-
lent bonding. For most of the solids and molecules, there is consequently
no absolute criterion to define the static atomic charge. A large variety
of different definitions have been proposed, which we briefly overview (see
also Appendix B.1).

A first group of procedures makes use of the basis functions that are
used to represent the wavefunctions. The oldest of these methods is the
Mulliken population analysis [203], unfortunately well known to be strongly
dependent on the choice of the basis functions. An improvement of this
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technique, that eliminates most of its drawbacks, was proposed by Weinhold
et al. [237] who introduced the concept of natural atomic orbitals.

Alternate approaches are based directly on the charge density distribu-
tion. These methods are usually preferred because they represent the first
term of a multicenter multipole expansion and reproduce the dipole mo-
ments and the electrostatic potentials in a satisfactory manner. In a first
kind of definitions, like that of Hirshfeld [120], the charge is separated into
overlapping contributions. Another family of methods splits the electronic
density between non-overlapping regions on the basis of topological argu-
ments [48, 265], as first suggested by Bader [8, 9]. A different approach, also
based on the electronic density, was proposed recently by Lee et al. [165]
and consists 1n a fit of the electrostatic potential based on a variational
principle.

All the previous methods are related to the electronic density and are
probably the most commonly used. Differently, some atomic charges were
also introduced in connection with other quantities, experimentally mea-
sured and related to an atomic charge via a simplified model. Some of
these charges can be considered as static. As a unique example, let us men-
tion the atomic charges deduced from the chemical shifts of core ionization
energies in XPS or ESCA measurements [194].

Finally, and without being exhaustive, it is important to mention that
natural definitions also arise in the framework of semi-empirical approaches.
For example, in the bond orbital model of Harrison [113], the electronic in-
teractions are modelized through a few parameters that monitor the charge
transfer between the ions and allow to identify an effective static charge
(see Appendix B.2).

Although all these procedures address in principle the same universal
concept, each of them yields in practice a different quantitative result. This
was, for example, emphasized by Wiberg and Rablen [300] or Meister and
Schwarz [194] in the case of molecules. Tt was argued however that if the
different definitions are not equivalent, the corresponding charges are not
independent but correspond to different scale underlying a common unique
physical reality.

This is illustrated for BaTiOs in Table 5.1 where different atomic charges
are reported in comparison with those expected in a purely ionic mate-
rial (+2 for Ba, +4 for Ti, -2 for O). The atomic charge of Ref. [113]
were deduced by Harrison from his universal parameters 2. The atomic
charges reported by Hewat (Ref. [116]) were approximated from a model
of Cowley [49] for SrTiOsz. Michel-Calendini et al. (Ref. [195]) proposed

3These charges were deduced from the universal parameters of Harrison as described
in Section 19-E of Ref. [113]. More realistic charges should be obtained by applying the
same idea to optimized tight-binding parameters, like those of Mattheiss [190].
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Table 5.1: Static charges of BaTiOs in the cubic structure.

ZBa Zri Zo Reference
+2 +4 -2 Nominal
+2.00 +40.19 —0.73 Ref. [113]
+1.40 4220 —1.20 Ref. [195]
+2.00 +1.88 —1.29 Ref. [116]
+2.00 4289 —1.63 Ref. [41]
+2.12 4243 —1.52 Ref. [303]
+1.39 4279 —1.39 Ref. [305]

charges from a population analysis of the electronic distribution of a TiOg
cluster, assuming a charge of +2 on Ba. Cohen and Krakauer (Ref. [41])
deduced the atomic charges from a fit of the “ab initio” electronic distri-
bution by that of overlapping spherical ions (generated according to the
potential induced breathing model) for different ionic configurations. Xu et
al. (Ref. [303]) reported values deduced from a Mulliken population anal-
ysis of a self-consistent OLCAO calculation. In another reference [305],
Xu et al. proposed another values by integrating the electronic charges in
spheres centered on the 1ons, and partitioning rather arbitrarily the remain-
ing charge outside the spheres following a method proposed in Ref. [34, 304].

These results were obtained on the basis of schemes, sometimes different
from those previously reported, so emphasizing again the diversity of the
methods. There is no formal equivalence between the different definitions
and the results are not quantitatively identical. The values of Table 5.1
have however some common features. In particular, they all reveal that,
due to covalency effects between Ti and O atoms, the charge transfer from
Ti to O is not complete (see Chapter 3). Consequently, the static charges
are smaller than they would be in a purely ionic material *. For the Ba
atom, the situation is unfortunately not so clear than for Ti and O: even
for the more sophisticated models, its charge oscillates from +2 assuming
a purely ionic character, to +1.39 involving some covalency with the other
atoms. In spite of the dispersion of the results, we note that the choice
of a given definition should remain useful to identify some trends or basic
phenomena, like evolutions from one phase to the other [305].

The main purpose of this Section was to recall that, in spite of what

4We will see later that, at the opposite to what is observed here on the static charge,
covalency effects usually increase the amplitude the Born effective charges.
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1s sometimes expected, the static atomic charges are no observables in the
strict sense: they are only deduced from observable quantities on the basis
of a particular model. In consequence, we must be careful when discussing
them. They remain only meaningful within the particular framework of the
model from which they were designed.

5.3 The concept of dynamic charge

Following Harrison [113], “whenever an ambiguity arises about the defini-
tion of a concept such as the atomic charge, it can be removed by discussing
only quantities that can be experimentally determined at least in princi-
ples”. The effective charge, already discussed in solid state physics by
Born [19] in 1933, is related to a change of polarization and satisfies this re-
quirement. In this work, we will refer to it as the Born effective charge but
it 1s also known as the transverse charge or the dynamic effective charge.

5.3.1 Definition

For periodic solids, the Born effective charge of atom « is a tensor defined as
the coefficient of proportionality at the linear order and under the condition
of zero macroscopic electric field, between the macroscopic polarization per
unit cell created in direction 8 and a cooperative displacement of atoms
in direction a:

IPs

* = Q
0 9
B0 [£=0

K, f

(5.1)

where g 1s the unit cell volume.

The Born effective charge is a dynamic concept in the sense that i1t con-
cerns the response to an atomic displacement. From its definition, Z* is
a fundamental quantity in lattice dynamics: 1t governs, with the optical
dielectric constant €., the strength of the Coulomb interaction responsible
of the splitting between longitudinal (LO) and transverse (TO) optic modes
[19, 27] (see Chapter 7). For crystals, like binary A B8~ compounds, in
which LO and TO mode eigenvectors are identical and imposed by symme-
try, infra-red measurement of the splitting allows accurate determination
of |Z*]?/€wo: s0, it offers an unambiguous way to extract the amplitude of
Z* (its sign remains undefined) from the experiment °. For more complex
materials like ABOs compounds, LO and TO eigenvectors are not neces-
sarily equivalent and the extraction of Z* from the experimental data is
not straightforward.

5The presence of €4, is sometimes source of uncertainty, when it cannot be determined
accurately.
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When investigating the lattice dynamics of solids, different other dy-
namic charges were introduced that are related to Z*. In his shell-model [38,
39], Cochran considers an effective charge, equivalent to the charge e¥ intro-
duced by Szigeti [276], and that includes only the effects of charge redistri-
bution resulting from short-range interaction . This concept is model de-
pendent and relates to Z* through an assumption on the form of the Lorentz
effective field associated to the transverse optic modes [23, 81]. In the par-
ticular case of a local spherical symmetry we have: Z* = [(es + 2)/3] €7
For the longitudinal phonons, a longitudinal effective charge 77 was intro-
duced by Callen [27], that can be expressed in terms of the Szigeti charge
and the effective electric field associated to these modes [81]. In the partic-
ular case of a local spherical symmetry, we have: ZF = [(€co + 2)/3€c0] €5
The LO modes differ from the TO ones due to the additional interaction
with the longitudinal electric field 7. This yields the general relationship:
7% = Z*/€os. Note finally that, similarly to what was done with respect
to an atomic displacement, in piezoelectric materials, the change of po-
larization induced by a macroscopic strain was expressed in terms of a
piezoelectric charge that can also be related to Z* [184, 112].

For the case of molecules, in order to interpret the infra-red intensities,
Biarge, Herranz and Morcillo [16, 199, 200] introduced a quantity similar
to Z* that they called the “atomic polar tensor” and that is defined as
the change of the total dipole moment of the molecule with respect to an
atomic displacement. From this tensor, Cioslowski [36, 37] later introduced
a scalar charge (the generalized atomic polar tensor, GAPT) defined as one-
third of the trace of the polar tensor. This charge is sometimes compared
to different static charges. Anticipating what will be discuss in the next
Sections, we would like to stress that such a comparison is misleading: the
GAPT contains a different physics that the static charges and is reliant on
dynamic transfer of charges that are not included in any static charge.

5.3.2 Dynamic transfer of charge

During the seventies, a large variety of semi-empirical models were pro-
posed to investigate the underlying physical processes driving the values
of Z7*. Without being exhaustive, let us mention the interesting works of
Lucovsky, Martin and Burnstein [176] who decomposed Z* in a local and

6e* is sometimes assimilated to a static charge and its value deduced from a Mulliken

analysis or another definition [195]. There is however no formal justification of this
procedure. The Szigeti charge remains indeed a dynamical concept, connected to Z*
through a simplified model.

"Boundary conditions impose a different requirement on the macroscopic electric field

for TO (£ =0) and LO (£ = —47P) modes.
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a non-local contribution, of Lucovsky and White [177] discussing Z* in
connection with resonant bonding properties, or the bond charge model
of Hiibner [123]. The most popular and sophisticated of this kind of ap-
proaches remains however that of Harrison [113, 110, 111, 112] within his
bond orbital model (BOM). Similar results were obtained independently by
Lannoo and Decarpigny [159].

The BOM basically consists in a simplified tight-binding model, where
the Hamiltonian is limited to the on-site and nearest-neighbour terms. The
on-site elements are identified to free atom terms value, while the inter-
atomic elements are taken as universal constants times a particular distance
dependence. Among other things, these parameters determine the transfer
of charge between the interacting atoms. As it was interestingly pointed
out by Dick and Overhauser [58], the charge redistribution produced by the
sensitivity of the overlap integrals on the atomic positions is at the origin
of an “exchange charge polarization”. Similarly, in the Harrison model, the
dependence of the parameter on the bond length monitors the amplitude of
Z* that can become anomalously large as it is illustrated in the following
examples.

Let us first consider a diatomic molecule XY, composed of two open shell
atoms, where Y has the largest electronegativity. The interatomic distance
is u. The dipole moment p(u) is related to the static charge Z(u) = Z@
and allows to define the dynamic charge:

Ip(u)
ou

0
= 5o (. Z(w)

97 (u)

= Zu)+u T (5.2)
In the last expression, Z* appears composed of two terms. The first one is
simply the static charge. The second corresponds to an additional dynamic
contribution: it originates in the transfer of charge produced by the modifi-
cation of the interatomic distance. Within the BOM, this last contribution
1s deduced from the universal dependence of the interaction parameters on
the bond length (see Appendix B.2). The difference between Z(u) and
Z*(u) will be large if Z(u) changes rapidly with «. It can even be non-
negligible when 0p(u)/0u is small, if the charge is transferred on a large
distance u.

This simple model already allows to predict anomalous contributions
(i.e. a value not only larger than the static charge Z(u) but even larger
than the “nominal” ionic charge). As the distance between X and Y is
modified from 0 to some u, the distance corresponding to a complete transfer

Z*(u) =
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of electrons from X to Y, the dipole moment evolves continuously from
p(0) = 0 (since there is no dipole for that case) to p(@). Interestingly,

[ 7w du= i) - pio) = w 2(m) (5.3)

= %/0 Z* (u)du = Z(7) (5.4)

The last relationship points out that the mean value of Z*(u) from 0 to
7 is equal to Z(w). Consequently, if Z(u) changes with u, Z*(u) must be
greater than Z (%) (the “nominal” static charge corresponding to a complete
transfer of electrons from X to Y) for some u between [0, @]. The difference
between Z*(u) and the nominal charge Z(@) is usually referred to as the
anomalous contribution®.

Considering now a linear chain ...-Y-X-Y-... | and displacing coherently
the X atoms by du, shortened and elongated bonds will alternate all along
the chain. For Harrison [113], the interaction parameters will be modified
such that “the covalent energy increases in the shorted bond, making it less
polar by transferring electron to the positive atom”. Inversely, electronic
charge will be transferred to the negative atom in the elongated bond.
These transfers of charge will propagate all along the chain, so that even
if the net charge on the atom is not modified, a current of electrons will
be associated to the atomic displacement. The direction of this electronic
current 1s opposite to that of the displacement of positive atoms, so that
it reinforces the change of polarization associated to this displacement and
generate an anomalously large Z*.

The previous model can finally be extended to three dimensional solids.
For this case, however, the calculation of the dynamic contribution may
become questionable when the identification of the charge transfer is re-
stricted to some specific bonds [15]. As it will be discussed in Section
5.5, the Harrison model remains however a meaningful picture of practical
interest to interpret more accurate results.

In conclusion, this Section has shown that Z* is related to the static
charge (see Eq. 5.2) but does not restrict to it: Z* may also include an
additional contribution due to dynamic transfers of charge. We so partly
disagree with Meister and Schwarz [194] who suggested that all the charges
wncluding the GAPT are driven by the same underlying parameter. We will
illustrate on different examples that Z* may become anomalously large and

#Nominal and static charges may differ widely due to covalency effects. As the static
charge is ill defined, one usually prefers to define the anomalous contribution in reference
to the nominal charge. The difference between Born effective charge and static charge
is sometimes referred to as the dynamical contribution.
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independent of the amplitude of Z. Two atoms with the same Z can also
exhibit strongly different Z*.

5.4 A first-principles formulation

5.4.1 Introduction

Simultaneously to the development of the semi-empirical approaches previ-
ously discussed, steps were made toward a first-principles determination of
Z*. Here also, we propose a brief overview of the different avenues which
have been explored.

As mentioned previously, the Born effective charge tensor Z;aﬁ of atom
& 1s defined as the coefficient of proportionality relating, at linear order and
under the condition of zero electric field, the macroscopic polarization per
unit cell created along the direction 3, and the displacement along the
direction « of the atoms belonging to the sublattice k. As the polarization
is already an energy first-derivative, this coefficient can be connected to the
mixed second-order derivative of the total energy with respect to atomic
displacements and macroscopic electric field. It equivalently describes the
linear relation between the force induced on atom k and the macroscopic
electric field &s:

70 _Q dPs _ 0?Eio _ 0Fq .«
Bl T (@ =0)  0E30Ten(q=0) 0

(5.5)

Without loss of generality, the Born effective charge can be decomposed
into two contributions:

:,ocﬁ = Zn(soéﬁ + AZR,O(@, (56)

where Z,; is the charge of the (pseudo-)ion &, and AZ, s is the contribution
due to the electronic screening. The first term can be trivially identified.
Historically, the computation of the second contribution was addressed fol-
lowing different schemes.

A first general method is to work within a perturbative approach. Dur-
ing the early seventies, a linear response formalism was developed that was
making use of the inverse dielectric function e~! and an expression was pro-
posed for Z* [255, 217, 256]. Computations based on this formalism were,
for example, reported by Resta and Baldereschi [239, 10]. However, one
important drawback of this procedure is that the charge neutrality, which
imposes constraints on the off-diagonal elements of ¢ =1, is difficult to control
and to guarantee [287]. Consequently, Vogl [287] proposed a method that
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circumvenced the inversion of the dielectric function by using directly the
self-consistent potential induced by a long-wavelength lattice displacement.
Unfortunately, at that time, there was no way to determine accurately this
potential: 1t had to be approximated and this formulation was only ap-
plied to simplified models [172; 173]. The solution was only reported much
later by Baroni, Giannozzi and Testa [11] who proposed, within DFT ?, to
compute the total effective potential by solving a self-consistent first-order
Sternheimer equation. It was the first “ab initio” powerful and systematic
approach, yielding accurate calculation of Z*. A variational formulation of
this theory was then reported by Gonze, Allan and Teter [91], offering a
different algorithm for the calculation of the first-order wavefunctions and
a new stationary expression for Z*. The “Sternheimer” and “variational”
formalisms were first implemented within DFT (usually within the LDA,
but also within the GGA), using plane-wave and different kind of pseu-
dopotentials. LMTO [249] and LAPW [308] versions of this approach have
also been proposed recently.

As an alternative to the perturbative approach, another procedure should
be to determine Z* from finite difference of the macroscopic polariza-
tion between the undistorted crystal and a distorted crystal with “frozen-
in” q=0 atomic displacements, in the limit of small displacements. In
what was in fact the earliest first-principles computation of 7=, Bennett
and Maradudin [14] attempted to deduce Z* using this technique but as
pointed out by Martin [185], on the basis of an incorrect expression, yield-
ing boundary-sensitive results. The basic problem was that the change of
polarization was assimilated to the change of the unit cell dipole, which is
ill-defined for periodic charge distributions. A re-formulation of this ap-
proach was proposed by Littlewood [174] 1°. More recently, Resta [241]
interestingly addressed the change of polarization as an integrated macro-
scopic current. This yielded King-Smith and Vanderbilt [142] to identify
in the change of polarization a geometric quantum phase, and to propose
a new scheme, useful for a practical calculation of the polarization [243].
This opened the door to an alternative, convenient way to deduce Z*. It is
usually referred to as the Berry phase approach.

Finally, let us mention that Z* was also calculated, on a few occasions,
from finite difference of the force induced on an atom by an internal macro-
scopic field using a supercell technique [150, 240] 1.

9Such an approach was described in Chapter 4 and is usually referred to as the density
functional perturbation theory [77].
10He did not really address the problem of the polarization but switched to a derivative
of the polarization so going back to the linear response formalism.
' Within this supercell approach, the longitudinal charge is accessible from indepen-
dent quantities. The determination of Z* and Z] offered a possibility to estimate ¢co.
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In conclusion, we observe that each of the definitions underlying Eq. 5.5
is at the origin of a practical scheme to determine Z*. In the next Sections,
we report how AZ, .5 can be computed within DFT from the two most
widely used techniques: the linear response formalism and the Berry phase
approach. These methods are usually implemented when imposing Born-
von Karman periodic boundary conditions to the system. We will see in
Chapter 8 that, within exact DFT, the imposition of such periodic condi-
tions is conceptually incorrect to investigate the response to a homogeneous
electric field [94], or to compute the polarization [100]. However, it is a
perfectly coherent procedure of practical interest within the local density
approrimation in which the DFT is usually implemented. The theoretical
values of Z* obtained within these approximations are typically within a
few percents around the experimental data.

5.4.2 The perturbative approach

A first approach to compute AZ, .5 consists to address it in the framework
of the density functional perturbation theory, as a mixed second derivative
of the electronic energy. Following the formalism introduced in Chapter 4,
AZ, op can be formulated in terms of a stationary expression, involving the
first-order derivative of the wavefunctions with respect to a q = 0 collective
displacement (|U;§ﬁ,q:0 >), and the first-order derivatives of the wavefunc-

tions with respect to an electric field (|uifk >) and to their wavevector

(|uifk >= —i%|u£§l)< >):
Mo = 2| [ ifs(w;:ﬁ,q:owﬁ?& AT
U qmolit0) + (I 050 ) dk
45 | D% qmo ] )
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The first-order wavefunctions needed to evaluate this expression were
determined by direct minimization of a variational expression of the second
derivative of the total energy as previously discussed in Chapter 4.
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Introducing alternatively in Eq. (5.7), the first-order Sternheimer equa-
tion associated to the atomic displacement and electric field perturbation :

PO = Pl gso) = —PH™ [l ) (5.8)
Po(HO — S Plusie o) = —PeH™ Juli o) (5.9)

and the explicit form of the first-order Hamiltonian associated to these

perturbations 12
Hre = T g e (5.10)
d
H = iz VP 4 (5.11)
8

we obtain two alternative non-stationary expressions:

oce

{o 4@
AZpap = 2(%)3 /Bz;swmk’q:d—zﬁmmkﬂk (5.12)
Ay op = 2 &/ §5 <u(0) |v/-rm |u£ﬂ >dk
) (271')3 Bz % mkl”ext k k|l "mk
1 . _ .
45 [ 0528 qmololln® o)) ]| (5.13)

Eq.(5.7) was formulating Z* as a second derivative of the electronic
energy. Alternatively, the two last expressions address it respectively as
the derivative of the macroscopic polarization with respect to an atomic
displacement (Eq. 5.12) and as the derivative of the force on the atoms &
with respect to an electric field (Eq. 5.13) 13.

Numerically, the results of Eq. (5.12) and (5.13) are a priori less accu-
rate than that of Eq. (5.7) for which we have a stationary statement [100].
Interestingly, however, the last two expressions only require the knowledge
of the first-order wavefunctions associated to one of the perturbation as
soon as one knows the change of potential associated to the other. For ex-
ample, the only computation of the first-order wavefunction derivative with
respect to the electric field perturbation and to their wavevector already
allows to deduce the full set of effective charges from Eq. (5.13).

The translational invariance of the crystal imposes that a charge neutral-
ity is fulfilled at the level of Z* through the following expression [255, 217]:

12Notations have been introduced in Chapter 4. The “prime” indicates that the G=0
term has been omitted.
13Eq. (5.13) was originally proposed by Baroni et al. [11, 77] to compute Z*.
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> 7% o = 0. This condition is guaranteed in the present approach but
it will only be satisfied numerically in the convergence limit. We observe
that the violation of the charge neutrality is usually of the same order of
magnitude than the numerical error on each separate charge.

5.4.3 The Berry phase approach

As previously mentioned, an alternative approach to the determination of
the Born effective charges i1s to determine them from finite difference of
the macroscopic polarization AP. Starting from the equilibrium positions
of the atoms and considering a small but finite q=0 collective displace-
ment A7, o in direction o of the atoms belonging to the sublattice &, we
can parametrize the associated change in the potential by a parameter A
arranged to vary from 0 (intial state) to 1 (final state). If the material
remains an insulator for all the A in the range 0 — 1, then we have:

1
IPs/ON)dA
AZgap = Qo lim APs _ lim Jo (0Ps/0N)dA

o - o
ATea=0 ATy o ATy 0—0 ATy o

(5.14)

Since the Born effective charge are defined in a null electric field, pe-
riodic boundary conditions can be used at any A so that the Kohn-Sham
orbitals have the Bloch form. Within any periodic gauge in which the Bloch
functions satisfy

A iG.r A
U = STl G ), (5.15)

)

King-Smith and Vanderbilt [142] have shown that:

APy =P —Pf (5.16)
where e
wn__ 1, W4 o
Pﬁ - 871'3 Z;S/Bz<umk|dk@ |umk>dk (517)

Taken independently, the matrix elements of the previous equation are ill-
defined for periodic Bloch function. However, the integral of the right-hand
side 1s a well-defined quantity, which has the form of a Berry phase of band
m as discussed by Zak [311]. Associated to the fact that a phase is only
defined modulo 27, Eq. (5.16) only provides the change of polarization
modulo a “quantum” (in 3 dimensional solids, the quantum is (s.R,/f),
where R, is a vector of the reciprocal lattice). In practice, A7, , may be
chosen sufficiently small for the change of polarization being unambiguously
defined.

Direct evaluation of Eq. (5.17) is not trivial in numerical calculations
because the wavefunctions are only computed at a finite number of point in
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the Brillouin zone, without any phase relationship between the eigenvectors.
An elegant scheme that circumvences this problem was reported in Ref.
[142].

This method was successfully applied to ABO3 compounds [242, 313],
giving equivalent results than those obtained independently by perturbative
techniques [70, 231]. A similar accuracy was reported for alkaline-earth

oxides [251, 223].

5.4.4 Band by band decomposition

As similarly first reported by Zak in the general context of a Berry phase,
Vanderbilt and King-Smith [283] emphasized that the polarization acquires
a particular meaning when expressed in terms of localized Wannier func-
tions. In this Section, we will first recall this important result. Then we will
show how it can be extended to the Born effective charges, providing phys-
ical significance to its band-by-band contributions. Following that we will
also demonstrate the equivalence between the linear response formulation
and the Berry phase approach.

The Bloch functions unk(r) are related to the Wannier functions W, (r)
through the following band by band transformation:

uN () = JLN %: e~ 0-R) gy (p — R) (5.18)
W () = W/BZ e () dk (5.19)

From this definition, we deduce that:

4oy L T —ik. (=R (N _
T = 7z 2 il = ol WE-R) (5.20)

where R runs over all real space lattice vectors. Introducing this result in
the equation providing Ps (Eq. 5.17), we obtain:

oce

P = Z/r@.w,gj)(r)ﬁ dr (5.21)

For unmixed Bloch functions corresponding to well separated bands, we
will have unmixed Wannier functions such that we can isolate P, g, the
contribution of band n to the # component of the polarization, Pjs:

A S
P = Q—O/r@.w,g*)(r)ﬁdr (5.22)
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From this equation, the polarization due to the electrons of band n is simply
deduced for the position of the center of gravity of the density associated
to W, '*. The two last equations are therefore conceptually meaningful:
they indicate that, for the purpose of determining the polarization, the
true quantum mechanical electronic system can be considered as an effective
classical system of quantized point charges, located at the Wannier center
associated with the occupied bands in each unit cell.

If we now consider the atomic displacement perturbation 7, o paramet-
rized by our parameter A, the Born effective charge corresponds to:

* =Q 37?é>‘) =Q aPéO) 5.23
kaf = 03—/\|>‘:0_ om (5.23)

In terms of Wannier function, Z* can be written as:

oce

0
Zias =22 [l (R0 30y 1 gy 2V 05 0

87% a aTn,oc
In this expression, the contributions of the different bands can also be

separated from each others, so that the contribution of band n to Z7 4
corresponds to:

owi” (x)

0T o

(©) )
Ziasl = [ral =y wOm + 070wy

0T o

Jdr (5.25)

As for the polarization, this contribution has a simple physical meaning. In
response to an atomic displacement, the electronic distribution is modified
and the Wannier center of the different bands is displaced. The last equation
identifies the contribution to the Born effective charge due to band n as the
change of polarization corresponding to the displacement of a point charge s
on a distance equal to the displacement of the Wannier center of this band.

Starting now from the Bloch function expression of the polarization (Eq.
[5.17]), the previous equation can be equivalently written as:

oce

* mk mk (
ag = — + dk (5.26

A 37’,.;0(

where
0 3unk
/B < nk|ak 8Tna>dk

9 au)  9uQ) 0ul§
[ i) ~ %; |37”k Nk (5.27)

14 Contrary to that of Bloch functions, the center of gravity of localized Wannier func-
tions is well defined.
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The first term of the right hand is the gradient of a periodic quantity
integrated over the Brillouin zone. Within our periodic gauge (see Eq.
5.15), its contribution will be zero so that, using also the time reversal
symmetry, we arrive at the final expression:

* _ — aunk aunk
oy = =2 Z /BZ arm P —nk gk (5.28)

First, we observe that, starting from the Berry phase formulation, we
have recovered the expression obtained by linear response (Eq. 5.12): this
demonstrates the equivalence of both the approaches. Moreover, the con-
tributions of the different band can still be separated from each others:

() 5,0
(25 apln = _2(290)3 : T | T
: T

s A T ) (5.29)
As Bloch and Wannier functions were related through a band-by-band
transformation, the contribution from band m to 77 B in Eq. (5.29) keeps
the same physmal meaning as in Eq. (5.25): it is related to the displace-
ment of the Wannier center of band m induced by the displacements of the
atoms belonging to the sublattice k. This physical interpretation will be
particularly useful to identify the underlying mechanisms monitoring the
amplitude of Z*.

We note finally that the different expressions of Z* do not yield equiv-
alent band-by-band contributions. In particular, the band by band decom-
position of Eq. (5.13) is not equivalent to the previous expression: it does
not allow to separate the contributions of the different bands into the same
meaningful quantities. Introducing Eq. (5.12) in Eq. (5.13) and using
compact notations, the respective contributions of a particular band m are
related by the following expression:

0) ) srre 1. E 1 _— i .
<u£nl)<|v(/ext,k,k|unfk> + 5/51 [cho,qzo(r)][”nfk(r)] dl‘] =

[ qmo ()] %7 (x)dr (5.30)
n()(r)

The last two terms on the right hand, related to the local fields effects; do
not compensate: they will only cancel out during the summation on the

different bands in order to yield the correct global effective charge.
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5.4.5 Choice of the gauge

For the ground-state, we have seen in Chapter 1 that the Lagrange multi-
plier method applied to the minimization of the Hohenberg and Kohn fonc-
tional under orthonormalization conditions on the wavefunctions, allows
one to recover the usual Kohn-Sham equation modulo a unitary transform
within the space of the occupied orbitals [96] (o« = n, k):

oce

HOWOY =3 A0, [w)) (5.31)
;

)

The freedom associated to the unitary transform (gauge freedom) is in-
herent to the invariance of the total energy and density under any mixing
between the occupied wavefunctions. For the ground-state, there is no rea-
son not to choose the wavefunctions such that

AL, = b5 ¢ (5.32)

(o (a4
in which case 6&0) correspond to the eigenenergies of a conventional Kohn-
Sham equation.
For the first-order wavefunctions, that satisfy the following Lagrange
equation (obtained as perturbative expansion of Eq. 5.31),

oce

(HO =) i) = —H ) =30 A ) 6.9)
g

)

we have seen in Chapter 4 that practical implementations are usually per-
formed within the “parallel transport gauge” that corresponds to project
the first-order change in valence wavefunction in a subspace orthogonal
to all the valence bands. For this particular choice, however, Afxl,)ﬁ s not
diagonal [96].

It can be shown that our formulations of the Born effective charge,
Egs. (5.7-5.12-5.13), are “gauge” invariant as it is also the case for the
Berry phase formulation of the polarization [243]. This gauge invariance
does however not apply to the band-by band contribution. It is therefore
important to determine the specific choice of the gauge for which our band-
by-band decomposition becomes physically meaningful.

Let us consider the Schrodinger equation defined for a continuous path
of atomic displacement A:

HA) Ya(A) = AN ¢a(X) (5.34)
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The electronic energy bands are defined at any A by the solution which
diagonalizes A(A). To identify the evolution of a particular band along the
path of A, requires to work in a gauge which diagonalizes A(A) at any A.
Within a perturbative approach where

AQ) = AD AW L NZA@ 4 (5.35)

the previous requirement imposes to diagonalize A at any order. The de-
composition of Z* into its band-by-band contribution must therefore be
performed in what we refer to as the diagonal gauge [96].

The first-order wavefunctions in the diagonal gauge (qngl)) can be de-

duced from those in the parallel transport gauge (1/)(()(1)) by adding the con-
tribution spanned within the subspace of the valence bands as obtained in
Section 4.3:

1) _ (1 Cop (0)
ol =yl - Z (0 _ (0 V5 (5.36)
bra (€’ —€57)
where
1 0
) =< P HO PO > (5.37)

Note that this transformation can present some problems when the de-
nominator vanishes: this happens when the valence energies are degen-
erated. The problem can be technically bypassed by keeping a parallel
transport gauge within the space of degenerated wavefunctions. Practi-
cally, this means that we will only be able to separate the contributions of
well separated set of bands.

5.4.6 Technical details

Our calculations have been performed within the perturbative approach.
Integrals over the Brillouin-zone were replaced by a sum on a mesh of
6 x 6 x 6 special k-points [197, 198] (10 points in the irreducible Brillouin
zone). The wavefunctions were expanded in plane waves up to a cutoff of
35 Hartree (about 4100 plane waves). These parameters guarantee a con-
vergency to within 0.5% on Z* as well as on its band by band contributions
(see also Appendix A).

5.5 The cubic phase of ABO3; compounds

5.5.1 Various results

The Born effective charge tensors of ABO3 compounds have been widely

investigated [242, 70, 313, 71, 72, 221, 231, 309, 292, 160]. In the cubic
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Table 5.2: Born effective charges of BaTiOs in the cubic structure.

Ions Ref. [6]* Shell Model® Present Ref. [313]°

Tha +2 429 +1.63 1277 4275
Zr 44 467 +7.51 +725 4716
Zn -2 —24 —2.71 —2.15 —2.11
Zh =2 —48 —3.72 —5.71 —5.69

¢ Extrapolated from the experiment.
b Calculated from the parameters of Ref. [139].
¢ Computed within the Berry phase approach.

phase, they are fully characterized by a set of four independent numbers.
The charge on A and B atoms is isotropic owing to the local spherical sym-
metry at their atomic site. For oxygen, two independent elements Oy and
O_ must be considered, referring respectively to an atomic displacement
parallel and perpendicular to the B-O bond. In Table 5.2, we summarize the
results obtained within different approaches for the cubic phase of BaTiOs.

The first real estimation of Z* in ABO3 compounds is probably due to
Axe [6], from empirical fitting to experimental mode oscillator strengths °.
As already mentioned in Section 5.3, Z* cannot be determined unambigu-
ously from the experiment in ABOgs crystals. However, within some realis-
tic hypothesis, Axe identified the independent elements of Z* and already
pointed out that two surprising features characterize the effective charges
of BaTi03. First, the oxygen charge tensor is highly anisotropic. Moreover,
the charges on Ti and O contain a large anomalous contribution (i.e. an
additional charge with respect to the nominal ionic value of +2 for Ba, +4
for Ti and -2 for O).

Both these characteristics are confirmed by the first-principles calcu-
lations. Qur ab initio results, computed by linear response, are also in
excellent agreement with those of Zhong et al. [313], obtained from finite
differences of polarization. Note that the charge neutrality, reflecting the
numerical accuracy of our calculation, is fulfilled to within 0.02.

The values of Z* are also qualitatively reproduced in a shell model cal-
culation, performed from the parameters proposed by Khatib et al [139].

15 As an anecdote, let us mention that an early investigation of the Born effective
charges of BaTiOs; was performed by Last in 1957 [161], but without identifying any
anomaly. Another discussion was reported in Ref. [152] but without separating the
respective values of Z*.
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A similar agreement between ab initio and shell model calculations was
obtained for KNbOgs [275]. During the seventies, Migoni, Bilz and Bauerle
pointed out what they called “an unusual anisotropic and non linear po-
larizability of the O atom”. A polarizability model, able to reproduce this
feature, was then introduced to investigate the lattice dynamics of ABOg3
compounds [196, 24]. The results mentioned here where obtained within
this framework. They illustrate that such a model includes (even implic-
itly) the mechanism responsible of anomalous Z* in ABOjz compounds.
However, it does not allow a meaningful description in terms of dynamic
transfer of charges, as it will be discussed later in this Chapter.

Similar computations of Z* were performed on different ABO3s com-
pounds and they reproduce the same characteristics than in BaTiOs. A
non exhaustive list of these results is reported in Table 5.3.

For materials with the pair of A and B elements chosen either in the Ila
and IVb columns, or in the Ta and Vb columns, we observe that the choice
of the A atom has a rather limited influence on Z% and Z(*DII’ which appear
closely related to the B atom. While the nominal ionic charge of Ti and
Zr is +4 in these compounds, the Born effective charge i1s between +7.08
and 47.56 for Ti, and approximately equal to 4+6.03 for Zr. For Nb, the
ionic charge is 45, while the Born effective charge is between +9.11 and
4+9.37. Going now to W, the ionic charge increases to 46, while the Born
effective charge reaches the much larger value of +12.51. For this class of
compounds, we observe interestingly that Z% evolves quasi linearly with
Zp, the nominal charge of the B atom.

For materials containing Pb, the previous considerations remain valid
but there are additional anomalies concerning 7% and 77 _. This feature is
due to the more covalent bonding of lead with oxygen that was illustrated
in Ref. [43, 44]. In what follows, we will not be particularly interested by
these compounds.

5.5.2 The Harrison model

In the previous Section, we have identified large anomalous contributions
to the Born effective charges of various ABOs compounds. It seems now
interesting to investigate their origin.

The approximate reciprocity between O) and B anomalous contribu-
tions suggests that they should originate in a global transfer of charge be-
tween B and O atoms as described in Section 5.3.2. In Ref. [113], Harrison
had in fact already suggested such giant Born effective charges in perovskite
materials. Being unaware of the earlier results of Axe, he had however no
experimental evidence to corroborate his semi-empirical calculations.
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Table 5.3: Born effective charges of various ABO3s compounds in the cubic
structure. The Born effective charge of the B atom is compared to its
nominal charge Zp. The theoretical lattice parameter a, is also mentioned.

ABO3 a, zZ4 Z% Z(*)” zZ5_ Zy/Ze  Reference

nominal 2 4 -2 -2

CaTiOs 7.19 258 7.08 -5.65 -2.00 1.77 Ref. [313]

SrTi03 7.30 256 T7.26 -5.73 -2.15 1.82 Present
254 712 -5.66 -2.00 1.78 Ref. [313]
255 756 -592 -2.12 1.89 Ref. [160]
2.4 7.0 -58 -18 1.75 Ref. [6]

BaTiO3; 7.45 277 7.25 -5.71 -2.15 1.81 Present
295 7.16 -5.69 -2.11 1.79 Ref. [313]

BaZrO3 7.85 2.73 6.03 -4.74 -2.01 1.51 Ref. [313]

PbTiOs 7.35 3.90 7.06 -5.83 -2.56 1.77 Ref. [313]

PbZrOs3 7.77 3.92 585 -481 -2.48 1.46 Ref. [313]

nominal 1 5 -2 -2

NaNbOs; 7.40 1.13 9.11 -7.01 -1.61 1.82 Ref. [313]

KNbO3 747 0.82 9.13 -6.58 -1.68 1.83 Ref. [242]
1.14 923 -7.01 -1.68 1.85 Ref. [313]
1.14 937 -6.86 -1.65 1.87 Ref. [309]

nominal - 6 -2 -2

WOs3 7.05 - 1251 -9.13 -1.69 2.09 Ref. [56]
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Results obtained within the model of Harrison are reported in Appendix
B.2 '6. They can be summarized as follows. Within the bond orbital model,
ABOj3 compounds are described as mixed ionic-covalent crystals. It is as-
sumed that the A atom is fully ionized so that it has no other role than
to provide electrons to the system. In contrast, it 1s considered that there
is some covalency between B and O atoms, described by including O 2s,
O 2p and B d orbitals interacting through matrix elements V,,4, and
Vyar (see Appendix B.2). Due to these orbital interactions, the transfer
of electrons from the B atom to oxygen is not complete: for the particular
case of SrTiOs, from the parameters of Mattheiss [190], we obtain a static
effective charge on O equal to -0.97 (instead of -2). The estimation of the
Born effective charge now requires to add to the previous static charge,
the dynamic contribution induced by the evolution of the interactions pa-
rameters with the bond length as explained in Section 5.3.2. For SrTiOs,
following the idea of Harrison, we get a value of —8.18 for Z7, B

So, the Harrison model make plausible the giant anoma{ous effective
charges by focusing only on the dynamic changes of hybridization between
occupied O 2s-0O 2p states and the unoccupied metal d states. In BaTiOs,
the hybridization between these orbitals is a well known feature, confirmed
by experiments [205, 124], LCAO calculations [190, 219, 220] and DFT
results [296, 43]. In this context, it seemed therefore realistic to restrict
to O 2p -B d hybridization changes to explain intuitively large anomalous
contributions [313].

Posternak et al. [221] went beyond this credible assumption. For KNbOs3,
they demonstrated that the anomalous contribution to the charge of Nb and
Oy disappears if the hybridization between O 2p and Nb 4d orbitals is ar-
tificially suppressed. It was a convincing proof of the crucial role of the
hybridizations.

In what follows, we will propose a band-by-band decomposition of the
Born effective charges [71, 72]. This technique will appear as a tool of
paramount importance to clarify the microscopic origin of anomalous con-
tributions. Identifying the dynamical transfer of charges without any pre-
liminary hypothesis on the orbitals that interact, it will allow to generalize
the basic mechanism that was proposed by Harrison.

5.6 The band-by-band decomposition

In ABOs compounds, the electronic band structure is composed of relatively
well separated sets of bands (see Chapter 3). The hybridizations between
the orbitals of the different atoms are relatively small and each band can

161t follows the method described by Harrison for KCI in Ref. [113], p. 334.
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be identified by the name of the main atomic orbital which contributes to
this energy level in the solid. The Born effective charge is defined by the
change of polarization associated to a specific atomic displacement. Our
purpose will be here to identify the contribution of each well separated set
of bands to this change of polarization [71, 72].

5.6.1 A reference configuration

In order to assign a physical meaning to our decomposition, we define a
reference configuration, in which the contribution to the effective charge of
a given atom is —2 for each band associated to its own orbitals and 0 for
the other bands. In this particular configuration, the center of the Wannier
function associated to each given set of bands is centered on an atom and
remains centered on it: in other words, those centered on the moving atom
will remain centered on it, while the position of the center of gravity of
the other bands will remain unaffected. This reference case corresponds
to what would be observed in a purely ionic material where each band is
composed of a single non-hybridized orbital.

In this context, the anomalous contribution of a particular band m
to a given atom & is defined as the additional part with respect to our
reference value and reflects how the center of the Wannier function of band
m is displaced from its centered position when atoms k move. For a single
isolated band, this anomalous contribution corresponds to a meaningful
quantity: it is equal to (=2 . Ad), where Ad is the displacement of the
Wannier center of this band.

In the reference configuration, each band had a well defined single orbital
character. The displacement of the Wannier center of a band with respect
to its reference position must be attributed to hybridization effects: it is
associated to the admixture of a new orbital character to the band. It can
be visualized as a transfer of charge.

5.6.2 BaTiO;3

The band structure of BaTiOs is presented in Fig. 5.1. Results of the
decomposition 7 of Z* in the theoretical cubic structure of BaTiO3z are
reported in Table 5.4. The first line (Z,) brings together the charge of
the nucleus and of the core electrons included in the pseudopotential. The
other contributions come from the valence electron levels. The sum of the
band by band contributions on one atom is equal to its global effective

17Rigorously, our band by band decomposition was performed within DFT and only
concerns the Kohn-Sham electrons. It seems however that the results are rather inde-
pendent of the one-particle scheme [189] used for the calculation.
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Figure 5.1: Kohn-Sham electronic band structure of BaTiOs.

charge while the sum of the contribution to a particular band from the
different atoms is equal to —2 (within the accuracy of the calculation), the
occupancy of this band.

For titanium, the Ti 3s contribution is close to -2, confirming that these
electrons follow the Ti atom when it moves, independently from the change
of its surrounding. This result a posterior: justifies the inclusion of deeper
electronic levels as part of the ionic pseudopotentials. At the opposite, it
is shown that the giant anomalous charge of titanium essentially comes
from the O 2p bands. It corresponds to a displacement of the Wannier
center of the O 2p bands in opposite direction to the displacement of the
Ti atom. This observation is in perfect agreement with the Harrison model:
it can be understood by dynamic changes of hybridization between O 2p
and Ti 3d orbitals, producing a transfer of electron from O to Ti when the
Ti-O distance shortens. Beyond this model, we note however that there
are also small anomalous charges from the Ti 3p, O 2s and Ba 5p bands.
These contributions are not negligible. The positive anomalous charges
correspond to a displacement of the center of the Wannier function of the
O and Ba bands in the direction of the closest Ti when this atom has moved.
Some of these features go beyond the Harrison model 8. They suggest other
kind of hybridization changes, that will be now more explicitly investigated.

18Within the Harrison model, anomalous contributions to Z%,; in Table 5.4 would
restrict to the O 2p and O 2s bands.
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Table 5.4: Band by band decomposition of Z* in the optimized cubic phase
of BaTiOs. The contributions have been separated into a reference value
and an anomalous charge (see text).

Band Z%, VA zy Z(*DH Total
Z, +10.00 +12.00 +6.00 +6.00 +40
Ti 3s 0+0.01 —-2-0.03 04 0.00 04 0.02 —2.00
Ti 3p 0+0.02 —-6-0.22 0—0.02 040.21 —6.03
Babs —-2-0.11 04 0.05 0+ 0.02 0+0.01 -2.01
O 2s 040.73 0+023 —-2-023 -2-251 —6.01
Babp —6-—1.38 04 0.36 0+ 0.58 0—0.13 —5.99
O 2p 0+ 1.50 04+28 —-6—-050 —-6-—331 -—17.95
Total +2.77 +7.25 —-2.15 —5.71 +0.01

For barium, the global anomalous effective charge (+0.77) is small and
this feature was sometimes attributed to its more ionic character [313]. This
ionicity is inherent to the Harrison model [113] and was confirmed in some
ab initio studies [43, 44]. Surprisingly, our decomposition reveals however
that the anomalous charges of the O 2s (40.73) and O 2p (+1.50) bands are
not small at all. They are nevertheless roughly compensated by another Ba
5s (40.11)and Ba 5p (+1.38) anomalous contributions. This result suggests
that there are dynamic changes of hybridization between Ba and O orbitals
as it was the case between O and Ti, except that the mechanism is here
restricted to occupied states. Our result so supports the hybridization of
Ba orbitals, in agreement with various independent results discussed in
Chapter 3 (experiment [205, 124], LCAO calculations [219, 220], DFT [296]
computations). Similar compensating contributions were recently observed
in BaO [223], pointing out the existence of O 2p — O 2s interactions.

We note that a confusion sometimes appears that should be removed:
the amplitude of the anomalous contributions to Z* is not related to the
amplitude of the hybridizations but to the rate of change of these hybridiza-
tions under atomic displacements. It is clear that, in BaTiO3, the Ba 5p
contribution to the O 2p bands is smaller than the contribution from the Ti
3d orbitals [296, 43]. However, the high sensitivity of this relatively weak
covalent character under atomic positions is sufficient to produce large band
by band anomalous contributions to Z*. From that point of view, the Born
effective charge appears therefore as a sensitive tool to identify the presence
of even small hybridizations.
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Finally, concerning the oxygen, even if O and O_ are defined respec-
tively for a displacement of O in the Ti and Ba direction, it seems only
qualitative to associate Z(*)“ with 7%, and 77, with 7}, as suggested in
Ref. [313]. The O 2p anomalous contributions to Ti and O); do not exactly
compensate. Moreover, O 2p contribution to Z%, does not come from
O_ only but has equivalent contributions from Oy;. This seems to confirm
the idea of Bennetto and Vanderbilt [15] that in 3D materials, transfers of
charges are not necessarily restricted to a particular bond, but is a rather
complex mechanism that must be treated as a whole.

To summarize, our study has clarified the mixed ionic-covalent character
of BaTiOj3: it clearly establishes that the covalent character is not restricted
to the Ti-O bond but also partly concerns the Ba atom. Moreover, it
leads to a more general issue: it illustrates indeed that the presence of a
large anomalous charge requires a modification of the interactions between
occupied and unoccupied electronic state, while the contributions originating
from the change of the interactions between two occuptied states compensate,
and do not modify the global value of Z*.

A similar compensation of different anomalous contributions was ob-
served recently in ZnO which has conventional Born effective charges [189]
and in a series of alkaline-earth oxides [223].

5.6.3 SrTiO3

The same analysis was performed on SrTiOz. TIts band structure (Fig.
5.2) is very similar than for BaTiOgs, except that the Ti 3p and Sr 4s
are energetically very close to each others. Consequently, they strongly
mix and 1t should be relatively meaningless to separate their respective
contributions. The Sr 4p and O 2s states are also in the same energy
region but can be separated, contrary to what was observed independently

for SrO [223].

The result of the decomposition is strongly similar (Table 5.5) to that
reported for BaTiO3. There is still a giant contribution to 77, from the O
2p bands. On the other hand, while the Ba bp bands were approximately
centered between O 2s and O 2p bands in BaTiOg, the Sr 4p electrons
are closer to the O 2s bands and mainly hybridize with them in SrTiOs3.
This phenomenon produces large but compensating contributions from Sr
4p and O 2s bands to Z%,. Such an evolution is in agreement with the
picture that anomalous contributions originate in the orbital hybridization
changes.
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Figure 5.2: Kohn-Sham electronic band structure of SrTiOs.

5.6.4 Other examples

From the two previous results that concern two very similar materials, it
should be suggested that not only the dynamic hybridization of the valence
bands with unoccupied d-states but also the particular cubic perovskite
structure of ABOs compounds plays a major role in determining Z*. In
particular, the displacement of the center of gravity of a band that was
understood by a transfer of charge could also alternatively be visualized by
displacement of the electronic cloud as a whole due to the local field at the
atomic site that is known to be large in this structure [272] 1°.

The role of the hybridization seems however of paramount importance.
It was demonstrated by Posternak et al. [221] (see also Ref. [244]). More-
over, as a complementary argument, it is interesting to observe that anoma-
lous charges are not restricted to perovskite solids but were also detected in
a series of alkaline-earth oxides of rocksalt structure (CaO, SrO, BaO) [222,
223] or even AlsRu [209, 234], all examples where the unoccupied d-states
seem to play a major role. Interestingly, two materials belonging to the
same structure can present completely different charges. This was illus-
trated for the case of TiOz rutile and SiOs stishovite [163, 164]: while
relatively conventional charges were observed on Si (+4.15) and O (-2.46)
along the Si-O bond in stishovite, giant effective charges, similar to those of

BaTiOgs, were obtained on Ti (+7.33) and O (-4.98) along the Ti-O bond in

19This picture is that which more naturally arise from the shell-model approach.
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Table 5.5: Band by band decomposition of Z* in the experimental cubic
phase of Sr'TiOs. The contributions have been separated into a reference
value and an anomalous charge (see text).

Band Z%, Ty Z% Z(*)” Total
7 +10.00 +12.00 +6.00 +6.00 +40
Ti 3s 0+001 —-2-0.03 0+ 0.00 0+0.03 —1.99
%r. s } —240.02 —6-018 0-003 04023 —7.99
13p
O 2s 0+ 3.08 0+002 —-2-131 -2-048 —6.00
Sr 4p —6—3.11 0+ 0.37 0+ 1.42 0—-0.10 —6.00
O 2p 0+ 0.56 0+3.08 —-6-0.12 —-6-341 —18.01
Total +2.56 +7.26 —2.15 —5.73  +0.01
rutile. Similarly, no anomalous charge was reported for MgO (7, = —2.07),

presenting the same rocksalt structure than BaO (Z} = —2.80) [223]. In
the family of ABO3 compounds, giant effective charges are observed on Ti

in CaTiOz (Z3; = 7.08, [313]) but not on Si in CaSiO3 (7%, = 4.00, [273]).

In conclusion, we point out that the presence of partly hybridized d-
states seems the only common feature between the materials presenting gi-
ant anomalous effective charges, listed up to date. This feature should find
a basic justification within the BOM of Harrison: the interaction param-
eters involving d-states are indeed much more sensitive to the interatomic
distance than those involving, for example, s and p orbitals [113]. They
will therefore be associated to larger dynamic transfer of charge and will
generate higher 7.

Anecdotally, let us finally mention that very surprising features were
predicted by Resta and Sorella [244] in strongly correlated mixed cova-
lent /ionic materials, from the study of one-dimensional two-band Hubbard
model: they include a divergence of the Born effective charge around the
transition from band to Mott insulators. Even if this phenomenon do not
concern ABO3 compounds, it suggests that Born effective charges should
play an important role in highly correlated systems.



130 CHAPTER 5. THE BORN EFFECTIVE CHARGES

Table 5.6: Eigenvalues of the Born effective charge tensors of Ba and Ti
in the three ferroelectric phases of BaTiOs. The z-axis points along the
ferroelectric direction. In the cubic phase, we had: 7}, = 7.29 and 7}, =
2.74.

phase Z}z T Z}z Yy Z}z zz Z*Ba T Z*Ba Yy Z*Ba zz
tetragonal 6.94 6.94 5.81 2.72 2.72 2.83
orthorhombic 6.80 6.43 5.59 2.72 2.81 2.77
rhombohedral  6.54 6.54 5.61 2.79 2.79 2.74

5.7 Sensitivity to structural features

In the literature, calculations of Z* essentially focused on the cubic phase
of ABO3 compounds [242, 70, 313, 71, 72, 221, 231, 309]. On the basis
of an early study of KNbOgs [242], it was concluded that the Born effec-
tive charges are independent of the ionic ferroelectric displacements (i.e.
they remain similar in the different phases). Another investigation in the
tetragonal phase of KNbO3 and PbTiO3 [313], seemed to confirm that 7*
are quite insensitive to structural details. These results were surprising if
we remember that anomalous contributions to Z* are closely related to or-
bital hybridizations, these in turn, well known to be strongly affected by
the phase transitions [43, 44]. We will see in this Section that, contrary
to what was first expected, Z* in BaTiOg are strongly dependent of the
structural features.

We first investigate the sensitivity of the Born effective charges to the
ferroelectric atomic displacements [72]. For that purpose, we compute Z* in
the three ferroelectric phases at the experimental unit cell parameters, with
relaxed atomic positions (see Chapter 3). Tables 5.6 and 5.7 summarize the
results for a cartesian set of axis where the z-axis points in the ferroelectric
direction. The Ba and Ti charge tensors are diagonal in each phase for
this particular choice. In the case of O, we note the presence of a small
asymmetric contribution for the lowest symmetry phases. The eigenvalues
of the symmetric part of the tensor are also reported. In each phase, the
eigenvector associated to the highest eigenvalue of O approximately points
in the Ti-O direction and allows to identify the highest contribution as Oy.
The other eigenvalues can be referred to as O_, by analogy with the cubic
phase.

Although the charges of Ba and O_ remain globally unchanged in the
4 phases, strong modifications are observed for Ti and O): for example,
changing the Ti position by 0.076 A (2% of the unit cell length) when going
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Table 5.7: Born effective charge tensor of the O atoms in the three ferro-
electric phases of BaTiOz. Tensors are reported in cartesian coordinates,
with the z-axis along the ferroelectric direction. The eigenvalues of the
symmetric part of Z* are mentioned in brackets; the eigenvector associated
to the highest eigenvalue approximately points in the Ti direction. In the

cubic phase, we had: Z(*)” = —=5.75 and Z},_ = —2.13.
Tetragonal Orthorhombic Rhombohedral
O —1.99 0 0 —2.04 0 0 —2.54 =099  0.63
0 —1.99 0 0 —3.63 1.38 —0.99 —3.68 1.09
0 0 —4.73 0 1.7 =317 0.72 1.25 —2.78
[ —1.99 —1.99 —-4.73] [ —1.91 —2.04 —4.89 ] [ —1.97 —1.98 —5.05]
0O, —2.14 0 0 —2.04 0 0 —2.54  0.99 0.63
0 —5.53 0 0 —3.63 1.38 0.99 —3.68 —1.09
0 0 —1.95 0 1.7 =317 0.72 —1.25 —2.78
[ -1.95 —2.14 —5.53 ] [ —1.91 —2.04 —4.89 ] [ —1.97 —1.98 —5.05]
O3 —5.53 0 0 —b.44 0 0 —4.25 0 —1.26
0 —2.14 0 0 —1.97 0 0 —1.97 0
0 0 —1.95 0 0 —2.01 —1.44 0 —2.78
[ -1.95 —2.14 —5.53 ] [ —1.97 —2.01 -5.44] [ —1.97 —1.98 —5.05]
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Figure 5.3: Born effective charge of Ti (opened symbols) and O (filled
symbols) in the direction of the shortest Ti-O bond length d,;, with respect
to this interatomic distance for the cubic (square), tetragonal (lozenge),
orthorhombic (circle) and rhombohedral (triangle) phases.

from the cubic to the rhombohedral phase, reduces the anomalous part of
Z%, by more than 50% along the ferroelectric axis (Table 5.6). Equivalent
evolutions are observed in the other ferroelectric phases. Similar dramatic
changes were detected recently in KNbO3z [292].

In the isotropic cubic structure, Harrison had explained the large value
of Z* in terms of the Ti-O bond length. For the anisotropic ferroelectric
phases; 1t should be intuitively expected that the shortest Ti-O distance
dmin 1n the structure will dominate the bonding properties. It is therefore
tempting to transpose the Harrison model to understand the evolution of
Z* in terms of the distance d,,;,. The amplitude of Z}, and Zf in the
direction of the shortest Ti-O bond length of each phase is plotted in Fig. 5.3
with respect to d;,;,. For the different phases, at the experimental lattice
parameters, we observe that the anomalous parts evolve quasi linearly with
dmin .

Independently from the previous calculations, we also investigated the
evolution of Z* under isotropic pressure (Table 5.8). In contrast with the
changes observed with respect to the atomic displacements, the charge ap-
pears essentially insensitive to isotropic compression. In particular, in the
compressed cubic cell at 3.67 A where the Ti-O distance is the same that
the shortest Ti-O bond length in the tetragonal structure 2°, 73, remains

201n the tetragonal phase, shortened and elongated Ti—-O bonds alternate along the
ferroelectric axis. The shortened bond corresponds to an interatomic distance of 3.67
Ain our optimized tetragonal structure.



5.7. SENSITIVITY TO STRUCTURAL FEATURES 133

Table 5.8: Evolution of the Born effective charges of BaTiOs under isotropic
pressure in the cubic phase.

a,=3.67TA a,=3.94A @,=4.00A a,=4.40A

Z5, 429 1277 1274 +2.60
Z3s +7.23 +7.25 +7.29 +7.78
Zy o —2.28 —2.15 —2.13 —2.03
7, —5.61 —5.71 —5.75 —6.31

very close to its value at the optimized volume. This new element clearly
invalidates the expected dependence from Z* to dy,;, and invites us to go
further in our investigations.

The fundamental difference between the cubic and tetragonal structures
lies in the fact that in the cubic phase every Ti-O distance is equal to the
others, while in the tetragonal phase, along the ferroelectric axis, a short
Ti-O bond length (dp;y,) is followed by a larger one (dmaqy) which breaks
the Ti-O chain in this direction. In order to verify that it is not this
large Ti-O distance which, alternatively to d,,;n, 1s sufficient to inhibit
the giant current associated to the anomalous charges, we also performed
a calculation in an expanded cubic phase where a, = 2.d;,4: We observe
however that the Ti charge is even larger than in the optimized cubic phase.

We conclude from the previous investigations that the amplitude of Z*
in BaTiOs is not dependent on a particular interatomic distance (dpmin,
dmaz) but is critically affected by the anisotropy of the Ti environment
along the Ti-O chains 2.

A band by band decomposition of Z%, (Table 5.9) points out that the
difference between the cubic and tetragonal phases is essentially localized
at the level of the O 2p bands (41.48 instead of +2.86) while the other
contributions remain very similar. This suggests an intuitive explanation.
In the cubic phase the O 2p electrons are widely delocalized and dynamic
transfer of charge can propagate along the Ti-O chain as suggested by
Harrison. In the tetragonal phase, the Ti-O chain behaves as a sequence
of Ti-O dimere for which the electrons are less polarizable. This smaller
polarizability will be confirmed in the next Chapter where we will report
a similar reduction of the optical dielectric constant along the ferroelectric
direction.

?1Tn agreement with this picture, Wang et al. [292] reported recently an insensitivity
of Z* to a tetragonal macroscopic strain in KNbO3.
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Table 5.9: Band by band decomposition of 77, in different structure of
BaTiOs. The contributions have been separated into a reference value and
an anomalous charge (see text).

cubic cubic  tetragonal cubic
Band a,=3.67A a,=3.94 A (exp) a,=4.40 A
Zy +12.00 +12.00 +12.00 +12.00

Ti 3s -2-007 -2-003 -2-005 -=-2+40.01
Tip —-6-043 -6-022 —-6-026 —6-0.07
Ba 5s 04 0.09 040.05 040.05 04 0.02

0O 2s 04 0.27 040.23 04025 040.19
Ba 5p 0+ 0.64 04 0.36 0+0.34 0+40.13
0 2p 0+2.73 04 2.86 0+1.48 04 3.50
Total +7.23 +7.25 +5.81 +7.78

Finally, let us mention that if the evolution of Z* is relatively weak
under isotropic pressure, it would be wrong to consider that the dynamic
properties of BaTiOg3 are insensitive to the volume: small changes are ob-
served that are of the same order of magnitude than for other compounds
like SiC [291, 293]. The direction of the evolution is however different.
Moreover, the evolution of the different charges is even not identical: while
the absolute value of 7%, and Z}_ decreases with increasing volume, the
inverse behaviour is observed for 77, and Z(*DII'

Here also, the band by band decomposition (Table 5.10) reveals some
hidden features. In the compressed cubic phase, the anomalous part of
the Ba 5p , Ba bs and Ti 3p bands are 50% larger than in the optimized
cubic cell. This suggests an evolution of the interactions between occupied
orbitals that is coherent with the evolution of the interatomic short-range
forces observed independently [73]. At the opposite, in our expanded cubic
phase, most of the anomalous contributions to Z%, and Z7, have disap-
peared in agreement with the picture of a more 1onic material. The O 2p
contribution, is the only one that remains surprisingly large. Comparing
to the value obtained for the cubic phase at the experimental volume, its
evolution was even more important than the linear dependence upon the
bond length, expected from the Harrison model.
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Table 5.10: Band by band decomposition of Z},, in the optimized cubic
phase of BaTiO3 and in an expanded cubic structure. The contributions
have been separated into a reference value and an anomalous charge (see
text).

cubic cubic
Band a,=3.94 A a,=4.40 A
7. +10.00 +10.00
Ti 3s 0 +0.01 0 —0.01
Ti 3p 0 +0.01 0 +0.01
Ba 5s -2 —0.11 -2 40.00
0 2s 0 +0.73 0 +0.37
Ba 5p -6 —1.38 -6 —0.44
O 2p 0 +1.50 0 +0.66
Total +2.77 +2.59

5.8 Spontaneous polarization

The spontaneous polarization (P;) of the ferroelectric phases can be deter-
mined by integrating the change of polarization along the path of atomic
displacement from the paraelectric cubic phase (taken as reference) to the
considered ferroelectric structure. If the effective charges were roughly con-
stant, this integration should be approximated by:

1 *
Poo= N Z[; Z o5 dTep (5.38)

However, we have seen, in the previous Section, that the Born effective
charges are strongly affected by the atomic displacements. It is therefore
important to investigate their evolution all along the path of atomic dis-
placements from one structure to the other.

We performed the calculation for a transformation from the cubic to
the rhombohedral structure. The rhombohedral macroscopic strain is very
small and was neglected: our calculation was performed by displacing the
atoms to their theoretically optimized position in rhombohedral symmetry,
when keeping the cubic lattice parameters 2?2, The result is reported in
Fig. 5.4 for 77, along the ferroelectric direction. A similar curve should

22The Born effective charges obtained for the rhombohedral structure when neglecting
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Figure 5.4: Evolution of the amplitude of Z, in the < 111 > direction
all along the path of atomic displacements from the cubic (A = 0) to the
rhombohedral (A = 1) phase. The distortion of the cubic cell has been
neglected.

be obtained for Z(*DI . We observe that the evolution of Z* is approximately
quadratic close to tLe cubic phase. However, it becomes rapidly linear, and
remains linear for displacements even larger than those associated to the
ferroelectric distortion.

Expecting a similar evolution of the dynamic charges for the tetragonal
and orthorhombic displacements, an estimation of the spontaneous polar-
ization in the ferroelectric phases can be found when using Eq. (5.38) with
a mean effective charge determined from its value in both phases. Chosing
Dhean = 0.68 X Z7 ;. +0.32 x 23
tions presented in Table [5.11].

Our results are only in relative agreement with the experiment [301, 116]
and suggest different comments. Firstly, we would like to mention that part
of the discrepancy must be assigned to the overestimation of the computed
ferroelectric displacements, that was discussed in Chapter 3: when using
the experimental displacements of Ref. [117], we recover a better estimation
of P; as in Ref. [313]. The dispersion of X-rays diffraction data makes

erros We Obtain the spontaneous polariza-

the strain (i. e. when keeping a cubic unit cell) are the following: 7§ ,, = +2.79,
Zhass = 4279, Zhy 1 = +6.54, I, 55 = +5.61, 2%, = —1.97, 2} | = =5.05. These
values must be compared to those reported in Tables 5.6-5.7, where the rhombohedral

strain was taken into accounts. It can be checked that effect of this strain is negligible.
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Table 5.11: Spontaneous polarization in the three ferroelectric phases of
BaTiOs in pC/cm?. The results were deduced from Eq. (5.38) when using
the Z* of the cubic phase (Cubic) or a mean charge (Mean) estimated from
the values an the para- and ferro-electric phases (see text). Estimations
are reported from the experimental and theoretical atomic ferroelectric dis-
placements.

Exp. [301] Ref. [313] Present Present Present

z* Cubic Cubic Mean Mean
positions Exp Opt Opt Exp
Tetragonal 26.3 30 36.35 34.02 28.64
Orthorhombic 30.7 26 42.78 39.68 36.11
Rhombohedral 33.5 44 43.30 40.17 -

however difficult the exact identification of the ferroelectric displacements.
Secondly, another part of the error could be due to the lack of polarization
dependence of the LDA as discussed in Chapter 8 [94]. Finally, we note
that there 1s also some uncertainty on the experimental value of Ps.

5.9 Role of the Born effective charge in the
lattice dynamics

In this Chapter, we focused on the microscopic mechanisms that govern the
amplitude of the Born effective charges and this analysis brought to light
some interesting physics concerning ABOj3 compounds. Z* however also
monitors the amplitude of the long range Coulomb part of the interatomic
forces and its knowledge is a prerequisite to any lattice dynamics study.

In Chapter 8, we will emphasize that the anomalously large Born effec-
tive charges produce a giant LO-TO splitting in ABO3 compounds, spe-
cially for the ferroelectric phonon mode [313, 73]. We will demonstrate
that this feature is associated to the existence of an anomalously large
destabilizing dipole-dipole interaction, sufficient to compensate the stabi-
lizing short-range force and induce the ferroelectric instability. Anticipating
what will be discussed later, we note that, in this context, the Born effective
charge will appear as the key concept to relate the electronic and structural
properties.
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5.10 Conclusions

In this Chapter, we have illustrated that the Born effective charge is a
dynamic concept: it differs from the conventional static charges by a con-
tribution originating in dynamic transfer of charge. We have reported how
the Born effective charges can be obtained within an ab initio framework.
We have highlighted their significance in terms of Wannier functions.

Summarizing various recent results, we have shown that the Born ef-
fective charges are anomalously large in the family of ABO3 compounds:
their amplitude can reach more than twice the nominal ionic charge. This
surprising feature was explained in terms of transfers of charge, produced
by dynamic changes of hybridization. For BaTiOs and SrTiOs, we have
brought to light complex dynamic changes of hybridization, concerning not
only Ti and O but also Ba and Sr orbitals. The hybridizations restricted to
occupied states generate however compensating anomalous contributions so
that the total value of Z* is finally essentially affected by dynamic changes
of hybridization between O 2p and Ti 3d orbitals.

As a more general i1ssue, we suggest that the existence of partial hy-
bridizations between occupied and unoccupied states is an important fea-
ture for candidate to large anomalous Born effective charges. Moreover,
the dynamic transfers of charge are expected to be larger when such hy-
bridization involve d states, for which the interactions parameters with
other orbitals are particularly sensitive to the interatomic distance.

Investigating the evolution of Z* to the structural features, we have
shown that they are strongly affected by the ferroelectric atomic displace-
ments and much less sensitive to 1sotropic pressure. The results have clari-
fied that the amplitude of Z* is not monitored by a particular interatomic
distance but is affected by the anisotropy of the Ti environment along the
Ti-O chains.

Finally, the effective charges were used to estimate the spontaneous
polarization in the ferroelectric phases of BaTiOgs. For that purpose, their
evolution was investigated all along the path of atomic displacement from
the cubic to the rhombohedral structure.

In Chapter 7, we will show that the anomalous effective charge are at
the origin of a giant dipole-dipole interaction able to induce the ferroelectric
instability.

5.11 References

The results presented in this Chapter have been partly discussed in the
following papers:
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Chapter 6

The optical dielectric
tensor

6.1 Introduction

The dielectric tensor is a macroscopic concept, introduced in electrostatics
to relate, in the linear regime, the electric field to the displacement field.
From the definition of the displacement field, it is directly related to the di-
electric susceptibility and globally describes the screening of a macroscopic
electric field in a polarizable medium. It appears therefore as a fundamental
quantity that characterizes this medium.

In solids, both the electrons and the ions may polarize under the action
of a macroscopic electric field. In the present Chapter, we will be only
concerned in the contribution to the dielectric tensor due to the electronic
polarization. We will see later that the identification of this electronic part
is mandatory to describe correctly the long range Coulomb part of the
interatomic force constants in polar materials.

Experimentally, the electronic contribution to the dielectric tensor can
be 1solated and measured for frequencies of the applied field sufficiently
high to get rid of the ionic contributions, but not high enough for causing
direct electronic excitations. It is usually referred to as the high frequency
or optical dielectric response and it is noted €. In our theoretical ap-
proach where the ions can be artificially clamped, the same quantity can
be deduced when computing the electronic response to a static field. In a
next Chapter, we will take care of the supplementary contributions from the
ionic displacements and we will indicate how to deduce the static dielectric
response Egﬁ.

141
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The optical dielectric tensor can be formulated in terms of a second
derivative of the electronic energy. We will first report how it can be
computed within the variational approach to the density functional per-
turbation theory. This formalism, implemented within the local density
approximation, will then be applied to BaTiOs.

As a ground-state property, the dielectric response should be a prior:
correctly reproduced within the density functional formalism [51]. However,
for BaTi03, we will observe that the computed value largely overestimates
the experiment. Similar discrepancies (more than 10%) are usual in a large
variety of materials and exceed the error reported for other properties, com-
puted within the same local density approximation. We recently addressed
the origin of this problem [94]: it will be discussed in Chapter 8.

Anticipating on this further discussion, we would like to stress that the
formalism presented in this Chapter is coherent within the local density
approximation that still remains a standard for DFT calculations. We note
also that the more sophisticated generalized gradient approximations have
no specific reason to improve directly the result.

6.2 The linear response formalism

Within the electrostatics, the macroscopic displacement field D, the macro-
scopic electric field £ and the macroscopic polarization P are related through
the following expression:

D, =&+ 47P, (6.1)
while the dielectric tensor i1s introduced as
oD,
€ap A (62)
88[3 £=0

In Chapter 4, we have seen that the electronic contribution to the macro-
scopic dielectric tensor can be formulated in terms of a second partial deriva-
tive of the electric enthalpy with respect to the macroscopic electric field
&. In this context, following the notations introduced in Section4.2, we can

write:
4 8E6+i
¢S] — 604 oo Yret1
Cop T 98,08,
47 ~crg
= 604@ — 6 Q.Eela ? (63)

Within the formalism of Chapter 4, E;;Eﬂ can be formulated in terms of a
stationary expression, involving the first-order wavefunctions with respect
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to the electric field (Juf3 > and |uifk >) and to their wave-vector (|u’s >
and |uifk >):

occ

Q £
e S sl - s

(s i) + <wi:k|uifk>) dk

£re
Er ﬂ{u(o);ug",ugﬂ} =

-I-% /QD KXLCDA(I‘,I‘) [ng" (I‘)]*ngﬂ (r) dr

+270 Y [ (ﬁgfﬂ Q) (6.4)
G#£0

Making use of the interchange theorem, one can also deduce a much simpler
non-stationary formula:

e Q S -k
B ﬂ{u(o);uﬁa} _ PP /}3225<u;"k|zunfk>dk (6.5)

In this last expression, Eg‘igﬂ appears more explicitly related to the change
of macroscopic polarization in direction § induced by a macroscopic elec-
tric field &,. Here, the knowledge of uf>, the first-order derivative of the
wavefunctions with respect to an electric field along direction «, allows
us to compute the elements of the dielectric permittivity tensor e,g, for
8 =1, 2 or 3, provided that the derivative of the unperturbed wavefunction
with respect to their wavevector along [ is also known. This expression
is particularly useful to determine the full dielectric tensor with minimal
computational effort.

6.3 The “scissors” correction

Because the agreement between the LDA dielectric permittivity tensor and
the experiment was not satisfactory, Levine and Allan have introduced a
scissors operator correction to the LDA [166, 167]. This correction has been
shown to lead to an improved agreement between theory and experiment
for many semiconductors. Some cases of negative results have however also
been reported, specially for wide bandgap semiconductors. The reasons of
the partial failure of LDA, and the role that plays the scissors correction
in this context, will be discussed in Chapter 8.

Independently from the justification of the correction, the modifications
of the equations needed to incorporate a scissors operator, are rather simple
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and can be addressed here. It is well known that the DFT bandgap may
not be assimilated to the quasi-particle bandgap, experimentally measured.
The correction that was proposed basically consists in adjusting the DFT
bandgap to the experimental value. Supposing that the gap between the
valence and conduction states must be artificially increased from E;DA to

E;DA + Agcer, then Eq. (6.4) is slightly modified and becomes

{u SCIS SCI,Eﬂ} —
SCI -

occ

/ Z ( (U S [H — e+ Ascrluby ™)
271' BZ

(S i) (i S £ﬂ>) dk

1 R « £
s /ﬂ KEPA(x,r) [nfe (1)) ngly (r) dr
r2mg, Y LEE(CL150(G) (69
GP? ' '
G#0

The equation of Chapter 4 to be minimized in order to obtain uiﬁj’g" must

be replaced by Eq. (6.6) where # = «. The associated Euler-Lagrange
equation is *:

Pox (H{) — €0 )k+ASCI)P e [ub )

0
—Pox <6k 4y SChEa —I—U)S(SI’E") ul)). (6.7)

Because of the positive- deﬁniteness of the term governed by Ager in
the quadratic form underlying E - ", it 1s straightforward that if Ager is
positive, the dielectric permlttlmty constant along any direction is always
smaller with the additional scissors correction than in the local density
approximation.

6.4 The case of BaTiO;

The previous formalism is now applied to BaTi03. Theoretical results are
reported for its four phases and compared to the experimental data. In our
calculations, plane-waves were expanded up to a 35Ha cutoff and integrals

I The notations have been defined in Chapter 4. As usual, the “prime” indicates that
the G=0 contribution has been omitted.
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Table 6.1: Optical dielectric constant in the cubic phase of BaTiOs obtained
within the local density approximation (LDA) or with an additional scissors
correction (LDA+Ascy).

Method ap=3.67TA a,=3.94A a,=4.00A a,=4.40A
LDA 6.60 6.66 6.73 7.75
LDA+Ascr 5.71 5.60 5.61 —
Exp. [22] - - 5.40 -

over the Brillouin zone were replaced by sums on a 6 x 6 x 6 mesh of special
k-points (see Appendix A). These parameters guarantee a convergence
better than 2%.

In the cubic structure, the dielectric tensor reduces to a scalar. Our
results are reported in Table6.1. Within the LDA, the values obtained at
the experimental (a,=4.00 A) and theoretical (a,=3.94 A) lattice constant
are respectively equal to 6.73 and 6.66 2. In comparison, the dielectric
constant can be estimated from the experiment, by extrapolating to zero
frequency, using a one oscillator Sellmeyer equation [59], refractive index
measurements at different wavelengths. The data of Burns and Dacol [22]
yield a value of 5.38.

Our computations at both volume greatly overestimate the macroscopic
experimental constant. This could be partly due to the fact that our calcu-
lations prefigure a solid at 0 K while the experiment was done at 150° C.
Nevertheless, as it was mentioned in the Introduction, it is likely to be
assigned to the LDA. It can be corrected in first approximation by us-
ing the previously described scissor correction proposed by Levine and Al-
lan [166]. When including in the calculation a A-independent scissors shift
Ager = 1.36 €V, that adjusts the LDA bandgap at the T' point (1.84 eV)
to its experimental value of 3.2 eV [295], we find €57 = 5.60 at the ex-
perimental volume. The discrepancy has then been reduced to less than
5 %.

In our compressed cubic phase, with a,=3.67 A, we obtain a value of
6.60 (¢3¢ = 5.71) 3. Surprinsigly, this result remains very close to that

2The Hartree and exchange-correlations terms of Eq. (6.4) are sometimes referred to
as the “local fields effects”. These terms lower the value of the dielectric constant by
about 4%.

3We note the different correction induced by the same scissor shift at different vol-
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Table 6.2: FEigenvalues of the Born effective charge tensors in the three
ferroelectric phases of Ba'TiOgz, obtained within the local density approxi-
mation (LDA) or with an additional scissors correction (LDA+Agcy). For
each phase, the eigenvector of €55 points along the ferroelectric direction.

Phase Method e €0y €
Tetragonal LDA 6.47 647 5.74
LDA+Ascr 544 544 4.97
Exp. [264] 5.19 5.19 5.05
Orthorhombic  LDA 6.35 6.07 5.64
LDA+Ascr 5.36 5.20 4.89
Rhombohedral LDA 6.16 6.16 5.69

LDA+Ascr 5.26 5.26 491

obtained at the experimental volume. It reveals a relative insensitivity to
isotropic compression already observed for the Born effective charges. At
the large lattice constant of 4.40 A, the dielectric constant has increased
coherently with a reduction of the indirect gap between I' and R from 1.74
eV to 1.16 eV.

In the three axial ferroelectric phases, the dielectric tensor does not
reduce to a scalar any more and independent elements must be consid-
ered. The tensor diagonalizes when the z-axis is taken along the ferro-
electric direction. The eigenvalues of the dielectric tensor are reported in
Table 6.2. The values with scissor correction were deduced with the same
shift, Agcr = 1.36eV, than for the cubic phase .

We observe that the permittivity is globally smaller than in the cubic
phase. This is specially true along the ferroelectric direction were the value
are respectively equal to 5.74 (€291 =4.97), 5.64 (37 =4.89) and 5.69
(e5€1 =4.91) for the tetragonal, orthorhombic and rhombohedral phases
respectively. This evolution contrasts with the insensitivity under isotropic
pressure observed in the cubic phase: here also, it is a behaviour similar to
that reported for the Born effective charges in the previous Chapter.

Experimentally, a reduction of the refractive index n (e, = n?) was

umes. This was already observed by Levine and Allan [167]. In our compressed phase,
the gap is direct at I and equal to 1.87 eV.

4This hypothesis is questionable. In the tetragonal phase it corrects the indirect gap
between I' and A from 2.27 to 3.63 eV, a value that seems slightly larger than that
observed experimentally for this phase [295].
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observed coherently with our results when going from the cubic to the
ferroelectric tetragonal phase [162]. The experimental data [162, 264, 294,
135] also agree with a more important reduction of the dielectric tensor in
the direction of the ferroelectric axis.

A simple explanation can be suggested to explain the evolutions of €.
A band by band analysis reveals that the dielectric response of BaTiOg
originates essentially in the polarizability of the electrons of the O 2p bands.
These bands are mainly composed of O 2p orbitals partly hybridized with
Ti 3d orbitals (see Chapter 3). In the cubic phase, all the Ti-O distances are
equivalent and the O 2p electrons are widely delocalized. In the ferroelectric
phases, the Ti atom is displaced with respect to its centrosymmetry position
and it was shown that the O 2p - Ti 3d orbitals hybridization is modified.
The asymmetry slightly breaks some bonds, the O 2p electrons are more
localized. This should explain that their polarizability is smaller.

6.5 Conclusions

In this Chapter, we have reformulated the dielectric tensor introduced in
electrostatics in terms of quantities accessible within a first-principles ap-
proach. We have described how the electronic contribution to this tensor
can be computed within the variational approach to the density functional
perturbation theory. We also briefly discussed the implementation of a
scissors correction.

The optical dielectric tensor has been computed for the four phases of
BaTiOs. Its knowledge will be useful to treat correctly the long-range part
of the interatomic force constants in the next Chapter. We observe that
the dielectric tensor has some common features with the Born effective
charges: it 1s relatively insensitive to isotropic compression but becomes
highly anisotropic in the ferroelectric phases. In particular, the polarizabil-
ity of the electrons i1s always smaller along the ferroelectric direction.
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Chapter 7

Phonons

7.1 Introduction

BaTiOgs is well known to exhibit a ferroelectric instability and since long
there have been considerable efforts to understand the microscopic origin
of its successive phase transitions [171]. Among all these works, the most
gratifying explanation is probably due to Cochran [39] who realized that the
problem could be interestingly recast in the framework of lattice dynamics .
Within a shell-model approach, he associated the ferroelectric transition
with the softening of a transverse optic phonon, originating in the near
cancellation of Coulomb and short range interactions. The destabilizing
role of dipolar forces had been previously pointed out by Slater [272], but it
appeared more coherently within the shell-model. In spite of the qualitative
character of Cochran’s investigations, the delicate balance between short-
range repulsions and long-range destabilizing electrostatic forces is still now
usually referred to as the origin of the ferroelectricity [41, 43, 315].

Cochran, when introducing the concept of “soft mode”, was the first
who associated the ferroelectric instability to the lattice dynamics. Con-
sequently to his work, the lattice dynamics of ABO3 compounds has been
subject to various investigations. A large number of experiments have been
performed in order to confirm the existence of a soft ferroelectric mode in
BaTiOs. They include infra-red [178, 253, 254, 201] and Raman [215, 250,
133, 80, 154, 60, 204, 66] measurements of the T' phonon modes as well as
various neutron diffraction data [261, 306, 262, 109, 20, 134]. These exper-
iments focused on the temperature behaviour of the soft phonon and were
mainly concerned by the low frequency modes.

LA similar approach was taken independently by Anderson [3].

149
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Simultaneously, theoretical phonon dispersion curves of BaTiO3 were
deduced from a fit of the experimental data using different shell models.
Let us mention the pseudo-ionic model developed by Gnininvi and Bouil-
lot [79] or the rigid-shell model used by Jannot et al. [134]. These models
were however not particularly suited to describe the ABOj3 crystals. During
the seventies, Migoni, Bilz and Bauerle [196] pointed out that the behaviour
of the ferroelectric soft mode in the oxidic perovskites originates from an
unusual anisotropic polarizability of the oxygen that, in turn, may be con-
nected to hybridization between O 2p and B d states. A more sophisticated
“polarizability model” [18, 25] was then introduced in order to include the
specific physical features of ABOj3 compounds. The application of this
model to BaTiOs was reported by Khatib et al. [139]. In their work, they
obtained a full phonon band structure and investigated the temperature
behaviour of the ferroelectric soft mode. However, their interesting results
still remained at a semi-empirical level.

Since a few years, theoretical advances have enabled one to determine
the phonon frequencies of solids from first principles. The phonon frequen-
cies at the I' point have been computed for various ABO3 compounds using
frozen phonon or linear response techniques. Recently, ab initio phonon
dispersion curves have been reported and analyzed for KNbO3 [310] and
SrTiO3 [160]. We performed a similar study on BaTiO3 [76] 2.

In this Chapter, we will first describe how the phonon frequencies can be
obtained within a first-principles approach. We shall then summarize vari-
ous results concerning BaTiO3. We will report on the phonon frequencies
at the I' point in the cubic and rhombohedral structure. The phonon dis-
persion curves will then be deduced in the cubic phase. Interestingly, these
results will appear very useful to address some open questions concerning
the ferroelectric instability.

First, the different quantities involved in the Cochran model are di-
rectly accessible from our first-principles calculations. This will enable us
to investigate the concomitant role played by Coulomb and short-range in-
teractions in a more general context, going beyond Cochran’s results [73].
In this framework, we will be able to clarify the connection between the
electronic and dynamical properties.

Second, the analysis of the phonon dispersion curves will suggest that
the appearance of the ferroelectric instability requires a chain-structure cor-
relation of the atomic displacements. This feature will be investigated with
the help of the interatomic force constants. Our results will be contrasted
with some experimental evidences. They will be discussed in connection

?Partial results are also available concerning the dispersion curves of PbTiO3 [235]

and PbZrOs [290].
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with the existing “8-sites” model [46, 47] and the model of Hiiller [125].

7.2 The dynamical equation

In Chapter 1, the movement of the ions was separated from that of the
electrons. Up to now, we were essentially interested in the quantum me-
chanical description of the electrons and we have made the hypothesis that
the ions sit without moving at sites R of a Bravais lattice. In this chap-
ter, we will relax this artificial assumption and describe the dynamics of
the ions. We shall assume that the mean equilibrium position of each ion
remains a Bravais lattice site, but that its instantaneous position may os-
cillate around this site. Their movement will be treated thanks to classical
equations of motions. We shall consider ionic displacements that are small
compared with the interionic spacing, so that it remains possible to work in
the harmonic approximation. Moreover, we shall remain in the adiabatic
approximation, in which it is considered that the electrons are in their
ground-state for any instantaneous ionic configuration.

In the harmonic approximation, the total energy of a periodic crystal
with small lattice distortions from the equilibrium positions can be ex-
pressed as

arm d Ee !
B ({AT)) = e+l+ZZ (W a: )AT Arhs  (7.0)
&'

aro bn’ﬁ

where A72 is the displacement along direction « of the atom « in the cell a
(with vector Rg), from its equilibrium position 7. The classical equations
of motion for the ions are then:

paz, | orn
Mo oz gra, (7.2)

for which we seek a general solution of the form:
AT (1) = (ka)e™Hm! (7.3)

Due to the lattice periodicity, the matrix of the second derivative of the
energy appearing in Eq. (7.1) is invariant against a rigid body translation
of the crystal by a lattice translation vector. Coherently with this property,
we can propose a more explicit solution of the form:

AT () = Nq(ka) ARy gmiwmt (7.4)

for which the vibrations of the ions have been classified according to a
wave vector. This approach is strictly equivalent to that taken for the
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electrons through the Bloch theorem. For an infinite solid, it will allow to
replace the problem of solving a infinite set of coupled equations (Eq. 7.2)
by another problem of 3 x Ny equations (where Ny, is the number of atoms
per basic unit cell) to be solved for an “infinite” number of wave vectors q.
In practice, calculations will be restricted to a finite set of g-vectors.

A few definitions are now introduced. The matrix of the interatomic
force constants (IFCs) in real space is defined as

2 .
Croarp(a,b) = (&) : (7.5)

arg, 87’2,[3

while its Fourier transform takes the following form:

. 1 I
Cnoc,n’ﬁ(q) = Nzcﬁa,n’ﬁ(aab)e 4 (Ra—Ro)
ab
= 3 Crapsl0, D)9 (7.6)

b

where N is the number of cells of the crystal in the Born-von Karman ap-
proach. This last quantity is connected to the dynamical matrix Dy «/5(q)
by

Dy (@) = Crowrp () (Mo M) 2. (7.7)

From these definitions, the movement of the 1ons can be described in
terms of the following dynamical equation:

Y Crawp(@)ing(#'8) = Mawyqtimg (k) - (7.8)
&'B

Equivalently, the normal modes of vibrations are solution of the following
eigenvalue problem:

Y Draws(@)yma(K8) = wingyma(ka) - (7.9)
K/

The square root of the eigenvalues of the previous equations w,,q are the
phonon frequencies at wave vector q, while y,,q are their associated phonon
eigenvectors. The 5,4 are usually referred to as the phonon eigendisplace-
ments. They are normalized such that < n|M|np >= 1, where M = M6,
is the mass matrix. Phonon eigenvectors and eigendisplacements are there-

fore related by: v = v M.5.
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7.3 The linear response approach

The basic ingredient required to compute the phonons is the interatomic
force constant matrix C. From Eq. (7.5) it appears as a second-order
derivative of the total energy with respect to collective atomic displacements
of the type described in Chapter 4:

Crawpl(a) = 2855 0 - (7.10)

FEeyi 1s made of a contribution from the electron system ancj a contribution
from the electrostatic energy between ions. Similarly, the ' matrix can be
split into two parts:

éna,n’ﬁ(q) = éel,noc,n’ﬁ (Q) + éEW,noc,n’ﬁ (q) (711)

Each of these contributions will be computed separately.

7.8.1 The electronic contribution

The electronic contribution has a conventional form within density func-
tional perturbation theory. Following the formalism introduced in Chapter

T TRl . . . . .
4, Eef‘iq(f can be formulated in terms of a stationary expression, involving
the first-derivative of the wavefunctions with respect to an atomic displace-
Tra Trip .
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Using the interchange theorem, we obtain the following non-stationary
expression:

occ

Q0 o Tyl (0)
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From this last equation, a whole column of the dynamical matrix CN'my,Qlﬁ (q)
can be obtained from the knowledge of the first-order wavefunctions with
respect to only one perturbation.

7.3.2 The i1on-ion contribution

The ion-1on contribution to the unperturbed total energy per unit cell was
obtained in Chapter 2 following the Ewald summation method. In a similar
spirit, the contribution of the second derivative of the ion-ion energy to the
matrix Cpy (q) can be computed following Ref. [183]:

éEW,noc,n’ﬁ(q) = éEW,na,n’ﬁ (Q) - 6/@/@’ Z éEW,na,R’ﬁ (q = 0) (714)

w!

The first term, C’Ewynaynlﬁ(q), can be formulated through the following
expression:
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The second term C’Ewymﬁzg(q = 0) is obtained from the same expression
at q=0 and from which the G=0 term has been removed.

a5 ()
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7.3.3 The q — 0 case

Mathematically, a divergence problem arises at q=0 in the previous equa-
tions for the Hartree term and the electron-ion term of the electronic con-
tribution, Eq. (7.12), and for the first term of the ion contribution, Eq.
(7.15) 3. Physically, this problem originates in the fact that a macroscopic
electric field, parallel to the direction of the wavevector, can be associated
to a phonon type displacement in the limit of q — 0. In solids with non-
zero Born effective charges, a dipole is created when an atom is displaced
and this dipole may interact with the macroscopic field associated to the
phonon. The modes that have a polarization perpendicular to q will not
be concerned by this interaction: they are referred to as transverse modes.
By contrast, for the longitudinal modes, the limit of ¢ — 0 must be taken
carefully in order to reproduce the correct behaviour along different direc-
tions.

In this framework, the interatomic force constant matrix can be sepa-
rated into two parts:

Crarrp(a = 0) = O35 s (@ = 0) + Cpillus(a = 0) (7.17)

IQOCIQ RO, K

The analytical term C“,?gﬁ,@(q = 0) is a “bare” IFC matrix, obtained as a
sum of the electronic and ionic contributions previously reported, but from
which the G = 0 term has been excluded in the Hartree term and the
external potential of Eq. (7.12) and in the first term of Eq. (7.15). The
non-analytical contribution CN'EZ?K,& (q — 0) is an additional term that treats
correctly the additional interaction with the macroscopic electric field. It
is at the origin of the splitting between longitudinal and transverse optic
modes. The contribution of this second term can be investigated in real
space.

Separating the contribution involving the macroscopic electric field from
the other contributions (in the same spirit that it was done in Chapter 4),
the driving force induced on atom 0O« in a surrounding of displaced atoms
may be written as:

FOn,oc = - Z Cnoc,n’ﬁ(o b AT "B + ZZ“ Blo - B (718)
b,k!,p
so that the equation of motion for the ions becomes:

32AT
MKOC = Z CRO( K’ﬁ 0 b AT’ﬁ—i—ZZKﬁI . ﬁ/ (719)
b,r! B

3The problem is similar to that discussed in Section 2.5 where we have seen that the
energy of a neutral solid may still contain a macroscopic contribution from the dipolar
terms. Here the contribution at G = 0 arises from the macroscopic polarization induced
by a long-wavelength phonon in any solid that has non-zero Z*.
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The amplitude of electric field £5 must now be determined. It can be
deduced from conditions on the electric field and displacement field derived
from Maxwell’s equations. The change of electric field associated to the
appearance of a phonon is directed along q = (¢z, ¢y, ¢-): € = |€|.q3. The
induced displacement field is given by :

4m * b o]
Da = o S 2 ga AT 5 +IEDD  €ap (7.20)
br! B B
Along direction q, the component of the displacement field must be pre-
served so that we have the condition: q.D = 0. From g¢,.D, = 0, we
deduce: .
4 K! o ATK/ Z:/ al Got
€| = A7 L Learp S 2ol T (7.21)
QO Zoc’ﬁ’ QQ’€a/ﬁ/qﬁ’

From this equation, it appears that the macroscopic electric field associ-
ated to the phonon (£) is connected to the polarization field induced by
the atomic displacement (Z*.Ar) thanks to the dielectric constant (es).
Introducing this result in equation (7.19) we get:

O?ATE,

MKQ@T = — Z AT,S’y@[CKOc,R’ﬁ(O;b)
b,x',8
LA 2y Fipra 09) Yoar (o q“')] (7.22)
Qo Zoc’ﬁ’ o €55:9p"

so that the non-analytic contribution to the IFC matrix can finally be
written as:

4_7T Z@/ (Z:,ﬁ’oc Qﬁ’) Za/ (Z:’,oc’ﬁ qa/)
QO Zoc’ﬁ’ qa’Ggﬁ,@'(Jﬁ’

Cman 1s(q = 0) =

KoK

(7.23)

It is this term that is added in order to compute the LO-TO splitting in
the limit of the I' point .

7.83.4 The acoustic sum rule

The total energy of a crystal is submitted to some constraints. In partic-
ular, 1t must remain invariant under homogeneous translations. The dy-
namical matrix at the zone center should therefore admit the homogeneous

4This non-analytical contribution may alternatively be obtained by treating correctly
the long-wavelength part of the Hartree, electron-ion and ion-ion terms in the response
to a phonon type perturbation in the limit of q — 0 [102].
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translations of the solid as eigenvectors, with zero eigenfrequency. This
invariance under translation imposes a requirement on the force-constant
matrix, known as the “acoustic sum rule”:

Z énoc,n’ﬁ (q = 0) = 0. (724)

However, in the implementation of the present formalism, this relation
is slightly broken because of the presence of the exchange-correlation grid
in real space, on which the exchange-correlation potential and energies are
evaluated: if all the atoms are translated by a given vector, while the
exchange-correlation grid is unchanged, the energies will slightly change,
and induce the breaking of the sum rule ®.

The acoustic sum rule can be restored by the following simple operation:

é}j;:,,:/ﬁ (q == 0) == énoc,n’ﬁ(q == 0) - (S,Q,QI Z énoc,n”ﬁ (q = 0) (725)

w!

By this operation, the eigenfrequencies at q = 0 will change, and will
no more be the limit of the eigenfrequencies obtained by making q — 0,
unless the other dynamical matrices, for q # 0, are also corrected. The
generalization of the correction for q # 0 is the following:

Cri5(q) = Crarrp(@) = Ssnr Y Crarg(q = 0). (7.26)

In our computations on BaTiOgs, the violation of the acoustic sum rule
was relatively large. The origin of the problem has been investigated and
the validity of the correction presented here has been questioned. The
discussion 1s reported in Appendix C.1. All the results presented in this
Chapter have been corrected with the help of Eq. (7.26).

7.4 BaTiOj; phonon modes at the I' point

As a first step, we investigate the lattice dynamics of barium titanate at the
I’ point in its cubic and rhombohedral structures. We consider cubic phases
at the experimental and theoretically optimized volumes corresponding to
a lattice parameter a, equal respectively to 4.00 and 3.94 A. We will also
study a compressed cubic phase with a,=3.67 A. For the rhombohedral
phase, we adopt the experimental unit cell parameters and relaxed atomic
positions, as described in Chapter 3. Technical details, concerning our
calculations are reported in Appendix A.

5 All the other terms can be implemented in a translation-invariant way.
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Table 7.1: Phonon frequencies (cm~1) at the I' point for cubic BaTiOz. The
LO-TO splitting has been computed with the help of the scissors corrected
dielectric constant.

Mode Exp.[178] a,=3.67TA @,=3.94A a,=4.00A Ref. [313]
F1,(TO1) soft 214 113¢ 219:¢ 178
F1.(LO1) 180 250 180 159 173
F1.(T0O2) 182 296 184 166 177
F1u(LO2) 465 513 460 447 453
F1.(TO3) 482 737 481 453 468
F1u(LO3) 710 1004 744 696 738
Fy, 306 308 288 281 —

@ This value has been measured in the tetragonal phase.

There are 12 optic phonons in BaTiOg. In the cubic phase, at the T’
point, we have three modes of Fy, symmetry and a silent mode of Fs,
symmetry, each of them triply degenerated. Going to the rhombohedral
phase, each triply degenerated Fy, mode (resp. Fa,) gives rise to a mode
of Ay (resp. Az) symmetry and a doubly degenerated mode of £ symmetry.

7.4.1 Cubic phase

Our phonon frequencies in the cubic phase, as well as experimental and
other theoretical results, are reported in Table 7.1. Our values are in good
agreement with the experiment [178]. In particular, we reproduce the in-
stability © of the TO1 mode that corresponds to the vibration of Ti and
Ba against the O atoms. The phonon frequencies change by a noticeable
amount when going from the experimental to the optimized volume. This
behavior is different to the one previously observed for other physical quan-
tities like Z} or €. This sensitivity is particularly large for the soft TO1
mode : Its instability even disappears in our compressed cubic phase.

The eigendisplacements associated with the Fp,(T0) modes are de-
scribed in Table 7.2. They are in agreement with those obtained by Cohen
and Krakauer [44] from a frozen phonon calculation. These eigenvectors
remains relatively similar at the experimental and optimized volume. By

6 An instability is associated to a negative curvature of the energy hypersurface which
yields an imaginary phonon frequency.
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Table 7.2: Phonon eigendisplacement patterns for the Fy,,(TO) mode of the
cubic phase of BaTiOs. In comparison with results of Cohen and Krakauer
(CK), we report values at the experimental (Veyp) and optimized (Vop:)
volume, as well as for a compressed (V,omp) cubic phase. Eigendisplace-
ments 7 are normalized such that (n7¢|M|nt®) = 1, with M in atomic

mass units.

Mode Volume Ba Ti o1 02 03
F1,(TO1)  Vegp -0.002 -0.096 0.158 0.071 0.071
Vopt -0.002 -0.098 0.137 0.087 0.087
Veomp -0.028 0.121 0.026 -0.074 -0.074
Ref. [44] -0.006 -0.091 0.144 0.091  0.091
F1,(TO2) Vegp -0.055 0.080 0.068 0.081 0.081
Vopt -0.055 0.082 0.071 0.077 0.077
Veomp -0.047 0.017 0.085 0.133 0.133
Ref. [44] -0.0564 0.088 0.053 0.075 0.075
F1,(TO3)  Vegp -0.002 0.032 0.170 -0.124 -0.124
Vopt -0.001 0.018 0.186 -0.116 -0.116
Veomp 0.002 -0.040 0.224 -0.061 -0.061
Ref. [44] -0.003 0.022 0.18 -0.115 -0.115
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Table 7.3: Overlap matrix elements between the eigenvectors of the
F1.(TO) modes of the optimized cubic phase and those respectively of
the associated F1,(LO) mode and of the F1,(T0O) mode of the compressed
cubic phase.

Vopt
F1,(TO1)  F1,(TO2)  Fu,(TO3)
Fi,(LOT) 0.17 20.99 0.01
Vopr  F1u(LO2) -0.36 -0.07 -0.93
Fi,(LO3) 0.92 -0.16 0.37
F1,(TO1) 0.71 ~0.54 0.46
Veomp  Fru(TO2) -0.49 -0.84 -0.22
F1,(T03) -0.51 0.07 0.86

contrast, there is a mixing between the three F,(70) modes in the com-
pressed cubic phase so that not a single one corresponds to the unstable
mode of the optimized cubic cell (see also Table 7.3).

The correlation between the LO and TO modes can be measured by the
overlap matrix between their respective eigenvectors. A priori, the eigendis-
placements of the LO modes (n7?) do not necessarily corresponds to those
of the TO modes (n7?), because of the long-range Coulomb interaction.
The overlap matrix reported in Table 7.3 ( (nT¢|M|nt©), where M is such
that M = M., and M, is the mass of atom &) establishes however that
the mixing is very small: we observe a one-to-one correspondence. Inter-
estingly, the softest TO mode, Fy,(T0O1), is associated with the hardest
LO mode, F1,(LO3), suggesting a giant LO-TO splitting [313]. The same
kind of results has been reported for KNbO3 [313, 292], even if the overlap
between LO and TO modes was not so large for that compound.

The amplitude of the LO-TO splitting lies essentially in the value of the
mode effective charges. This quantity is defined as

H >os Lp Mg
(

Zhs = 7.27
TO 77TO|77TO> ( )

The mode charges are reported in Table 7.4 where we identify the respec-
tive contribution due to each atom. We observe that the very large Z7 54,
responsible of the strong Coulomb interaction of this mode, originates es-
sentially from the large Born effective charges on Ti and Oy, that combine
according to the specific pattern of eigendisplacement associated to this
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Table 7.4: Mode effective charge and respective partial contribution due to
each atom for the F1,(TO) modes of the optimized cubic phase.

Mode Partial contribution due to Mode charge
Ba Ti Oy O_ O_ Z%o
F1,(TO1) 0.03 342 397 090 0.90 9.02
F1.(T0O2) 0.92 -3.66 248 1.02 1.02 1.79
F1.(TO3) -0.01 -0.53 4.28 -1.01 -1.01 1.74

mode. In comparison, for the TO2 mode, Ti and O contributions remain
large but cancel out so that the global charge is smaller.

As a consequence of the observed similarity between eigenvectors, we can
predict fictitious LO frequencies on the basis of the Born effective charges,
by the simple approximate formula *

47 (Z Qa(z Z ap ))2

2 2 a k,8 “r,aB kB

wiolq—=0) =wprp + — 7.28
LO( ) TO QO Z €00 ( )

where g 1s the volume of the unit cell, & and 3 indices denote the space
direction and & labels the atom within the unit cell. We find values respec-
tively of 701, 214 and 508 cm ™', in close agreement with real LO frequencies
(180, 460 and 744 cm~1!). This result emphasizes again the giant LO-TO
splitting of the unstable mode (1137 — 701 cm~!) in comparison to that of
the two other modes (184 — 214 cm~!, 481 — 508 cm™1!). This unusual
splitting is associated to a particularly strong Coulomb interaction that will
be discussed later.

7.4.2 Rhombohedral phase

The phonon frequencies of the rhombohedral phase are reported in Table
7.5. No previous theoretical data were published for this phase. The only
previous relevant result is experimental [154] and localizes the phonon fre-
quencies in three regions (100-300 cm~!, 480-580 cm ™!, and 680-750 cm~1!),
in qualitative agreement with our values.

"This equation allows to compute the splitting within the hypothesis that the eigen-
vector was not modified by the interaction with the macroscopic electric field. Note
that the additional contribution on the right hand is always positive. It should also be
conveniently expressed in terms of the mode oscillator strengths introduced later.
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Table 7.5: Phonon frequencies (cm~1!) at the I' point for rhombohedral
BaTiOg.

Mode Mode

A (TO1) 168 E(TO1) 161
A (LO1) 180 E(LO1) 173
A (TO2) 265 E(T0O2) 205
A (LO2) 462 E(LO2) 438
A1 (TO3) 505 E(TO3) 461
A (LO3) 702 E(LO3) 725
A, 274 E 293

There 1s no unstable mode in the rhombohedral structure. If we compare
the eigenvectors to those of the cubic phase, we observe that they are
very similar in both cases. This is illustrated for the A; mode in Table
7.6. Similar overlaps are obtained for the £ modes. They point out that
A1(TO2) and E(T'O2) originate from the hardening of the soft mode.

If we compute the overlap matrix between LO and TO modes (Table
7.6), we observe that the mixing produced by the Coulomb interaction is
larger than in the cubic phase. Moreover, the ferroelectric A;(T0O2) mode
is the most closely associated with the A;(LO3) mode.

In this phase, the mode effective charges of the A; (resp. E) modes are
respectively of 2.79 (4.48), 6.99 (8.41) and 2.33 (1.99). The TO2 modes,
originating from the soft TO1 mode of the cubic phase, continue to couple
strongly with the electric field but the smaller Born effective charges makes
their mode effective charge smaller. This is particularly true for the A;
modes polarized along the ferroelectric direction.

All the computed phonons are stable in the rhombohedral phase, and
we can obtain the low frequency dielectric tensor by adding to e, the
ionic contribution (evaluated here in the harmonic approximation, without
damping):

47 Si o
Caplw) = S5+ oo e > (7.29)

where the first sum is performed on the different TO phonon modes and
Si s 15 the mode oscillator strength tensor defined as:

TOZ TOZ
2045_ ZZR ary 77;»;7 ZZR By 77/@,7 . (730)
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Table 7.6: Overlap matrix elements between the eigenvectors of the A1 (TO)
modes of the rhombohedral phase and those respectively of the associated
A1(LO) modes and of the Fy,,(TO) mode of the optimized cubic phase.

A,(TO1) A,(T02) A,(T03)

A, (LO1) 0.96 0.29 0.02
A (LO2) -0.15 0.56 -0.81
A (LO3) 0.25 -0.77 -0.58
Fru(TO1) 0.13 20.97 0.19
Fiu(TO2) -0.99 -0.13 -0.01
F1u(TO3) -0.02 -0.18 -0.98

The value of the dielectric constant along some direction q = (¢s, ¢y, ¢5) 18
evaluated from:

ca(w) =Y Gaap(w)qs (7.31)
af

We obtain for the static dielectric constant (w = 0) a value of 33.09
along the ferroelectric axis and of 68.89 perpendicularly to it. In both
directions, the main ionic contribution comes from the TO2 modes (73%
and 62% respectively). This is another manifestation of the large effective
charge of this mode. The large anisotropy of the static dielectric tensor
is associated with the smaller value of Z* and €., along the ferroelectric
direction.

The determination of the low frequency dielectric constant is sometimes
associated to a measurement of the reflectivity R(w) of optical waves normal

to the surface, with their electric field along an optical axis of the crystal
q, and defined as:

1/2 B
R(w) = |4 W 1|2 (7.32)
1/2(("))_1_1

The result is presented in Fig. 7.1 8 for q aligned along the ferroelectric
direction. Unfortunately, no experimental data can be compared to our
theoretical results.

8The saturation to one observed for the curve of Fig. 7.1 is due to the absence of
damping.
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Figure 7.1: Infrared reflectivity of rhombohedral BaTiOs, with q along the
ferroelectric direction.

7.5 Origin of the ferroelectric instability

In the previous Section we have reported first-principles results concerning
the T' phonons of BaTiO3. We have characterized the unstable mode in the
experimental cubic phase. It seems now important to investigate the micro-
scopic origin of the structural instability and the reason of its disappearance
in the thombohedral phase or in our compressed cubic structure.

7.5.1 Cochran’s model

During the sixties, Cochran [39] investigated the dynamics of ABOg com-
pounds within a shell model approach and he related the ferroelectric tran-
sition to the softening of a transverse optic phonon at the I' point. In
his model, the interatomic forces are separated into two parts: the short
range forces and the long range Coulomb (dipole-dipole) interaction. In
this framework, he was able to isolate the contribution of each kind of force
on the frequency of the transverse modes and to identify the structural in-
stability with the possible cancellation of the two terms. This competition
between forces, first suggested by Slater [272], is still now usually invoked
to explain the microscopic origin of the ferroelectricity [41, 43, 315].

In spite of its meaningful character, the model of Cochran is only qual-
itative and 1t 1s obtained through questionable approximations. In par-
ticular, the dipole-dipole interaction is estimated within a Lorentz field
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approach assuming a local spherical symmetry at each atomic site, while it
was shown by Slater [272], before Cochran’s study, that the local symmetry
is far from spherical in BaTiOs. In his work, Slater computed the Lorentz
field explicitly by summing dipole-dipole interactions following Luttinger
and Tisza [179].

In what follows, we will propose a model to separate the dipole-dipole
interaction from the remaining short range forces within our first-principles
approach. This model will then be used to quantify the role played by both
kind of forces in the ferroelectric instability of BaTi10s3.

7.5.2 Short-range and dipole-dipole interactions

When an atom is displaced in BaTiQOs, a dipole is created so that the specific
displacement pattern associated to a given phonon generates a lattice of
dipoles. Our purpose i1s to compute the resulting dipole-dipole interaction
from our first principles data.

The conventional dipole-dipole energy between two dipoles p; and ps in
vacuum, separated by the vector d is given by [155]:

pop _ L () d° =3 (f1.d) (fa.d)
et 4reg d5

(7.33)

with €y being the vacuum permittivity, so that, in atomic units, ﬁ 18
equal to 1.

In solids, the dipole created by an atomic displacement 67ox, 18 pg =
Zﬁ Z:ﬁa.éro,w, while the polarizability of the medium 1s to be described
by the dielectric permittivity tensor €ap- For the case where €., and Z*
tensors are isotropic, the contribution to the interatomic force constant of
the dipole-dipole interaction created by the displacement of atoms Ox and

jk', separated by d= (R} + T — T) 18 [T7]:

§?EDL VAYATIN) dod

DD . e+1 KR! af altp
, _ — 34
Clon 5(0’]) 0Tok, o075k 8 €00 ( d3 5 ) (7.34)

Recently, the generalization of this formula was proposed for the case of
anisotropic 7% and e, tensors [93]:

. _1
C/QDO?/Q’ﬁ(O’j) = Z Z:yoéoél Z:I”@/@I (d@t 600) 2
a'p

(2 apr L AxAp
D3 3 D5
(7.35)

where A, = Zﬁ(qjol)%@ dg, and D =V A.d. The previous result has been

obtained in real space. The corresponding dipole-dipole contribution to the
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dynamical matrix in reciprocal space, é’DD, can be obtained using Ewald
summation technique [93].

Note that, in this formulation, the macroscopic €., 1s used to parametrize
the dipole-dipole interactions down to nearest neighbors; no correction for
the gq-dependence of ¢, and Z* is included. This procedure seems however
the natural generalization of the previous computation of the Lorentz field
by Luttinger and Tisza [179]. Tt will be used to generalize Cochran’s results
on the basis of our first-principles approach [73].

The dynamical matrix C' was obtained explicitly from our ab initio
calculations. Using the above-mentioned analytic form, we can now isolate
the model dipole-dipole (DD) contribution ° from the remaining short-
range (SR) part 1% of this dynamical matrix in a way similar to the one of
Cochran [39]: C = éDD + C’SR. The partial contributions to w? are then
evaluated as follows:

M Cln) = MICopln) + (n|Csrln) (7.36)
—_— Y Y

where 7 is an eigenvector of the full dynamical matrix C. Finally, Cpp
and Csgp can also be modified independently in order to investigate their
respective influence on the instable mode.

7.5.3 Cubic phase

We first compute the decomposition for the cubic phase at the optimized
volume. In Table 7.7, we report the values of w%,, and w%p for the TO
modes. We observe that the small instability of the Fi,,(T0O1) mode orig-
inates from the compensation of two very large numbers: The DD inter-
action greatly destabilizes the crystal and is only partly compensated by
the SR contribution. This result confirms, in the framework of a more
accurate approach, the idea suggested by Cochran, and usually referred to
as the origin of the ferroelectric instability. Interestingly, the close com-
pensation exists for the unstable mode only. The giant destabilizing DD
interaction of this mode is inherent to its anomalously large mode effective
charge that was discussed previously.

It is now possible to investigate the sensitivity of this compensation.
In the cubic phase, it was shown that the large values of Z}, and Z(*DH

9The dipole-dipole interaction cannot be properly separated from other interactions
at short distances. We chose to work with a model interaction that is mathematically un-
ambiguous. All the deviations with respect to this model interaction (that will probably
appear at short distances) will be included in the SR part.

10The SR part also contains higher Coulomb terms like dipole-octupole and octupole-
octupole interactions.
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Table 7.7: Partial DD and SR contributions (see text) to the TO mode
frequency squared (cm~?2) for the cubic phase at the optimized volume.
Values in brackets where obtained with the scissors corrected value of €.

Fi (TO1) Fro(T02) Fi,(T03)  Fa

Wi, ~625897 7232 130549 109745
(-745610)  (8615)  -155518)  130736)
wlp 613107 26538 361998 -26951
(732820)  (25155)  (386967)  (-47942)
w? ~12790 33770 231449 82794

(responsible of the strong Coulomb interaction) are mainly produced by a
dynamic transfer of charge along the Ti-O bond [72]. Postulating Csr to
be fixed, we can fictitiously reduce this transfer of charge by decreasing
simultaneously Z7, and Z(*DH, and monitor the Fy,(TO1) mode frequency

changes '!. Figure 7.2 shows that w?(T'O1) evolves approximately linearly
with the transfer of charge and that a change corresponding to a reduction
of the order of 1% of Z}, is enough to suppress the instability. Of course,
this situation is artificial and in a real material any modification of 7} would
be associated with a change of the SR forces. This result however highlights
the very delicate nature of the compensation existing between dipole-dipole
and short range interactions.

Interestingly, if we plot the evolution of partial SR and DD contribu-
tions with the transfer of charge described by the evolution of 73, (see
Fig. 7.2), we observe that w%p is also modified: because Csr was kept
constant, this is due to the change of the eigenvector 5 induced by the
modification of Cpp. This change of 7 is however not crucial and a sim-
ilar evolution of w? is observed if we keep the eigenvector of the original
optimized structure.

We checked that all these conclusions are independent of the use of the
scissor correction for ¢.,. From now on, we report only results obtained
without scissors correction.

"When changing Z* and/or eoo, éDD is replaced by ébD and the modified full
dynamical matrix (C~" = ébD + éSR) has new eigenvectors n’. The matrix elements
giving w?, W%D and W2SR are calculated using n’. Results are however also presented
when keeping the eigenvector of the initial full dynamical matrix, in order to investigate
the role of the change of eigenvector from 7 to ’. As 7 is not an eigenvector of C~", for
that case a fictitious total frequency is obtained as @2 =< 77|C~’bD|77 >+ < n|Csrln >.
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Figure 7.2: Evolution of the Fi,(TO1) mode frequency squared and of its
partial SR and DD contributions with respect to the dynamic transfer of
charge along the Ti-O bond (quantified here by the evolution of Z};, see
text), in the optimized cubic phase. The open circles correspond to the evo-
lution when taking into account the modification of eigenvector produced
by the change of Cpp, while the crosses show the result obtained when
keeping the initial eigenvector of the unstable mode in the optimized cubic
phase. A zoom around zero frequency is shown in the inset.

7.5.4 Rhombohedral phase

The eigenvector of the A;(T'02) modes of the rhombohedral structure re-
mains very close to that of the unstable 71, (TO1) mode of the cubic phase
(see Table 7.6). Surprisingly the displacement of the Ti atom against the
O cage has now become stable. It was found that the Z are smaller in this
ferroelectric phase, suggesting a smaller DD interaction, but this could be
partly compensated by a concomitant reduction of es,. For the A;(T02)
mode coming from the soft mode, w% ,, (-286267 cm~?) is counterbalanced
by aslightly larger SR contribution (356373 cm~2). The values differ widely
from those of the cubic phase: The SR forces give less stabilization (so a
priori increasing the instability) but this is compensated by a larger reduc-
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tion of the DD contribution.

If we fictively modify Cpp and replace Z% and € of the ferroelectric
structure by their value in the cubic phase 12, we modify the frequency of
the A1(T'02) mode from 265 to 266i cm~!: We obtain an instability even
larger than in the cubic phase. From this point of view, the reduction of 7,
i the rhombohedral phase appears as a crucial element to the stabilization
of the A1(TO2) mode.

Introducing Z; and ¢ of the cubic phase, we also have strongly mod-
ified w% , and w%p that become respectively equal to -871017 and 800371
cm™2. The drastic change of w%p results only from the change of eigen-
vector 7 (6'53 was not modified) and points out the anisotropy of the SR
forces (the overlap between the new and original eigenvector is equal to
0.86). If we had kept the eigenvector unchanged, we would still have ob-
served a small instability (74¢ cm~1) for the A;(T'02) mode. This means
that the inclusion of the effective charges of the cubic phase is already suf-
ficient to destabilize the crystal, but at the same time produces a change
of eigenvector enlarging the instability.

7.5.5 Compressed cubic phase

No more instability is present in the compressed cubic phase, although the
global values of Z; do not differ significantly from those obtained at the
optimized volume[72]. Moreover, the reduction of volume even increases
the destabilizing effect of the DD interaction by 20%: calling 7]%%1 the

eigenvector of the soft TO1 mode of the optimized phase and C';)plt) (resp.
C5pT) the dipole-dipole part of the dynamical matrix of the optimized

(resp. compressed) cubic phase, we obtain:

< b |CEL Ry >= —625897cm™?, (7.37)
while
< OB gk, >= —775203cm™2. (7.38)

In fact, for this compressed cubic phase, the modifications of the SR
forces alone are enough to produce a mixing of modes so that no single
mode can still be identified with the unstable one observed at the optimized
volume (see Table ITT). Consequently, none of the mode of this compressed
cubic phase develops the giant DD or SR contributions that are a particular
feature of the displacement pattern associated to the ferroelectric mode.

If we replace Agp by its value at the optimized volume we recover a
very large instability (437¢ cm™!). The disappearance of the unstable mode

128ee previous footnote.
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under pressure seems therefore essentially connected to a modification of
the SR forces in contrast to its stabilization in the rhombohedral phase
which is associated with a reduction of Z}.

7.5.6 From electronic to dynamical properties

Since it was introduced by Cochran during the sixties, the soft-mode picture
1s considered as a key concept to explain the ferroelectric phase transition
in ABOs compounds. Moreover, the competing role of the short-range and
Coulomb interactions, invoked to justify qualitatively the appearance of
an instability, is still usually considered as the microscopic origin of the
ferroelectric instability.

In this Chapter, we have proposed a model to quantify from our first-
principles results the respective role played by both kind of forces. We have
Jjustified on a more rigorous basis the gratifying explanation of Cochran.
Doing that, we were going even further in the microscopic understanding
of the ferroelectric instability. The giant dipole-dipole interaction, able
to compensate the stabilizing short-range forces is connected to the large
anomalous effective charges in turn explained by dynamic changes of orbital
hybridization between O 2p and Ti 3d states.

Cohen and Krakauer [41] recently discussed the importance of the O
2p — Ti 3d hybridization on the ferroelectric instability of BaTiO3: they
suggested that this hybridization should reduce the short-range forces. If
their argument remains pertinent, our study has emphasized that dynamic
change of hybridization will also greatly enhance the destabilizing role of
the Coulomb interaction. It is our choice to attribute the ferroelectric
instability to this latter unexpected feature. Hybridizations are indeed not
a specific character of ABO3 compounds but are also common to a large
variety of other materials. The peculiarity of the hybridization in BaTiOs
(and related compounds) stays in the fact that it concerns occupied and
unoccupied orbitals and is able to generate giant Born effective charges as
discussed in Chapter 5.

Our results are closely related to the unusual non-linear anisotropic po-
larizability of the oxygen reported by Migoni, Bilz and Béauerle [196], and
that is still usually considered as the origin of the ferroelectricity in ABOg
compounds [17, 24, 18, 25, 139, 26, 252]. In particular, our work confirms
the important role plays by the hybridization between the 2p-states of oxy-
gen and the d-states of the B atom. In our approach, however, the mech-
anisms of polarization have been clarified: they have been reformulated in
terms of dynamic transfer of charge and the interplay between electronic
and dynamic properties has been presented within a coherent approach. In
our description, the Born effective charge was introduced as a key concept
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for the understanding of the ferroelectric instability.

Interestingly, we have shown that the balance of force is delicate and
strongly sensitive to small changes like tiny modification of the Born effec-
tive charges. The reduction of Z* is sufficient to suppress the instability
in the rhombohedral phase while a modification of the short-range forces
is likely at the origin of the stabilization of the ferroelectric mode under
isotropic pressure.

The previous results are not specific to BaTiOsz. A similar balance of
forces was identified in SrTiOz (see Appendix C.2). WOsg, that undergoes
a sequence of ferroelectric phase transitions, also presents large anoma-
lous Born effective charges [56]. The competition between short range and
Coulomb forces should be a characteristic of ABOg perovskites and re-
lated materials. Due to the delicate nature of the balance of forces, it is
however not surprising to observe that closely related materials do not nec-
essarily present the same ferroelectric instability, that remains a vagary of
Nature '3,

7.6 BaTiO; phonons at different high sym-
metry g-points

Up to know, we focused on the I' phonons and this already allowed to
address some interesting questions. The formalism previously reported does
however not restrict to this specific case and the dynamical matrix can be
obtained everywhere within the Brillouin zone. In this Section we report
results obtained at different high symmetry points.

As some of the properties of the normal modes of vibrations are a direct
consequence of the specific symmetry of the crystal (degeneracies of differ-
ent frequencies, separation into longitudinal and transverse vibrations), a
careful analysis of the symmetry may reveal useful for classifying the dif-
ferent phonon modes. As mentioned in Chapter 3, the structure of BaTiOg
is cubic perovskite and its space group is Pm3m. The determination of
the irreducible representations at high symmetry q points and along high
symmetry lines of the Brillouin zone has been reported by Cowley [49], as
summarized in Table 7.8 4. This Table gives us a first information on
the phonon mode degeneracy that are expected at the different q points.
Simultaneously, the symmetry of the different normal mode of vibration im-
poses constraints on the associated atomic displacement pattern that were

13We note also that the arguments presented here are only part of a more complex prob-
lem: for instance, the macroscopic strain also plays a major role in the phase transition.
14 At the ' point, these notations differ from that used in the previous Section.
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Table 7.8: Irreducible representations at high symmetry q points and along
high symmetry lines of the Brillouin zone as reported by Cowley [49] for
the cubic phase of ABQO3s perovskite materials.

q vector little group irreducible representation

(0,0,0) ma3m 4F15 +F25

(0,0,(]) 4dmm 4A1 —|—A2 —|—5A5

(0,0,%) 4/mmm  2X; +2Xo + X3+ 3X5 + 2X5

(q,q,O) mimn 521 —|—22 —|—523—|—4E4

(%,%,0) 4/mmm M1—|—M2—|—M21—|—M3
+2Mz + My + Ms + 3Ms

4,9,49) 3m 4A1 4+ Ay 4+ 5A3
(%, %, %) ma3m Ror + Rior + Ros + Ros: + 2R3

also identified by Cowley in Ref. [49]. The combination of the informations
given by the degeneracy and by the phonon eigenvectors allowed us to label
unambiguously the different phonon modes.

Results obtained in the cubic phase of BaTiO3 at the experimental
volume are reported in Table 7.9. A comparison of these results with the
experimental data will be reported later (Section 7.8).

7.7 Interpolation of phonon dispersion curves

As illustrated in the previous Section, the dynamical matrix can be a pri-
ori calculated everywhere within the Brillouin zone. However, for com-
putational reasons, calculations are usually restricted to a small set of
wavevectors. A mathematical interpolation technique must therefore be
used to deduce the full phonon dispersion curves. Moreover, a numerical
integration is required to determine the interatomic force constants (IFCs)
by inverting Eq. (7.6). Both these problems will be addressed simultane-
ously [77, 93, 101].

If the dynamical matrix was known everywhere in the Brillouin zone,

the IFCs could be built as:

(2m) = iqR
Crawp(0,0) = == |~ Crawp(@)e™™dq (7.39)
Qo Jpz
When the dynamical matrix is known only on a regular grid S of ({ x mx n)
points in the Brillouin zone, the use of a discrete Fourier transform, that
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Table 7.9: Computed phonon frequencies (cm~1!) of cubic BaTiO3z (a,=4
A) at T (0,0,0), X (.5, 0,0), M (.5, .5, 0) R (.5, .5, .5) and at a few points
along the T'-R direction: A% (125, 125, .125), A% (.25, .25, .25) and A%
(.375, .375, .375). The computation of the splitting at the T was performed
without scissor correction.

q label frequency label frequency
r I'y5 (TO) 219 ¢ [os 281
Ti5 (A) 0 I'y5 (LO) 445
I'y5 (LO) 159 I'y5 (TO) 453
T'y5 (TO) 166 I'y5 (LO) 631
X X5 189 ¢ X3 322
X 104 X5 330
X 146 X5 421
X5 194 X3 517
X3 260 Xy 627
M \YEY, 167 ¢ Ms 344
Mo 103 M, 354
\YEY, 104 \YEY, 435
Ms 208 M, 456
\YEY, 270 M, 683
\YEY, 333
R Ris 128 Ras: 386
Ras 182 Ris 414
Rqo 314 R 717
A§ As 1374 Ao 272
As 70 As 310
Aq 103 As 447
Aq 180 Aq 461
As 184 Aq 645
A% As 96 Aq 277
Aq 105 As 358
As 190 As 428
As 221 Aq 467
As 244 Aq 679
A% Aq 115 Aq 354
As 121 As 381
As 204 As 414
Ao 205 Aq 440

As 290 Ay 708
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will generate approximate IFCs in a large box made of (I x m x n) periodic
cells; 18 tempting. Outside of this box, the IFCs are supposed to vanish:

1 ~ .
Cm,m@(o, b) = N_ Z Cna,n’ﬁ(q)elq'Rb if Rb + 7, — T; € box
9 qes
=0 if Ry + 7, — 7}, & box
(7.40)

The vanishing of the IFCs beyond some distance is intrinsic to the discrete
Fourier transform technique. If the integrand in Eq. (7.39) was infinitely
differentiable, then the TFCs should decrease exponentially fast, and this
condition would not be a practical limitation. However, for insulators with
non-vanishing effective charges, close to q = 0, the behavior of the dynam-
ical matrices is strongly non-analytical: 1t depends on the direction along
which q = 0 is attained.

In the real space, this non-analytical behavior corresponds to long-
range IFCs, with an average 1/d® decay (d being the distance between
atoms), corresponding to dipole-dipole interactions. Even if the Born ef-
fective charge vanishes (this may be imposed by symmetry constraints, in
elemental crystals), the atomic displacement will create a quadrupole or an
octupole (the latter cannot be forbidden by symmetry reasons), with cor-
responding quadrupole-quadrupole 1/d® decay, or octupole-octupole 1/d”
decay.

The non-analyticity corresponding to the dipole-dipole interaction is the
strongest. The idea that is proposed is to subtract this term from the other
contributions and to treat it explicitly.

In this context a short range dynamical matrix is introduced:

ésg,n’ﬁ(q) = éﬁa,“'ﬁ(q) - éEDv]\?,na,n’ﬁ (q) (741)

It is expected that these forces are sufficiently short range so that their
inverse Fourier transform can be approximated with good accuracy by:

Cotewrp(0,0) = Ni YO (e R i Ry 4 7, — 7 € box
q q€es
=0 if Ry + 7, — 7!, ¢ box.
(7.42)
The total interatomic force constants in real space, are then obtained as:
CKO@“'@(O’ b) = ng,n’ﬁ(o’ b) + CEDV]\?,/QO(,R’ﬁ(Oa b) (743)

The dipole-dipole part to be added to the short-range part is computed
explicitly: it is given by Eq. (7.35), discussed in Section 7.5. Its Fourier
transform had been previously subtracted in Eq. (7.41). This contribution
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of the dipole-dipole interaction in reciprocal space may be evaluated using
Ewald summation technique as described in Ref. [93].

This technique does not only allow to get the IFCs, but it also permits
an easy interpolation of the dynamical matrix across the full Brillouin zone,
with
Cna,n’ﬁ(q) = Z ng,n’ﬁ (0’ b)elq.Rb + CEDV]\?,/QO(,R’ﬁ (q) (744)

d,ebox

To summarize, the interpolation technique basically consists in a double
discrete Fourier transform on the short-range part of the dynamical matrix
while the long-range dipole-dipole interaction was treated separately. The
convergence of the results so obtained must be checked when using q point
meshes of increasing size until a sufficient accuracy has been reached.

As mentioned previously, due to the presence of exchange-correlation
grid in real space, the dynamical matrix at q = 0 does not satisfy exactly
the acoustic-sum rule. In terms of the IFCs, this sum rule can be written
as:

> Crawpla,b) =0. (7.45)
K'b

It was shown that the acoustic sum rule can be reimposed at the level
of the dynamical matrix by a wave-independent, site diagonal correction.
Equivalently, the correction can be performed in real space, on the “on site”
interatomic force constant as follows:

Crigla,a) == > Craxnpla,b). (7.46)
(6",b)#(x,a)
Note that other correction schemes are also possible. This one seems how-
ever the most appropriate in our case.

7.8 The phonon dispersion curves of BaTiO;

The previous interpolation technique can now be applied to BaTiOs. Our
calculations are performed at the experimental lattice parameter of 4.00 A.
This choice facilitates the comparison with the experimental data. Some
indications on the volume dependence of the phonon frequencies can be
found in Section 7.4, where the frequencies of the I' phonons at different
lattice constants have been compared.

7.8.1 Technical remarks

Prior to the presentation of the results, it is necessary to mention a few
technical points.
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Figure 7.3: Convergence achieved on the calculated phonon dispersion
curves of cubic BaTiOs along the I'-R line. The open symbols correspond
to g-points included in the M1 (circle) and M2 (circle+square) meshes used
to extrapolate the curves (M1: dotted lines; M2: full lines). The filled
symbols are associated to points not included in the mesh: they illustrate
that a satisfactory convergence is obtained with the M2 mesh.

First, the computation of well converged phonon frequencies required
to include plane waves up to a 45 Ha energy cutoff and a 6X6X6 mesh of
special k-points. This cutoff energy is higher from that needed for the Born
effective charges and the dielectric tensor (35 Ha). For coherency, these
latter quantities were recalculated. In this Chapter, we use: Z5, = +2.74,
Iy = 4732, 7% _ = =214, Z(*)” = —5.78, and €., = 6.75.

A second point concerns the dielectric constant. As previously reported,
our computed optical dielectric constant (6.75) largely overestimates the ex-
perimental value (5.40) [22], as usual within the LDA. A scissor corrected
value can be used at the I' point where the long-range part of the dynami-
cal matrix 1s computed separately. For small but finite q vector, the LDA
is similarly flawed but the interaction with the slowly oscillating field is
treated self-consistently with the other terms. There is therefore no direct
scheme to include the scissor correction in those cases. Our results are
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reported without scissor correction but it was checked that the problem
related the dielectric tensor has no dramatic consequences on the phonon
frequencies. It was observed that the discrepancy essentially affects the
position of the highest longitudinal optic mode: when replacing the theo-
retical dielectric constant by the experimental value, its frequency at the T’
point changes from 631 to 696 cm~'. At the opposite, the frequencies of
the two other longitudinal modes at the I' point are affected by less than
2 cm~'. Our LDA results should therefore remain accurate except for the
highest LO phonon branch.

Finally, 1t is always necessary to investigate the error induced by the
use of a discrete Fourier transform in the determination of the IFC’s; and
the interpolation of the dispersion curves. An insight into the convergence
reached on the phonon band structure is reported in Fig. 7.3. The fre-
quencies deduced from the dynamical matrix at ¢ = (.125,.125,.125) and
q = (.375,.375,.375) are compared to those extrapolated from two different
meshes of ¢-points: the first mesh (M1) includes T (.0, .0, .0), X (.5, .0, .0),
M (.5, .5, .0) and R (.5, .5, .5) points; the second mesh (M2) is the cubic
mesh M1 to which the A (.25, .25, .25) point was added. It is observed that
we obtain a very good convergence with the M2 mesh. It is this mesh that
was used to obtain the results presented in the next Sections.

7.8.2 Results and discussion

The calculated phonon dispersion curves [76] are plotted along high symme-
try directions in Fig. 7.4. The I'-X, I'-M and I'-R lines are along the <100>,
<110> and <111> directions, respectively. The unstable modes associated
to a negative curvature of the energy hypersurface have imaginary phonon
frequencies.

Our result can be compared to the experimental data [178, 261, 306,
262, 109, 20, 134]. However, a difficulty arises from the fact that all the
experimentally observed vibrational excitations have a real frequency while
the computed unstable modes are obtained with an imaginary frequency.
As the soft mode can be clearly identified by its symmetry, the associated
experimental frequencies were removed from the comparison, for clarity. In
the low-frequency region, the presence of this additional soft mode may
have slightly modified the frequency of the other modes. In spite of these
difficulties we observe a good correspondence between our theoretical fre-
quencies and the experimental data, specially for the acoustic modes for
which a large variety of data are available.

The ferroelectric phase transitions are driven by the unstable phonon
modes. We are therefore mainly concerned by the analysis of these specific
phonons within the Brillouin zone (see Fig. 7.5). Two transverse optic



Frequency (THz)

25

20

15

10

5i

101

178

AT
U \

CHAPTER 7. PHONONS

800

600

400

200

2001

Figure 7.4: Calculated phonon dispersion curves of cubic BaTiOs at the
The theoretical result shows a reasonable

agreement with the experimental data: (o) Ref. [3], (o) Ref. [6], (+) Ref.

experimental lattice constant.

[7], (D) Ref. [8], () Ref. [9], (V) Ref. [10], (A) Ref. [11].

modes are unstable at the I' point: they correspond to a displacement of the
Ti atom against the oxygen cage. The associated displacement eigenvector
—0.096, 6(01) = 40.158, §(02) =
§(03) = 4+0.071] 15. These two modes remain unstable all along the I'-X

is equal to [0(Ba) = —0.002, §(Ti)

line, with very little dispersion

16

. One of them stabilizes along the I'-M

and X-M lines. Examination of the eigenvectors reveals that the unstable
mode at the M (.5, .5, .0) point is polarized along the z-direction: its
displacement eigenvector is equal to [6(Ti,) = —0.130, (01 ,,) = +0.106].
Both of the unstable modes become stable when deviating from the three

I[-X-M planes to the R-point.

These features were also observed for KNbO3z [310] and point out a

15The eigendisplacement vector 1 was normalized such that < 7|M|n >= 1, where M
is such that M = M« 5,{7,{/ and M is the mass of atom « in atomic mass units.
16 At the X point, one of the unstable mode is polarized along the z-axis and has an
eigenvector equal to [6(Ti;) = —0.117, §(01,) = +0.133, §(0O2,) == 40.062]; the other

is polarized along the y direction.

(;.wo) Aousnbai
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Figure 7.5: Analysis of the unstable phonon mode within the Brillouin zone.
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Figure 7.6: Zero-frequency isosurface of the lowest unstable phonon branch
over the Brillouin zone. T is located at the center of the cube. The mode
is unstable in the region between the nearly flat surfaces.

marked 2D character of the instability in the Brillouin zone. This behaviour
is more easily visualized in Fig. 7.6 where we show the frequency isosurface
of the lowest unstable phonon branch corresponding to w = 0. The region
of instability, w?(q) < 0, lies between three pairs of flat surfaces, that
are parallel to the faces of the Brillouin zone cube. In other words, the
unstable modes are contained in three perpendicular interpenetrating slab-
like regions of finite thickness containing the I' point.

As highlighted by Yu and Krakauer [310], this behaviour corresponds to
chain instabilities in real space. At the M-point, we have seen that there is
a single unstable mode polarized along the z-axis and dominated by the Ti,
and O1, displacements. At this wave vector (¢, = 0), the Ti and O atoms
will be coherently displaced all along an nfinite <001> chain. Going now
from M to the R-point, the coherency of the displacement will gradually
disappear and a finite length of correlation will be reached for which the
phonon becomes stable. The finite thickness of the slab region of instability
therefore corresponds to a minimum correlation length of the displacement
required to observe an unstable phonon mode. From Fig. 7.6, the length
of the shortest unstable chain can be estimated to 4 acop = 16 A7, We

17The length of the shortest unstable chain is slightly different from that reported for
KNbOj. Changes in material properties could explain this difference although part of it
could be due to the different k-point and g-point convergence achieved in Ref. [310]: as
observed in Fig. 7.3, the use of a finer mesh of g-points could still slightly decrease the
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note finally, the small dispersion of the unstable mode in the I'-X-M plane:
it suggests a small correlation of the displacements between the different
Ti~O chains.

7.9 The interatomic force constants

In cubic BaTiOg, we will see that the single displacement of a particular
atom never leads to an instability: When one atom is displaced, a force
is induced and brings it back in its initial position (the self-force on Ba,
Ti and O is positive '8). However, its atomic displacement simultaneously
induces forces on the other atoms. It i1s only the additional displacement
of some other atoms in this force field that can lower the total energy and
produce an instability. The amplitude and the range of the interatomic
force constants (IFC) associated to this mechanism can be analysed [76] in
order to clarify the chain instability pointed out in the previous Section.
Moreover, the specific role of the dipole-dipole interaction (DD) can be
separated from that of the short-range forces (SR). Our conventions on
the interatomic force constants Cy g(x, k") are such that the force F,(x)
induced on atom « by the displacement A7g(x’) of atom &’ is given by:
Fo(k) = —=Ca (k&) . ATg(r').

Let us first investigate the IFC with respect to a reference Ti atom along
a Ti-O chain (Table 7.10). As previously mentioned, we note that the self-
force on the Ti atom is large and positive (+0.15215 Ha/Bohr?). We observe
also that the longitudinal IFC with the first neighbour O atom is surpris-
ingly small (+0.00937 Ha/Bohr?); moreover, it is positive. The analysis of
the DD and SR contributions points out that these characteristics are the
result of a destabilizing DD interaction, sufficiently large to compensate the
SR forces. It is this close compensation which allows the displacement of Ti
against the O atoms. Another insight on this balance of forces was already
reported previously in this Chapter (see also Ref. [73, 75]). Consequently
to the very small total IFC, the Ti and O displacements might be relatively
decoupled.

At the opposite, the DD forces induced on the next Ti atom are neg-
ative: they will combine with the SR forces in order to produce sizable
coupling (—0.06721 Ha/Bohr?). This mechanism is at the origin of the
chain correlation of the Ti atomic displacements. By contrast, the trans-
verse force on the first Ti neighbour 1s very small and confirms the small
correlation of the displacements from chain to chain.

size of the zone of instability of BaTiO3.
18 The self-force are the following (Ha/Bohr?): Ba — 0.08065, Ti — 0.15215, o) —
0.12741, O_ — 0.06807.
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Table 7.10: Longitudinal (||) and transverse (—) interatomic force constants
(Ha/Bohr?) with respect to a reference Ti atom (Ti(0)) along the Ti-O chain
of cubic BaTiOs.

Atom Total force DD force SR force
Ti(0) +0.15215  —0.27543 40.42758
O||(1) +0.00937  40.23247 —0.22310
Ty, (2) —0.06721  —0.03680 —0.03041
O||(3) 4+0.01560  40.00861 +40.00699
Ty (4) —0.00589  —0.00460 —0.00129
0_(1) —0.02114  —0.04298 +0.02184
Ti_(2) 40.00751 +40.01840 —0.01089

Table 7.11: Ti-Ti longitudinal interatomic force constants (Ha/Bohr?) with
respect to a reference Ti atom at (.5, .5, .5).

coordinate  distance IFC DD part SR part
(.5, .5, .5) 0.0000  4+0.15215 —0.27543 +0.42758
(-.5, .5, .5) 7.5589  —0.06721 —0.03680 —0.03041
(-.5,-.5,.5) 10.6899 —0.01114 —0.01301 +0.00187
(-.5,-.5,-.5) 13.0924 —0.00643 —0.00780 +0.00065
(-1.5,.5,.5) 15.1178 —0.00589 —0.00460 —0.00129

The decay of the Ti—Ti and O-O longitudinal IFC with the interatomic
distance can also be investigated. The results are reported in Table 7.11 and
7.12. It is seen that the longitudinal IFC are anisotropic: they propagate
essentially along the Ti—O chain. This appears clearly for the SR part. For
O, the DD contribution is also highly anisotropic due to the anisotropy of
the Born effective charges. The anisotropy of the IFC is inherent to the
chain correlation.

7.10 The chain-structure instability

The presence of chain-structure instabilities in BaTiOg, is since long under
discussion. Historically, the debate was initiated during the late sixties by
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Table 7.12: O-O longitudinal interatomic force constants (Ha/Bohr?) with
respect to a reference O atom at (.5, .5, .0).

coordinate  distance IFC DD part SR part
(.5, .5, .0) 0.0000  4+0.12741 —0.35322 +40.48062
(.5, .0, .5) 5.3450  —0.02838 —0.03367 +0.00529
(-.5,.5,.0) 7.5589  —0.00190 —0.00314 40.00124
(.5, .5,-1.0) 7.5589 —0.03212 —0.02295 —0.00918

(-.5,.0, .5) 9.2577  —0.00183 —0.00289 40.00106
(-.5,-.5,.0) 10.6899 —0.00290 —0.00111 —0.00179
(-.5,.5,-1) 10.6899 —0.00415 —0.00340 —0.00078
(.b,-1,-.5)  11.9517 —0.00254 —0.00246 —0.00008

(-.5,-.5,-1) 13.0924 —0.00113 —0.00129 +40.00016

Comes, Lambert and Guinier [46, 47] who reported diffuse X-rays scattering
for crystals of BaTiO3z and KNbQOg in three set of planes normal to the cubic
axis. When a scattering is observed outside the directions of diffraction, it
must provide from a defect in the crystal periodicity. Clearly, the pattern
observed by Comes et al. was the fingerprint of a linear disorder in real
space. The subsequent controvert was on the static or dynamic nature of
this linear disorder.

Interestingly, diffuse X-ray scattering is not a particular feature of ABOj3
compounds: similar features had been reported (even before Comes) by
Honjo et al. [122], for a large variety of materials (Si, Al, LiF, NaCl...). In
most cases, the origin of the disorder was identified in the thermal oscilla-
tions. For ABOj3 compounds, it was therefore tempting to make the con-
nection with Cochran’s soft-mode theory of the ferroelectricity. Hiiller [125]
favored this approach and explained the results in terms of dynamical cor-
relations from an empirical model with a low frequency TO branch with
flat dispersion along < 100 > directions.

Differently, Comes et al. [46, 47] preferred to invoke a static disorder
to explain their results and they proposed what 1s now usually referred to
as the 8-sites model 1. In this model, it is suggested that the equilibrium
position of the Ti (Nb) atom is not at the center of the cubic unit cell but
is slightly displaced along one of the <111> directions. It may therefore

19The 8-sites model is different from the model reported by Mason and Matthias [188].
It remains also a reference in spite of the existence of more complicated but questionable
models like in Ref. [131].
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occupy 8 equivalent positions. In this context, the diffuse scattering is ex-
plained by a strong correlation of the Ti positions along <100> chains. As
an additional argument to their model, they suggested that the correlation
should propagate through the subsequent displacement of the O atoms in
an opposite direction to the Ti atoms.

The controversy between the static and dynamic explanation of the
linear disorder is still now under debate. Some recent experiments argue
in favor of the 8-sites model [61] while other authors prefer to refer to
Hiiller’s explanation [277]. As already mentioned by Comes et al. [47], this
discussion 1s not central as both approaches involve the same underlying
concept of correlation. The crucial question instead concerns the existence
and the mechanisms of correlation between the atomic displacements. Are
atomic correlations really present]’ What 1s their microscopic originl” These
questions were still recently emphasized by Maglione and Jannot [180] who
introduced the concept of “relaxator ferroelectrics”, that is based explicitly
on the existence of these chain structure correlations.

In complement to the experiments, the chain-structure correlation was
recently investigated from first-principles. Early computations; as those
reported in Chapter 3, have pointed out the existence of energy wells for T’
soft-mode distortions that are deeper for rhombohedral than for tetragonal
types of displacements. This seemed to be a step toward the 8-sites model.
However, it only concerned the cooperative displacement of Ba, Ti and O
atoms, correlated in all the different unit cells. Consequently, it did not
contain any information on the form of the energy surface around a single-
atom displacement and the requirement (or not) of a correlation to produce
an instability.

In Section 7.8 we have seen that the form of the dispersion curves sup-
port the idea of chain-correlation. In the previous Section, we have clearly
shown that BaTiOs 1s not unstable with respect to the displacement of a
single atom. In this Section, we will quantify with the help of a simple
model the correlation of the atomic displacements, required to observe an
instability.

Let us consider that we have a bulk cubic crystal with the atoms frozen
at their equilibrium position 7,,. Then, we allow displacements of Ti and
O atoms belonging to a [100] single Ti—O chain of finite but increasing size.
The total energy of this system will be given by:

E(1s) = E(7e) + Y Cra(k,#') Aty At

KK!

where C' is the interatomic force constant matrix and the sum on « and &’
is restricted to the Ti and O atoms that are allowed to move. With the help
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Figure 7.7: Lowest eigenvalue of the restricted force constant matrix as-
sociated to atomic displacements along a finite Ti-O chain of increasing
size.

of this equation, we can track the appearance of an instability in terms of
the length of the chain of displaced atoms. An instability will correspond to
a specific displacement pattern that lowers the total energy of the system:
1t will be associated to a negative eigenvalue of the restricted force constant
matrix.

In Fig. 7.7, we report the evolution of the lowest eigenvalue of the force
constant matrix with respect to the length of the chain of moving atoms.
Displacing only a single atom, the force induced on the Ti is larger than
that on the O atom. With 3 atoms, we observe, at the opposite, that
the Ti-terminated chain (Ti-O-Ti) is more stable than the O-terminated
one (O-Ti-0): it points out the important role of the Ti-Ti interaction.
The difference between Ti and O terminated chains will disappear progres-
sively with the chain length. It is seen that an instability takes place for
a chain longer than 10 atoms (5 unit cells). This is in close agreement
with the correlation length estimated in the previous Section. It suggests
that the behaviour of BaTiOg is already well reproduced when considering
the present isolated Ti—-O chain of displacements. It confirms also that the
correlation between the different chains may play a minor role.

Going further, it seems interesting to check the role of the small coupling
between Ti and O displacements. Freezing all the O atoms in such a way
that only the Ti atoms are allowed to move along the chain, we can repeat
the previous calculations. For this case, however, we do not observe any
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instability even for an infinite chain of correlated Ti displacements. This
result aims to prove that the relatively weak coupling between Ti and O
displacements still remains an important feature in the appearance of the
structural instability.

Our calculations, performed within the harmonic approximation at zero
temperature does not allow to discriminate between the 8-sites and Huller
models. It has however confirmed the existence of chains of correlation in
BaTiOs. It has also revealed the crucial role of the coupling between O and
Ti displacements, that was hypothetically suggested by Comes et al. [47] to
explain the correlation. Going beyond the result presented here, Krakauer
et al. have recently clarified the dynamic nature of the chain-structure
correlation in KNbQOj from their first-principles results [148].

7.11 Conclusions

In this Chapter, we have described the computation of the phonon frequen-
cies within a variational formulation of the density functional perturbation
theory and we have presented a useful scheme for the interpolation of the
phonon dispersion curves. These formalisms have then been applied to
BaTiOs. Our results allowed to address two fundamental aspects of the
ferroelectric instability.

First, in agreement with the idea of Cochran, it was demonstrated that
the ferroelectric instability originates in the compensation of the stabilizing
short range forces by a large destabilizing Coulomb interaction. In this
context, the Born effective charge appeared as a meaningful concept to
understand the origin of anomalous dipolar forces in connection with the
electronic properties. The delicate nature of the balance of forces has been
emphasized. The origin of the stabilization of the ferroelectric mode under
isotropic pressure and in the rhombohedral phase has been discussed.

Second, it was observed that the displacement of a single atom 1s never
unstable in cubic BaTiOs. The appearance of an instability requires a
correlation of the atomic displacements along a Ti-O chain of minimum
10 atoms. Our calculations confirm the experimental evidence of linear
disorder in BaTiO3.

It is finally interesting to realize that these two aspects of the phase
transition are not independent from each others: the amplitude of the in-
teratomic force constants responsible of the chain structure instability are
indeed a direct consequence of the balance between the short range forces
and the Coulomb interaction.
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Chapter 8

Density-polarization
functional theory

8.1 Introduction

All along this work, we made use of the density functional formalism as
it 1s currently implemented for practical applications. Strictly speaking,
it 18 a pertodic-density functional theory applied to infinite periodic sys-
tems, themselves obtained by imposing Born—-von Karman boundary con-
ditions. As illustrated for the specific case of BaTiOg, this approach yields
very accurate prediction of the ground-state properties of periodic solids.
Some exceptions were however pointed out: they concern the DFT bandgap
(Chapter 1), the cohesive energy (Chapter 3) and the dielectric constant
(Chapter 6). The first failure is well understood in terms of a functional
discontinuity in the Kohn-Sham exchange-correlation potential [214, 257],
while the second is usually attributed to the LDA. The third failure is more
tricky in that 1t is not easy to see whether it comes from the LDA or from
some more fundamental feature of DFT. This problem has been an un-
ceasing source of discussion since several years [167, 51, 192]. It was also
the starting point of the reflection that led to the results presented in this
Chapter [94, 97, 98, 99].

The idea of a density-polarization functional theory [94] arises from two
previous major advancements. The first is the modern theory of the polar-
ization, pioneered by Resta [243] and King-Smith and Vanderbilt [142, 283].
For a long time, the macroscopic polarization of insulators was only acces-
sible from their surface charge [156] and was a well-defined concept only for
finite clusters. The recent breakthrough was to reveal that the macroscopic

189



190 CHAPTER 8. DPFT

polarization of insulators is intrinsically a bulk quantity, making it well-
defined even for infinite periodic systems obtained by imposing Born—von
Karman (BvK) periodic boundary conditions. However, it was formulated
as a Berry phase [311] of the many-body wavefunction [210]: it appeared
therefore as a quantity completely independent of the periodic part of the
charge density [243]. The second interesting result is the ultra non-local
dependence of the exchange-correlation energy on the density pointed out
by Godby and Sham [86]. The infinite range of the exchange-correlation en-
ergy functional is known since a long time [2]. However, Godby and Sham
interestingly reintroduced this feature in the context of semiconductors:
they highlighted [86] that the exact exchange-correlation energy functional
should present an ultra non-local dependence on the density accumulated
at semiconductor interfaces. As the macroscopic polarization is directly
connected to a surface charge, this long-range dependency was implicitly
suggesting that the exchange-correlation energy should be dependent on
the polarization.

In this Chapter, we go back to the more fundamental point of view
adopted in Chapter 1, 2 and 4, in order to scrutinize whether some un-
expected feature should arise in DFT when switching from finite to infi-
nite systems. We start by reinvestigating the Hohenberg-Kohn (HK) [121]
theorem for the specific case of infinite periodic solids: restoring the free-
dom of homogeneous electric fields, we show that the HK functional is not
only dependent on the periodic density but also on another independent
quantity, the macroscopic polarization. Repercussions will then be investi-
gated on the Kohn-Sham (KS) [147] construction leading to the notion of
exchange-correlation electric fields. Consequences of this new theory will
be investigated on different ground-state properties, and in particular on
the macroscopic dielectric constant. Our process will occasionally clarify
a well-known paradox of DFT. It has also aroused criticisms that will be
explicitly addressed. The origin of the polarization dependence in terms of
microscopic concepts will be finally discussed.

8.2 The Hohenberg and Kohn theorem

8.2.1 Problematics

In Chapter 1, we have seen that the knowledge of the density n(r) of the
ground-state of a system with Hamiltonian H, = T, 4+ Uee + vext (r) uniquely
determines the local potential vext(r) up to a constant (HK theorem [121]).
It was then deduced that the total energy of the interacting system may
be written as a functional of the electronic density n(r). In Chapter 2,
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macroscopic solids were replaced by infinite periodic systems defined by
imposing BvK periodic boundary conditions. The HK theorem, initially
demonstrated for an arbitrary large but finite number of electrons was then
implicitly generalized to infinite periodic systems. We now show that we
must be careful when imposing periodic boundary conditions.

The starting point of our processes is the observation that the straight-
forward application of an homogeneous electric field (linear potential), to a
system with a periodic potential does not allow for a ground-state solution
[208]: indeed, a translation against the direction of the field by a whole
number of lattice constants would always lower the electronic energy. The
impossibility of a ground-state in the presence of a finite electric field ren-
ders invalid the original proof [121] of density functional theory for this
case.

In order to investigate consequences of switching from finite to infinite
solids, we will now restore the freedom of linear changes of potential by
working within perturbation theory. We start with an infinite solid charac-
terized by a periodic external potential vex(r) and a periodic density n(r).
We then consider a general infinitesimal change of potential, treated within
a long-wavelength approach. The change of potential corresponding to an
infinitesimal electric field € is (equations are written in one dimension for
brevity)
dug(r) = lim (55.M = lim (5_’5(62»(17« — e_iqr). (8.1)

q—0 q q—0 2iq
We also allow for changes of potential that are periodic in space, with the
same periodicity as the unperturbed system: dvg(r) = dv(G).e!S" with
dv(G) = (v(—G))* where G is a non-zero vector of the reciprocal lattice.
These changes of potential are obtained, in the long-wave method, from the
Fourier components of the potential:

Svg(r) = (}i_{%{év(G—I—q)ei(G‘l'q)r + 8u(G—g)el(G=am} (8.2)

such that Mzﬁl =dv(G+q) = dv(G—q) .

In response to these perturbations, at finite ¢, the system will develop
changes in density described similarly by dn(G=+g¢). The long-wave part of
this change in density, for ¢ — 0, will be [217, 185, 240]

dnp(r) = — (}i_r}r(l) q.9P sin(qr), (8.3)

where dP is the change of polarization for ¢ = 0.
The elaboration of a density functional theory for these perturbations
must answer the following question:
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what quantities do we need in order to determine d& and the set

of dv(G) uniquely?

8.2.2 Perturbative analog to HK theorem

Keeping in mind that we must stay within perturbation theory and treat
only infinitesimal electric fields, we now provide a perturbative analog of
the first Hohenberg-Kohn theorem[121]:

the knowledge of the change in density everywhere uniquely
determines the change in potential.

The following demonstration stays strictly within perturbation theory !.

We consider the Hylleraas minimum principle [128, 118]: a trial change
in wavefunction d¢; gives an upper bound on the second-order change in
energy

§*E < (§pu|H = El0@) + ((deeldvle) + (e.c.)). (8.4)

This principle is valid under the constraint (d¢:|e) + (¢|dp:) = 0. The
minimum is reached only for the d¢ that is the response of the quantum-
mechanical system to the change of potential dv. When this change of
potential is a one-body local operator, Eq.(8.4) becomes

§2F < (3pi|H — E|6p:) +/5v(r)5nt(r)dr, (8.5)
where the change in density dn.(r) is easily derived from the knowledge of
the unperturbed wavefunction and the trial change in wavefunction. Now
consider two changes in potentials dvi(r) and duvs(r) such that duvy(r) #

duva(r) + constant. The Hylleraas minimum principle applied to the per-
turbation duvy (r) gives

(bp1|H — E|dpr) +/5v1(r)5n1(r)dr
<{6p2|H — E|dpa) + /(5v1(r)5n2(r)dr, (8.6)

while for the perturbation duvs(r), a similar inequality, where 1 and 2 are
interchanged, is obtained. Summing these two inequalities leads to

0< /(5v1(r) —dva(r))(dna(r) — dnq(r))dr. (8.7)

I This theorem could be proved by taking the infinitesimal limit of finite differences of
the first Hohenberg-Kohn theorem[121], but this approach cannot be followed for electric
fields, since only infinitesimal electric fields are allowed.
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Setting dny(r) = dna(r) would lead to a contradiction, showing that two
different changes in potential must induce two different changes in density.
Thus, the knowledge of dn(r) everywhere uniquely defines the duv(r) that
induced it.

8.2.3 Periodic systems

The same line of argument can now be used in the case of perturbations of
periodic systems with finite wavevector ¢, as previously defined. All quanti-
ties have to be normalized to the unit cell volume. This normalization, and
a Fourier transform, applied to the term [ dv(r)dn(r)dr in Eq.(8.5), changes
it into Qo )~ o {0v* (G+q)dn(G+q) +0v* (G—q)dn(G—q)}. The limit ¢ —0 is
now taken, for two different perturbations described by {d&;,dv1(G)} and
{6&2,8v2(G)}. The G = 0 term is isolated, and the long-wave values from
Eq.(8.1) and (8.3) are used, leading to the following extension of Eq.(8.7) :

Q
0< 70 { ((581—(552)(57?1—(57?2)—1—Z((51}”{(G)—(Sv;(G))(énz(G)—énl(G)) }.
G#0
(8.8)
If we now suppose 6P; = §P3 and ény(G) = dna(G), the expected contra-
diction is obtained. From this result we conclude that:

the change in potential and electric field can be deduced from
the knowledge of the change in density and polarization that
were induced by them.

Note that the knowledge of the change of polarization is crucial, since it is
the quantity conjugate to the change of electric field in Eq.(8.8) : if §P;
was allowed to be different from dP3, Eq.(8.8) could be satisfied for some
0&1 # 6&;3. The dependence on polarization is a remnant of the ultra-non-
local dependence on the long-wave part of the change in density.

8.2.4 Hohenberg-Kohn functional

Because a truly periodic system has no ground-state when placed in a finite
electric field, the previous result was obtained strictly within perturbation
theory. However, as reported recently by Martin and Ortiz (MO) [187],
it can also be generalized for the case of finite fields when allowing for
metastable solutions of finite lifetime. Following the recurrence procedure
introduced by Nenciu [206], MO reinvestigated the HK theorem. They
obtained a relationship similar to Eq. 8.8, that can be written following our
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notation as:

0 < 2 {(E = E)(P P+ 3 (11(6) 3 (G) (1a(G) ~ma(C)) ). (8.9
G#0

This result demonstrates that the periodic density and macroscopic polar-
1zation completely determine all properties of a system when macroscopic
electric fields are allowed. Following the same line of thought as in Chapter
1, we now deduce from Eq. (8.9) that the HK functional F[n], must be
written, for the case of periodic solids when macroscopic field are allowed,
as a functional of the periodic density and of the polarization:

Fln(G), P]. (8.10)

As the procedure of Nenciu [206] is not convergent but only asymptotic, we
note that this functional is only defined for polarization P in an infinitesimal
region around the polarization P° observed under the condition of zero
macroscopic electric field.

Focusing on the subclass of systems submitted to this condition of zero
macroscopic electric field, we observe that the term explicitly involving the
polarization is absent in Eq. 8.9. In this case, the original proof of HK
applies and the properties of the system are uniquely determined by the
periodic density alone. Within this class of problems, the periodic density
determines the external potential: n(G) — vext (G). In turn, the exter-
nal potential determines the many-body wavefunction and therefore the
macroscopic polarization, i.e., vext(G) = ¢ — P. We note that deducing
¢ from n(G), we have implicitly assumed knowledge of the specific form
of the electron-electron interaction. It is only the additional knowledge of
the electron-electron interaction that fixes unambiguously the polarization
from the periodic density.

As the macroscopic polarization P° of the many-body system under
the condition of zero macroscopic electric field is uniquely defined from the
set of n(G), writing P = P + §P, we have the freedom of considering
alternatively:

FIn(G),P] < F[n(G),5P] (8.11)

The latter functional has been introduced recently by MO [187]. However,
in our work, we prefer to consider the first one. Indeed, if both can be
equivalently considered at the level of the HK theorem, we will see later
that the explicit knowledge of the absolute value of the polarization may
remain crucial within the Kohn-Sham construction (Section 8.5).
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8.3 Exchange-correlation electric fields

In Chapter 1, we have seen that the KS formulation to DFT makes one
additional hypothesis with respect to the HK theorem: it postulates that
any many-body interacting system can be mapped onto another system of
fictitious non-interacting particles. Keeping in mind that we are doing the
same hypothesis, we would like now to investigate the consequences of the
polarization dependence of the HK functional on the KS construction.

Following the same line of thought as in Chapter 1, for periodic solids
where the HK functional is of the form F[n(G), P], we introduce a fictitious
independent-particles system to which we impose to reproduce the correct
periodic density and polarization. The kinetic energy associated to the
non-interacting particles is defined as T [n(G), P]. Without worrying about
the domain of definition of Ty[n(G),P] %, we also define a KS exchange-
correlation energy functional as:

Ee[n(G),P] = Fn(G),P]—Ti[n(G);P]

_20 N (G (@) (8.12)

G#£0

We now demonstrate that the polarization dependence of the exchange-
correlation energy leads to the existence of new “exchange-correlation elec-
tric fields”. For that purpose, we scrutinize the formulation of the exchange-
correlation terms appearing in the KS equation and its first-order analog
(usually called a self-consistent Sternheimer equation). We will make use
of the King-Smith—Vanderbilt [142] formula (KSV) for the macroscopic po-
larization, establishing that within any periodic gauge:

oce

21
P = _W/Z < Un,k|vk|un,k > dk. (813)

We will also keep in mind the following link between the operator “r” and
the derivative with respect to the wave vector (“Vi”) :

P. I‘|un7k >=1 P, Vk|un7k > (814)

8.3.1 Kohn-Sham equation

Let us start with the KS equation. Within the variational formulation of
the Kohn-Sham formalism (Eq. 1.72), the exchange-correlation potential

2The KS construction is possible only when F and Ts are defined on overlapping
domains of P. It is not necessary the case for polar solids, yielding the pathology
described in Section 8.5.
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appeared within a Euler-Lagrange equation. Following the procedure of
Section 1.7.3, we now write :
Eye[n, P] 0Fxe On(r') 0Fw 0P

Fune) TS dn( Wunk()d T siem &)

so that, using KSV, the term wvyc|un >, appearing in the KS equation,
must be replaced in the context of this Section by:

i 0P
Uxe|Un k > —7m—5 ——=— Vk|Un k > 8.16
xc| n,k (271')3 5P k| nk ( )
From Eq. (8.14), the additional term appears as a potential linear in space.
It corresponds to an exchange-correlation electric field:

6Exc
P

We stress that this additional field is not a “real” electric field to which
the electrons of the system are submitted and that will enter in the total
macroscopic field introduced in Chapter 4. It is a “fictitious” field that
only affects the KS particles of the system. Even if unphysical, it appears
as a crucial part of the only effective KS potential able to generate the
correct polarization. We will discuss more carefully in Section 8.5 some
consequences of the existence of this field on the correct DFT description
of polar solids. In Section 8.8, the microscopic origin of this field will be
briefly discussed.

gxc =

(8.17)

8.3.2 Sternheimer equation

Similarly, within the linear response formalism introduced in Chapter 4,
different terms of the first-order KS potential will be influenced by the
polarization-dependence of the exchange-correlation energy. Starting now
from the definitions introduced in Section 4.4.1, the term Pcvfé)|u£loi< >
(Eq. 4.67) appearing in the first-order Sternheimer equation (Eq. 4.64)7now

1s written :

0 ? 0
Pl [ul’} > — g D P Vful) > (8.18)
where
dFx[n(G), P (5EXC n(GQ) 77]
gy — el AFH T on(G)1)(8.19
ke SPeP |n( P GZ;O G)op lnon(G)(8.19)
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Similarly, Pcv)(é“ugloi{ > now, a priort becomes:

1 0] 1 0]
Petseolin > = Ty aen e Vs> (8.20)
where
d §Ey[n(G),
g) = 4 9En(G), 7], (8.21)

X0 T g\ P

The second term of both Eq. (8.18) and (8.20) were missing in periodic
DFT. In Section 8.6 and 8.7, we will investigate consequences of &((3;) on
the exchange-correlation kernel and on the computation of the dielectric
constant. S)Eig is zero when investigating the response to an applied macro-
scopic electric field. However, the second term of Eq. (8.20) should have
a contribution in the specific case of a functional explicitly dependent on

both P and A.

8.4 Illustration for a model semiconductor

At this stage, we have reinvestigated the HK theorem and the KS construc-
tion for the specific case of truly periodic systems. We have emphasized
that, for this case, it is necessary to consider functionals of the periodic
density and of the macroscopic polarization. We now exhibit two main
features of our theory: (i) the knowledge of the density change alone is not
sufficient to deduce the periodic potential change and electric field change ;
(ii) a non-zero polarization induces a KS exchange-correlation electric field.

The system that we will consider is the model one-dimensional non-polar
semiconductor used by Godby and Sham in Ref. [86] (see also Appendix D).
In this model, the periodic solid plus electric field is treated by the long-
wave method in a supercell consisting of N basic unit cells of length a.
The external potential plus the Hartree potential vex:(x) + vi(x) is taken
to be the sum of two different contributions: Vj cos(zgx) + A sin(?{ff).
The first term has the periodicity of one unit cell, while the second, with
the periodicity of the supercell, corresponds to a slowly varying potential
of amplitude A. For an infinitely long supercell, the second term mimics
the action of an electric field. A self-energy operator, intended to mimic
the relevant many-body effects, is taken to be the non-local potential:
Yz, 2"\ w) = f(x)zif(xl)g(hv — &'|) where f(x) = —Fy[l — cos(2wz/a)] is
a negative function with the periodicity of one unit cell and ¢(y) is a nor-
malized gaussian of width w = 2 a.u. We keep the same set of non critical
parameters as in Ref. [86].
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Figure 8.1: The unit cell of our model one-dimensional semiconductor,
where the slowly varying applied potential A(vexs + vrr), that changes the
interacting electron density by An, is the most linear. Both Awv,; and
Av, 9, used in the non-interacting Kohn-Sham equations, yield the same
An. Av; o is a periodic potential with no linear slope, while Av, 1, whose
linear part is Avlsiﬁear, reproduces not only An but also the change of po-
larization due to A(vex: + vi). This illustrates the need for polarization-
dependence in E;.. For clarity, the potential curves have been aligned so
that they all start from zero.

First, the many-body problem is solved by direct diagonalization of the
equations containing the self-energy operator, using a plane-wave basis set
and a Brillouin zone sampling at the I point only. From this result, we con-
struct an ezact density functional theory by determining the local potential
vs,1(2) which, when filled with non-interacting electrons (no self-energy op-
erator), reproduces the same electron density as in the many-body case (see
Fig. 4 of Ref. [86]). Standard iterative non-linear optimization techniques
are used for that purpose. Independently, we also extract the (polarized)
density of the single unit cell :I:%a where the slowly varying potential is
most linear and, again using optimization techniques, we reproduce this
density with another potential, v, (), having period a. In this case, to re-
tain the sampling of the Brillouin zone at the I' point, we repeat the density
periodically in the supercell. The only problem in reproducing the “target”
density comes from the slight non-linearity of the slowly varying potential,
and disappears progressively for larger supercells. Fig. 8.1 presents the re-
sults obtained with a 80a supercell and A= 0.95 eV, for which the r.m.s.
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difference between the target and computed density is 4 parts per thousand.

Our results contrast with a naive application of DFT theorems. Con-
structing a DFT theory for a model system with a linear potential, A(vext+
vir), superimposed on a periodic potential, we have therefore obtained two
different KS effective potentials Av, ; and Aw, » yielding the same correct
periodic density. However, Awv, » is not able to reproduce the polariza-
tion (0.037 electrons), associated with the long-wavelength charge density.
We observe that A(vexs + vir) and the linear component Avlsifllear of the
Kohn-Sham potential Aw, ; differ by 15%, owing to the existence of the
exchange-correlation electric field. As it will be clarified later, the size of
the effect seems closely related to the DFT bandgap misfit. As the bandgap
problem is a well known feature of DFT, a similar sizable effect is expected
for real materials.

Our purpose is now to examine more carefully what would be the con-
sequence of the polarization dependence on different specific ground-state
properties.

8.5 Spontaneous polarization of polar solids

The first quantity that we would like to address is the spontaneous po-
larization of polar crystals. Since the emergence of the modern theory of
the polarization, the spontaneous polarization is indeed usually deduced
from DFT calculations performed within the KS formalism, when impos-
ing periodic boundary conditions. In this Section we show that the exact
KS treatment of polar crystals (i) with the usual BvK boundary condi-
tions, or (ii) from the macroscopic limit of large clusters, can give different
macroscopic polarizations. Only (ii) is correct.

8.5.1 Problematics

The correct definition of a macroscopic crystal is clearly as the limit of
a finite crystal of increasing size. Fig. 77-a shows schematically the total
electrostatic potential velec = Vi + vie + Vappl 10 such a finite crystal, where
vy 1s the electrostatic potential due to the ground-state electron density,
vie is the potential due to the nuclei, and vapp is an applied potential,
created by an external short-circuited capacitor, that maintains equality of
the electrostatic potential on the two sides 3. In this context, the external
potential is NOW Vexy = %¥ie + Vappl. 1The total electrostatic potential in

3For the simplicity of the argument, we imagine that the capacitoris a classical device,
in which case the analysis of electrostatics performed in Ref. [245] applies.
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Figure 8.2: (a) The local electrostatic potential (external plus Hartree) of
a polar insulator, and the corresponding ground-state density. In the bulk
region the potential is periodic. Short-circuited capacitor plates are also
present. (b) The periodic effective potential that, when used in Kohn-
Sham equations, is able to reproduce the density of the polar insulator
within the bulk region. The macroscopic polarization is not correct. {c)
The effective potential that, when used in Kohn-Sham equations, is able
to reproduce the density shown in (a), in all the regions of space. The
macroscopic polarization is correct (in contrast to (b)).
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the bulk region is periodic and, crucially for a non-zero polarization, non-
centrosymmetric. The potential just outside the surface is fixed by the
electrostatic potential of the capacitor plates. The corresponding ground-
state electron density is also shown. In the bulk region, it is periodic,
with the same periodicity as the local potential *. Close to the surface,
the density deviates from perfect periodicity, although this effect decreases
exponentially with the distance from the surface [146].

The macroscopic polarization of such a finite solid i1s directly linked
to the total surface charge [156, 283]. Alternatively, within the modern
theory of the polarization, it can also be a priori determined, up to a
quantum, from a Berry phase of the correlated many-body wavefunction of
the bulk [283, 243, 142, 210, 244]. In practice, this polarization is currently
obtained from a Berry phase of the one-body KS wavefunction associated
to a truly periodic system built from the periodic part of the finite cluster.

Vanderbilt and King-Smith argued [283] that the Berry phase of the
occupied KS wavefunctions possesses an exact physical meaning since the
surface charge must be exactly reproduced within DFT [283]. We now
show the justification of Vanderbilt and King-Smith apply to exact DFT
only when considering finite solids, and not when applying BvK periodic
boundary conditions.

8.5.2 Kohn-Sham treatment of polar solids

The crucial point when switching from finite to infinite solids is to take
the macroscopic limit correctly. For that purpose, we will first examine the
construction of an exact KS theory for the case of finite polar solids. We
will then examine what is the correct limit of this theory for the case of
infinite systems.

Let us start with the finite polar solid of Fig. (?7-a). When construct-
ing a KS theory for such system, we must find the local potential that is
able to reproduce the density everywhere: in the bulk, but also in the sur-
face region resulting in the correct polarization. Considering first only the
periodic density of the bulk region, the HK theorem applied to the KS sys-
tem demonstrates that there is a unique periodic effective potential v that
reproduces the particular periodic density (Fig. ??-b). However, from Eq.
(8.8) it appears clearly that, once an additional electric field is allowed,
there exists an infinite family of KS potentials that gives the same bulk
density but different surface charge. Once the surface charge is defined, the
KS electric field i1s determined. Nothing imposes however that it must be
zero.

4In this work, we do not consider symmetry breaking effects like charge- or spin-
density waves
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As recalled previously, the KS construction makes one additional hy-
pothesis with respect to the HK formalism: it postulates that any many-
body system can be mapped by another system of fictitious non-interacting
particles. At this stage, it would be an additional and more stringent hy-
pothesis to postulate that the subset of interacting many-body systems un-
der the condition of zero macroscopic electric field can always be mapped
within the subset of non-interacting systems submitted to the condition
of zero macroscopic effective field. The HK theorem imposes that there
i1s at most one non-interacting system that reproduces the correct density
everywhere, without imposing any restriction on the associated effective po-
tential. Our point is that there is not necessary a correspondence between
the subsets of systems under the condition of zero electric field, defined for
different electron-electron interactions.

A priori, the effective KS potential associated to a polar solid may
therefore contain a linear contribution and has the form represented in
Fig. (??-c). Imposing additional condition of zero macroscopic electric field
would constraint the KS polarization to an arbitrary value P? that is not
necessarily that of the many-body system P°.

This situation is illustrated differently in Fig. (8.3-a), where we have
plotted the polarization of the many-body and Kohn-Sham system in terms
of the electric field to which the electrons and KS particles are submitted
in each representation ®. For a finite insulator of length L, the polariza-
tion remains only well defined within a range of fields (£) such that the
associated change of potential (£.1) is smaller than the gap. Beyond this
point the system becomes metallic and the polarization is no more related
with the bulk wavefunctions. The graph makes use of the fact that the
many-body and KS systems have different polarizability (the slope d€/dP
at the origin is different in both cases) and different bandgap (the switch
from insulator to metal arrives for a different strength of the electric field).
It corresponds to a usual case where the bandgap is underestimated within
the KS description.

Fig. (8.3-a) illustrates a general situation where the KS system must
develop an exchange-correlation electric field in order to yield the correct
polarization PY. Interestingly, it also points out that a problem naturally
arises in the KS system when taking the macroscopic limit, from the fact
that an arbitrarily large system cannot sustain a finite electric field. As the
cluster is made larger, a point will indeed be reached where the variation
in potential from one side of the cluster to the other, due to the homoge-
neous exchange-correlation electric field, reaches the DFT bandgap of the
material. Beyond this point, the KS electronic system is metallic and the

5Non-linear effects are ignored.
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many-body (MB) and Kohn-Sham (KS) systems associated to finite clusters
of increasing size (see text). The graph makes use of the fact that the MB
and KS systems have different polarizability and different bandgap.
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band edges will “pin” the effective potential. As the cluster is made still
larger, charge will flow freely from one face to the other in order to main-
tain the correct macroscopic polarization. This is illustrated in Fig. (8.3-b).
The magnitude of the homogeneous electric field will now change with the
size of the cluster : in the limit of large cluster size, the effective homo-
geneous electric field required to reproduce the correct polarization will
becomes infinitesimally small, although crucially non-zero. Replacing now
our arbitrary large cluster by an infinite system, obtained by imposing BvK
boundary conditions, the infinitesimal electric field is forbidden and the cal-
culation provides the incorrect value P2 for the polarization. It is therefore
a specific case for which the truly periodic solid is not strictly equivalent
to a finite solid of increasing size.

The existence of an exchange-correlation electric field, in the absence
of a real macroscopic electric field, may appear surprising. However, the
negation of that result would be equivalent to state that P2 = PY. In
terms of Fig. (8.3-a), this situation would correspond to the fact that the
many-body and KS curves cross at £ = 0. If it is not a priori excluded,
it is only a particular case of the most general situation presented in the
foregoing. Up to now, there is no argument establishing why this specific
situation should be preferred.

To clarify unambiguously the debate would basically require to compare
the polarization computed from a real many-body wavefunction to that of
the KS system. It would necessitate a realistic many-body wavefunctions,
unfortunately unavailable. Differently, at the level of our model, the phe-
nomenon 1is already observed.

8.5.3 Model calculation

For the purpose of this Section, our one-dimensional model semiconductor
has been slightly modified in order to mimic a polarized solid. In this new
model the electrostatic potential is periodic and asymmetric: veec(#) =
V. cos ZﬁTx + Vs sin ‘“;Tx. The non-local self-energy operator, intended to
mimic the relevant many-body effects, has the same non-local form as in
the first calculation.

As for the previous illustration, the Schrodinger equation containing the
self-energy operator is first solved by direct diagonalization using a plane-
wave basis set. The density is deduced from the sum of the squares of
the eigenfunctions. From this result, using standard iterative optimization
techniques, we then construct an ezxact density-functional theory by deter-
mining the local potential v;(x) which, when filled with non-interacting
electrons (no self-energy operator), reproduces the same electron density
as in the self-energy calculation. Fig. 8.4 presents the function veec (), as
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Figure 8.4: The electrostatic potential veec(x), the electron density n(x)
and the Kohn-Sham effective potential vs(x) of the model one-dimensional
semiconductor are shown when periodic boundary conditions are imposed.
The Kohn-Sham electrons correctly reproduce the electron density, but not
the macroscopic polarization.

well as the density n(z), and the effective potential vs (), for the following
set of parameters : ag =4 au., V. =V, =2.72eV, F, = —4.08 eV, w =2
a.u.

Using the Berry-phase approach [243, 142], we are now able to com-
pute the polarization ®. In the self-energy calculation, the polarization
is 22.68 1073 electrons with respect to the centrosymmetric system with
Vi = 0, while that calculated from the Berry phase of the Kohn-Sham
wavefunctions is 21.99 1072 electrons. The two polarizations differ by 3%,
well outside the calculational error bar.

It is important to understand correctly the previous result. Consider-
ing an hypothetical system for which the model calculation including the
self-energy operator is considered as exact, and constructing a KS theory
for that system, our calculation has demonstrated that nothing in the KS
construction has imposed to the polarization to be correctly reproduce.

Similarly, nothing guarantees that the polarization P? of a the KS sys-
tem associated to a polar solid must be equivalent to P°.

6The standard Berry phase analysis is applicable to our system, showing the exact
polarization to be proportional to the Berry phase of the eigenfunctions of the non-local
Hamiltonian. This is distinct from the Berry phase of the Kohn-Sham wavefunctions.
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8.5.4 Conclusions and practical issues

In summary, from the foregoing, we suggest that, for a polar insulator, when
BvK periodic boundary conditions are used, the polarizations calculated
from the Berry phase of the KS wavefunctions and from the Berry phase of
the correlated wavefunction may differ, because the DFT effective potential
is prevented from acquiring a linear part. When a large cluster 1s used for
the KS calculation, a homogeneous effective exchange-correlation “electric
field” develops in order to correctly reproduce the polarization. The KS
system becomes metallic.

We note that approximate density-functionals such as the Local Den-
sity Approximation (LDA) and the Generalized Gradient Approximation
(GGA), that do not retain any long-wavelength dependence in the density,
always fail to yield an exchange-correlation electric field. Within these ap-
proximations, using BvK boundary conditions or finite clusters incorrectly
provide the same value of the polarization. Moreover, any improvement to
these functionals which retains a dependence only on the periodic density
will be similarly flawed.

Paradoxically, the lack of polarization dependence of the usual approxi-
mate functional can be viewed as a “practical advantage”: the computation
of the polarization under BvK conditions (from a Berry phase of the KS
wavefunctions) is indeed intrinsically easier than from the limit of large
clusters and constitutes a consistent procedure within these approxima-
tions. This justifies the calculations performed in the previous Chapters.

8.6 The exchange-correlation kernel

As introduced in Section 8.3, not only the ground-state properties of polar
crystals but also the response function of any solid to perturbation inducing
a macroscopic polarization will be affected by the polarization dependence
of the exchange-correlation energy. This involves quantities that can be for-
mulated as a derivative of the total energy with respect to an electric field.
It also concerns the response to atomic displacement pattern accompanied
by a macroscopic field, as for the case of long-wavelength phonons. In
each case, the polarization dependence of the exchange-correlation energy
i1s summarized in the long-wavelength behaviour of the exchange-correlation
kernel 7. In this Section, we will be only concerned by the response of non-
polar solids.

7 As mentioned in Section 8.3, a contribution should also appears from v(mlc)o. In what
follows, we will neglect this contribution.
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8.6.1 Problematics

The exchange-correlation kernel naturally appeared in Chapter 4 when in-
vestigating the response of the KS system to an external perturbation. It
was defined as the second derivative of the exchange-correlation energy with
respect to the density or, alternatively, as a first derivative of the exchange
correlation potential:

B 6 FE _ Ouxe(r)
~ dn(r)dn(x')  dn(r)

Kye(r, 1)

(8.22)

This quantity was then involved in the different responses that were investi-
gated in Chapters 5, 6 and 7. From the variational expression of the second
derivative, 1t appears clearly that a correct description of K. is mandatory
to obtain the right answer.

Alternatively to the formalism introduced in Chapter 4, the response of
solids to an external perturbation is also currently addressed in terms of
the polarizability matriz that, for instance, can be directly related to the
dielectric constant. In order to make the link with this different approach,
a few definitions will now be introduced.

The polarizability matrix x is the basic quantity characterizing the re-
sponse of the electronic system to an external perturbation. It is defined
as:

dn(r) = /X(I‘,I‘/) SVexs (v)) dr’ (8.23)

For the KS system an independent-particle polarizability x, may also be
introduced, relating the change of density to that of the effective KS po-
tential:

n(r) = /XO(I‘,I‘/) Svs (') dr’ (8.24)

From the relationship between external and KS potential (v; = vext +
vl + vxe), both polarizability are related to each other by the following
relationship (making use of matrix notations):

Xo =X+ Ve + Bxe (8.25)

where V¢ is the conventional Coulomb potential (i.e. the “kernel” of the
Hartree potential). As reported by Adler and Wiser [1, 302], x, can be
directly computed from the KS electronic wavefunctions. From Eq. (8.25),
we conclude that K. plays a major role when deducing y from x,.

We now demonstrate that the polarization dependence of Ey. imposes
a requirement on the form of K. that is however not satisfied by the
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usual local approximations (LDA, GGA). In Section 8.7, we will discuss
the consequence of this fact on the different definitions of the dielectric
constant.

8.6.2 The exact long-wavelength behaviour

Let us first investigate the long-wavelength behaviour of the exchange-
correlation kernel of insulators. For that purpose, we adopt a perturbative
approach and the same long-wavelength technique than in Section 8.2. The
change of external potential dveyy produced by an infinitesimal homoge-
neous electric field ey is (written in one-dimension for brevity):

Jvext(r) = lim 08ext

igr _ _—igr
o (e e~ (8.26)

In response to this perturbation, the system will develop a change of density
dn. Due to the Umklapp process, it may contain contributions at different
(a+G) vectors (where G belongs to the reciprocal lattice). Within linear
response, the long-wave part of dn takes the form:

_ N i igr _ _—igr
dn(r) = (}1_1;1(1) 5 IP (e e~ (8.27)
where dP is the change of polarization for ¢ = 0.

The self-consistent screening potential will also generally contain long-
wave and more rapidly varying terms. Its long-wave part will be composed
of an Hartree contribution, corresponding to the screening of the applied
field due to the Coulomb interaction. Moreover, as previously discussed,
the polarization dependence of FEy. will manifest through an additional
exchange-correlation electric field §&y. so that for ¢ — 0:

47 §E,c
7

dvser(q) = dvr(q) + dvxe(q) = (8.28)

21q

From Eq. [8.22], the exchange-correlation kernel is defined as dvyx. =
Kyedn. Isolating the long-wave term from the other contributions, following
notations of Ref. [127] we obtain (G here stands for all non-zero vectors of
the reciprocal lattice) :

é 62‘% _ (11_2[(xc,00 é [(XC,OG’ —q 62—7;

(vacyg - é [(XC,GO A7)((:,GG’ 677,G
In order for the exchange-correlation field to be finite when a finite change of
polarization takes place, the head of the exact exchange-correlation kernel
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must exhibit a O(1/¢%) divergence in the limit of ¢ — 0 (i.e. Kgc oo Is
finite). For the same reasons, the wings of K. present a O(1/q) divergence
(i.e. Kxcog is finite). Both these divergences are a direct consequence
of the polarization-dependence of Fy., that materializes as an additional
effective electric field 3.

8.6.3 The one-dimensional model semiconductor

The previous result can interestingly be illustrated in the case of our model
one-dimensional semiconductor for which the exchange-correlation kernel
can be computed exactly (within the model). As a reminder, in our model,
the sum of the external and Hartree potential is taken to be: wvexs(z) +
vir(z) = V, cos(2ma/a), where a is the unit cell length. The non-local self-
energy operator, intended to mimic many-body effects keep the same form
than in Section 8.4.

As for the previous illustrations, the Schrodinger equation containing
the self-energy operator is first solved by direct diagonalization using a
plane-wave basis set and a supercell technique. The “exact”density is de-
duced from the sum of the square of the occupied eigenfunctions. Using
non-linear optimization technique, an exact DFT is then constructed by de-
termining the local potential Veg, which, when filled with non-interacting
electrons, reproduce the density obtained when including the self-energy op-
erator. Asin Section 8.4, we adopt the non-critical parameters of Ref. [86],

In order to compute the polarizability y of the system one must take
into account that the total potential is made of the external potential and
the Hartree potential (plus the constant non-local self-energy operator).
As a consequence, the computation of responses to changes in the total
potential, using the wavefunctions obtained with the self-energy operator
and a sum-over-states technique [1], gives a matrix x,, connected to the
polarizability matrix x by (compare with Eq. (8.25))

GlExTh 4 Ve (8.29)

From our KS wavefunctions, that reproduce the same density, it is also
possible to compute the KS independent-particle polarizability, y,, using a
similar technique. For that case, the relationship between x and x, is given
by Eq. (8.25). As the polarizability must be correctly reproduced within
DFT, x is identical in Eq. (8.25) and Eq. (8.29) so that we obtain the
following relationship, that allows K. to be determined :

Kee=x;'—%" (8.30)

8This behaviour was already apparent from the long-wavelength behaviour of the first
and second terms of Eq. (8.19).
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Figure 8.5: The diagonal part of the exchange-correlation kernel for the
one-dimensional model semiconductor. The result was obtained for a 80
unit-cell supercell (320 a.u.). The O(1/q?) character of the K. divergence
is exhibited in the inset by the non-zero intercept of ¢?. Ky.(q, q).

In Fig. 8.5 we have plotted the diagonal part of the computed Ky.. The
calculation was performed on a 80-unit-cell, which guarantees a convergence
better than 0.7%. We observe a divergence in the limit of ¢ — 0 . The
inset points out its O(1/¢?) character.

We note that, for our model, the divergence of K. is independent of
long-range correlation effects . Inclusion of these effects would simply
affect the coefficient of the Ky.(q,q) divergence 1°.

8.6.4 Within LDA and GGA’s

The previous divergence of the exchange-correlation kernel appears as a
direct consequence of the polarization-dependence of E,.. We now show
that the correct behaviour is not reproduced within the usual LDA and

GGA.

°In Ref. [192], it was pointed out that the XCLF correction to the Green’s function
approach diverges like O(1/4¢%). However, even without this additional effect, a O(1/¢?)
divergence is observed in the present model calculation.
10The success of the scissor-correction (that roughly adjusts the DFT dielectric con-
stant to its Green’s function RPA value) seems however to prove that this additional
correction should be small.
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Within the LDA,

6vLDA

Kye(r,v') = g; o(r—1). (8.31)

r

The Fourier transform of this kernel, diagonal in real space, is such that
Kxc(q,q) is independent of q [127] and does not satisfy the previous con-
dition.

For generalized gradient approximations, the situation is similar. In
general the gradient-corrected exchange-correlation energy has the form

E,[n] = /ch[n(r),Vn(r)]dr, (8.32)
with the corresponding potential :

Jege
ovVn

_ Oege

Ve (r) on

(8.33)

r r

The relationship between the long wavelength exchange-correlation poten-
tial and the long wavelength density is therefore given by :

: 1 8 epe
[&xc(qa q) = 5 |: /ﬂ anz
. 0%epe
~2) e /ﬂ @) (@(8am))

8%epe
- %;Mﬁ /ﬂ (0(0an))(9(9pn))

dr

dr

r

rdr] (8.34)

The first term of the right member of this equation is similar to the one
appearing in the LDA. Eq. (8.34) makes clear that the gradient correction
produces terms with extra powers of ¢, but not the required O(1/¢?) di-
vergence. Contrary to what was expected by Mazin and Cohen [192], the
GGA has therefore no apparent ability to improve upon the LDA behaviour
in this respect.

At the opposite, within the exact-exchange OEP method [99], it will
be demonstrated later (Section 8.8) that the exchange-energy exhibits a
polarization dependence that physically originates in a polarization of the
exchange hole in the exchange-correlation field. Within this method, the
exchange kernel will therefore present the above-mentioned divergence.
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8.6.5 The metal-insulator paradox

We are now mentioning an interesting analogy. In connection with the KS
bandgap problem, it was shown by Godby and Needs [84], within certain
approximations, that the ground state of a periodic insulator is sometimes
described as metallic in the KS approach to DFT. This is particularly strik-
ing in that the long-wavelength behaviour of the polarizability matrix x for
an 1nsulator is qualitatively different from that of a metal, while y is a
ground state quantity and should be correctly obtained within DFT. In or-
der for y to be correctly reproduced from y,, they deduced that K. must
exhibit some a priori unexpected features. We now argue that a O(1/¢?)
divergence is required.

Indeed [217], the KS independent-particle polarizability of a DFT metal-
lic ground-state behaves like lim,_0 x.(¢,¢) = v, while for a cubic insula-
tor, one has lim,—0 x0(¢, ) = ag® '*. The head of the polarizability matrix
x(q, ) for a metal (interacting electrons, not KS electrons) behaves exactly

2
Z_ﬂ— 2

ing of the Coulomb potential, while for cubic insulators, it is —Z—3, where 3

is a positive constant smaller than one, describing the incomplete screening.

Using now Eq. (8.25), and neglecting the local fields effects, one easily
sees that in order to have altogether no divergence in x,1(q,q) (metallic
Kohn-Sham ground state), and divergences in x~!(q, ¢) and Ve with differ-
ent coefficients (incomplete screening of the insulating system), one must
have

as — <= in the long-wavelength limit, which corresponds to complete screen-

1 47 47 R

5= e T T i), (8.35)
requiring a @(1/¢?) divergence in Ky.(q,q). We note that generalization
to the case where local fields are included is trivial and simply leads to an
additional O(1/q) divergence in Kx.(q,q+ G).

In the framework of this Section, a divergence appears in Ky, in order
to compensate the incorrect screening of the KS system. We will see later
(Section 8.7.2) that the same mechanism must similarly appear as soon as
the bandgap 1s incorrectly described within DFT.

8.7 The dielectric constant

The failure of DFT-LDA calculations to reproduce the experimental dielec-
tric constant is well-known. As illustrated in Chapter 6 for BaTiOg, the
error goes well beyond that usually observed for other properties within the

Mw and o are some non-zero constants.
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LDA. Consequently to this unpleasant feature, Levine and Allan [166, 167]
proposed a simple “LDA+ scissors correction” approach to the dielectric
response, in which a constant shift A is imposed on the conduction bands
with respect to the valence bands, to reproduce the correct bandgap. The
dielectric tensor in this approximation has been found to be within a few
percent of the experimental data for more than a dozen semiconductors and
insulators [166, 167, 168, 33]. But, as emphasized by Dal Corso, Baroni,
and Resta [51], there is no immediate justification within DFT of this suc-
cessful procedure. Differently, the latter authors correctly pointed out that
the dielectric response is a ground-state property that must be correctly
described within DFT. Any improvement in the direction of the true func-
tional should therefore improve the result. Consequently, they computed
the dielectric constant of Si within GGA, but only with limited success.

In this Section, we clarify the mechanism by which DFT succeeds in re-
producing the correct dielectric response. This is closely related to the pre-
viously discussed ((1/¢?) behaviour of the exchange-correlation kernel and
it allows to clarify why the GGA correction has a rather limited success. We
also briefly mention how the scissor correction appears as an approximate
way of bypassing the polarization dependence of the exchange-correlation
energy.

8.7.1 The exact dielectric response

Within the electrostatics, the optical dielectric constant can be obtained
as [144]:

oo = 1+ 471'3—7; (8.36)
where P is the macroscopic electronic polarization and £ is the macroscopic
electric field. Within DFT, a complication arrives due to the exchange-
correlation term. Consequently, different approximations were proposed
that depend (i) whether P was computed when including the exchange-
correlation correction, (ii) whether £ if the field felt by a test charge or by
the Kohn-Sham electrons.

For periodic solids, Umklapp processes are allowed by the particular
k-space topology. In order to include the associated local fields effects in
the computation of €,, Adler and Wiser [1, 302] introduced a formalism
involving the inverse dielectric matrix, defined as

_ dver(q + G)

e q+G,q+ G)= L2 =/
(q 4 ) 6vext(q+G)

(8.37)
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The connection with the dielectric constant is given by:

1
¢~ q,q)

€oo = (8.38)
The demonstration was reported at the RPA level. The next step was
therefore to include correctly the correction induced by the exchange and
correlation effects [271].

In the test-charge formulation, the effective potential appearing in Eq.
[8.37] is chosen as that experienced by a hypothetical classic charge and
reduces to dver = 0vext +dvy. The Hartree potential is however considered
as that produced by the response of the quantum system so that dvg =
Ve dn, where 6n = x,[0vext + dvm + dvke]. Within these hypothesis (in one
dimension),

; _ _ (5vH(q)
erela ) ! §vext () + dvn(g) (8.39)
= 1— 4_” én(q) (5.40)

q2 6vext(q) + 6UH(Q)

Making use of the relationship that exist in the long-wave approach be-
tween field and potential and between charge and polarization, we recover
Eq. [8.36] where dP was obtained when including the exchange-correlation
corrections and 6& is the applied field only screened by the Coulomb inter-
action.

In the electron formulation, the effective potential appearing in Eq.
[8.37] is replaced by that felt by the Kohn-Sham electrons and that is equal
t0 dVef = OVext + dvH + 0¥y . The Hartree potential is obtained as in the
previous formulation. The dielectric constant so becomes equal to:

v Svm(q) + Svxe(q)
66__1((]a Q) =1 6vext(q) + 6UH((]) 4 6vxc((]) (841)
_ A (1 + Kyco0/4m) dn(q) 8.42)

T q2 6vex (q) + 0vm(q) + 6vxc(q)

We now examine the interplay between these formulas and the new in-
sights previously given in this Chapter. A first interesting point is that,
in absence of polarization dependence (dvx.(¢) = 0), Eq. [8.41] reduces
to Eq. [8.39]. Within the LDA or the GGA, ¢.- and epc are therefore
identical. Going beyond these approximation, we observe that the elec-
tron definition does not reduce to the electrostatics one when including the
exchange-correlation contribution in the macroscopic field, but also consider
a modified Coulomb interaction.
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This distinction being made, it is now possible to analyze the direct
effect of the divergences of head and wings of K. on both definitions of
the dielectric matrix. Following Singhal and Callaway [271], we use the
equality dn = x,[0vext + dvn + dvke] to find the form of the dielectric
matrices in terms of x,, Vo and Ky.. This yields [271]:

ere =1 —=Voxo [1— Keexo] ™', (8.43)

e =1—[Ve+ KxelXo (8.44)

As the head and wings of y, behaves like O(¢?) and O(g) in the limit of
q — 0 [127], the presence of @(1/¢?) and O(1/q) divergences for the head
and wings of Ky, will induce a finite contribution to all the elements of the
matrix Ky.Y, which, in turn, will affect all the elements of both dielectric
matrices. Consequently, it appears clearly that, when using approximate
functionals that do not reproduce the correct K. divergence, the head of
the dielectric matrix and therefore the macroscopic constant will be wrong
from a finite amount.

Similarly, consequences of the divergence of K. on the value of the fest-
charge dielectric constant can be highlighted from our variational approach

to the density functional perturbation theory. Going back to Chapter 6,
€ats

the element e,5 of the dielectric tensor can be obtained from E_ 77, in
which the exchange-correlation contribution appears as (see Eq. 6.4):
1
5/ Kye(r, ") [0 (£)]" 07 () dr dr'. (8.45)
Q,

As n%%(q) behaves like O(q) in the limit of ¢ — 0, we deduce that the (g, q)
and (q,¢ + G) terms will contribute from a finite amount to Efl"gﬂ

the K. matrix exhibits the correct long-wavelength behaviour.

when

Interestingly, we note that, within our variational approach, the previ-
ous discussion can be trivially extended to the case of another quantity. In
particular, it is straightforward to demonstrate from the expressions pro-
posed in Chapters 5 and 7, that the Born effective charges and dynamical
matrix in the limit of ¢ — 0 are affected by a finite correction when includ-
ing the correct divergence of the exchange-correlation kernel.

8.7.2 Exact DFT and “LDA +scissors” approach

We are now ready for understanding more clearly the mechanism by which
DFT succeeds to reproduce the correct dielectric response. Indeed, this
mechanism appears transparent from our model calculation.
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As highlighted by Adler and Wiser [1, 302], the independent particle
polarizability matrix is directly accessible from the independent-particle
wavefunctions. Its long-wavelength part is obtained in the limit of q — 0 as
(v and ¢ indices run on the valence and conduction bands respectively) [127]:

4 < Uy k|7|Uc k > < U k|T|Uy k >
ol = o 3 Jqp Skl u (8.46)

ek (Ev,k - €c,k)

In our model, the previous expression was used to compute y, and Y,.
We know that both calculations must in fine lead to the correct answer
x. However, y, and x, have different long-wavelength behaviours. The
matrix elements appearing in Eq. (8.46) may differ in both computations.
Moreover, the DFT bandgap problem will induce an incorrect screening
in the KS system: usually, the DFT bandgap underestimates the quasi-
particle bandgap so that x,(¢,¢) > Xo(¢,¢). From Eq. (8.30), we observe
that

the O(1/¢%) divergence of Kx.(q,q) appears for compensating
the different O(q?) behaviours between X,(q,q) and X,(q,q) in
order to yield finally the right answer x.

The scissors correction naturally arises in this specific context. Within
the LDA, we have shown that K. does not exhibit the correct behaviour.
Assuming that the LDA and quasi-particle wavefunctions are nearly iden-
tical, the difference between x, and Y, appears essentially connected to
the DFT bandgap problem. The scissor operator introduced by Levine and
Allan [166, 167], appears therefore as a crude tool that roughly eliminates
the difference between y, and x,: it so artificially compensates the absence
of divergence of the LDA approximate K.

A similar approach was taken independently by Aulbur, Jonnsson and
Wilkins [5] who estimated for real materials the amplitude of Ky 00. Re-
markably, they observed that the experimental dielectric constant can be
reproduced correctly if the coefficient Ky oo is chosen approximately con-
stant for common semiconductors. More generally, they found that K o
scales roughly linearly with average bond length in the material. Going
beyond the basic arguments presented in this Section, they also extensively
investigated the pertinence of the scissors correction. Moreover, their dis-
cussion was not restricted to the dielectric susceptibility but also concerned
non-linear optical responses.
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8.8 Origin of the Polarization dependence

8.8.1 The exchange-correlation hole

Up to now, we essentially discussed consequences of the dependence on
polarization of the exchange-correlation energy. Independently, another in-
teresting issue directly concerns the microscopic origin of this polarization
dependence. The debate was initiated a few months ago by R. Resta [245]
who reintroduced in the discussion the concept of exchange-correlation hole,
described in Chapter 1. From his study, he proposed that, in order to ob-
serve a polarization dependence, the many-body wavefunction of insulators
should display some kinds of long-range correlation. More explicitly, the
exchange-correlation hole around each electron would not necessarily inte-
grate to —1 within a microscopic range but should be partly delocalized
at the surface of the material. As the exchange hole integrates to —1 over
a microscopic distance, this phenomenon would be a purely correlation ef-
fect. In response to this intriguing assertion, Vanderbilt and Langreth [285]
as well as Martin and Ortiz [186] pointed out arguments suggesting that
nif (ra|ry) should have a decay like 1/(r; —r3)~". In response Resta [246]
emphasized that such arguments are restricted to perturbation theory, so
keeping open the debate on the localization of the exchange-correlation
hole.

Independently, Martin and Ortiz [186] also argued that the polarization
dependence of the KS exchange-correlation energy should find its origin in
the polarizability of a localized exchange-correlation hole within the field
induced by the polarization charges. From this point of view, it seems
clear that a polarization dependence discussed in this Chapter do not re-
quire any long-range correlation. As a proof, we now show that the DFT
exchange energy (without correlation) already exhibits dependence on the
polarization although the exchange hole integrates to —1 in the bulk [99].

8.8.2 Polarization dependence of the exchange energy

From what was previously discussed, it is clear that a O(1/¢) divergence in
the long-wave part (q — 0) of the exchange potential v,(q) = % (cor-
responding to an homogeneous exchange electric field) is a necessary and
sufficient condition for the exchange energy to depend on the polarization.
As mentioned in Chapter 1, the exchange energy

PRILY/EEILTLE I o
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can be computed from the first-order density matrix obtained from Kohn-

Sham (KS) wavefunctions [248, 170]:

oce

=3 i) v, (3.45)

A tractable scheme for computing the exchange potential was recently
proposed by Gorling and Levy [104], with the components of the KS po-
tential taken as independent variables. In our case, using the chain rule,

B v dus(q+ G)
-1 6Ex
= > xi'(a,9+G) o (a+ G’ (8.49)

where Yy is the independent-particle polarizability of the KS electronic
system. The important physics is contained in the G = 0 component
(while other reciprocal-lattice vectors describe local fields).

Thanks to the O(1/¢%) divergence of x5 in the long-wavelength limit,
one requires a contribution of order ¢ from 6FE;/dv;(q) for the O(1/q)
divergence of v;(q) to arise.

From Eq. (8.47), one finds

_ 1 r,r’) (57 v r) ,
(51)5 =— // v 5o- () dr dr’. (8.50)

The long-wave change in the KS potential can be written [94] as dv,s(q) =
dE/2iq (where 6& is the KS effective electric field), so that:

Sy(x',e) . dy(r,r)
—_ =32 —_
3us(q) W TsE

(8.51)

The final step in the proof comes from the fact that the density matrix
built from KS wavefunctions indeed depends on the long-wave change in the
KS potential or, equivalently, that the exchange hole polarizes [187] when
placed in a KS effective electric field. This 1s easily seen in the following
example. Consider a 3D periodic array of widely spaced helium atoms,
with its corresponding KS potential and associated KS wavefunctions. The
exchange hole, for an electron close to one helium atom, is equal to minus
half the density surrounding this helium atom, and integrates to —1. If
an independent KS electric field is now applied, the density around each
atom, and hence also the exchange hole, will polarize. The dependence of
the DFT exchange energy on polarization is thus demonstrated.
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This result establishes that the polarization dependence of the exchange-
correlation energy do not requires any long-range correlation effects as sug-
gested by Resta [245]. However, it does not invalidate the existence of such
correlation effects that would in turn induce additional dependence on the
polarization.

8.9 Conclusions

In this Chapter, we have introduced a new density-functional perturbation
theory as the correct generalization of the density functional formalism for
the case of infinite periodic systems. We have seen that correct handling of
the macroscopic polarization is mandatory when investigating the response
of insulators to homogeneous electric fields, and can prevent the correct KS
description of polar solids when using BvK boundary condition.

The dependence on polarization of the KS exchange-correlation energy
manifests as a fictitious exchange-correlation electric field to which are sub-
mitted the KS particles of the system. This exchange-correlation field in-
duces a divergence in the long-wavelength part of the exchange-correlation
kernel. The optical dielectric tensor, Born effective charges and dynamical
matrix associated to phonon of long-wavelength computed within local or
semi-local approximations (LDA, GGA), that are not able to reproduce
that behaviour, will be wrong from a finite amount.

Physically, the polarization dependence of the exchange-correlation en-
ergy has been associated to a polarizability of the exchange-correlation hole
within the KS exchange-correlation electric field.
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Conclusions

First-principles calculations performed within the density functional for-
malism are now currently used, as a complement to the experiment, for the
investigation of the properties of crystalline solids. In this work, we applied
such a technique to the study of ferroelectric barium titanate. Some of
our results directly concern the physics of the material. Another part of
our work questions the fundamentals of the theory within which our cal-
culations have been performed. Our main results can be summarized as
follows.

Concerning first barium titanate, we paid a particular attention to the
interplay between the electronic and dynamical properties, with the inten-
tion of clarifying the microscopic origin of the instability associated to the
ferroelectric distortion. In our discussion (see flowchart verso), the Born
effective charge appeared as a central quantity: its amplitude, on one hand
intimately related to the electronic properties, was also on the other hand
monitoring the destabilizing long-range dipolar forces generating the polar
instability.

As a first step, anomalously large Born effective charges were identi-
fied in BaTiOgz on titanium and on oxygen for atomic displacements along
the Ti-O direction (Table 5.2). Tt was highlighted that the Born effective
charge 1s a dynamical concept and that its amplitude cannot be deduced
from the inspection of the electronic density alone. Following the model of
Harrison, the anomalous charges were associated to macroscopic electronic
currents. They were understood in terms of transfers of charge induced by
dynamic changes of orbital hybridizations. From a band-by-band decompo-
sition (Section 5.6), we emphasized that the existence of partial hybridiza-
tions between occupied and unoccupied states is an essential feature for
anomalous contributions to appear. In contrast, hybridizations restricted
to occupied states generate compensating anomalous contributions, not af-
fecting the global value of the Born effective charges. The anomalously
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large amplitude of the Born effective charges on titanium and on oxygen
was attributed to dynamic changes of hybridization between O 2p and Ti
3d orbitals. It was shown that the amplitude of these anomalous charges is
strongly sensitive to the anisotropy of the interatomic distances along the
Ti-O chain (Fig. 5.3).

As a second step we investigated the consequences of the anomalously
large Born effective charges on the lattice dynamics. Following the original
idea of Cochran, we separated the respective contribution of the dipolar
and short-range forces to the frequency of the transverse modes at the
I' point. It was shown that the instability of the ferroelectric mode is
induced by the compensation of stabilizing short-range forces by a larger
destabilizing dipole-dipole interaction (Fig. 7.2). The driving force of the
transition appeared as the anomalously large Born effective charges, that
couple together for the specific displacement pattern associated with the
ferroelectric mode, in order to generate a giant dipolar interaction. From
that viewpoint, the ferroelectric instability was also coherently related to
the dynamic changes of hybridizations between O 2p and Ti 3d orbitals,
responsible of the unusual amplitude of the Born effective charges.

It was pointed out that the balance of force, leading to the ferroelectric
instability, is very delicate. Disappearance of the unstable mode in the
rhombohedral phase was attributed to a reduction of the Born effective
charges in this phase while its stabilization under isotropic pressure was
more likely connected to a modification of the short-range forces.

Going further, we reported full phonon dispersion curves for the cu-
bic phase of barium titanate (Fig. 7.4). The observed pronounced two-
dimensional character of the ferroelectric instability in the Brillouin zone
(Fig. 7.6) was associated to a chain-structure instability in real space. In
agreement with this picture, it was observed that both short-range and
dipolar parts of the the interatomic force constants are highly anisotropic:
they are associated to a much stronger correlation of the atomic displace-
ments along the Ti—O chains. It was pointed out that a single atomic
displacement is never unstable but that a cooperative displacement of a
dozen of atoms along a single isolated Ti—O chain is enough to induce the
ferroelectric instability (Fig. 7.7). As a consequence of the large dipolar
forces, the coupling between the displacements of a Ti atom and its first
oxygen neighbour is destabilizing. This destabilizing coupling, even if small,
appeared as an essential feature to reproduce the structural instability.

Throughout this work, a particular emphasis has also been placed on
the formalism within which our calculations have been performed. In this
context, we investigated the correct generalization of the density func-
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tional formalism for the case of truly periodic insulators. We highlighted
that correct handling of the polarization is mandatory when investigating
the response of insulators to homogeneous electric fields, and can prevent
the correct Kohn-Sham description of polar insulators when using periodic
boundary conditions. The crucial role of the polarization originates in an
ultra non-local dependence on the density. It led to the introduction of a
new density-polarization functional theory for the case of infinite periodic
systems.

It was shown that the polarization dependence of the exchange-correla-
tion energy shows itself in an additional fictitious electric field to which are
submitted the Kohn-Sham particles of the system (Fig. 8.1). It also induces
a divergence in the long wavelength part of the exact exchange-correlation
kernel (Fig. 8.5). These behaviours are not reproduced within the usual
local density approximation (LDA) and generalized gradient approximation
(GGA). We demonstrated that the absence of divergence in the exchange-
correlation kernel associated to these approximate functionals affects the
amplitude of the computed optical dielectric constant by a finite amount.
A similar consequence is expected for the Born effective charges and the
frequencies of long-wavelength longitudinal phonons.



Appendix A

Technical details

In this appendix, we report some technical details concerning our first-
principles study of barium titanate.

The calculations have been performed in the general framework of the
density functional formalism. The exchange-correlation energy has been
evaluated within the local density approximation, using a polynomial para-
metrization [280] of Ceperley-Alder [29] homogeneous electron gas data.
Our results have been obtained in the context of a plane-wave pseudopo-
tential approach. Integrations over the Brillouin zone were replaced by
sums on a mesh of special k-points [197, 198].

In a first Section, we describe the pseudopotentials that have been used
in our calculations. In a second part we briefly discuss the convergence of
the results in terms of the Brillouin zone sampling and the kinetic energy
cutoff, used to defined the plane-wave basis set. In a third Section, we
investigate the role of the exchange-correlation energy on the ferroelectric
instability.

A.1 Pseudopotentials

In our study of BaTiOgs, the ionic—core electrons potentials were replaced
by ab initio, separable; extended norm conserving pseudopotentials, as pro-
posed by M. Teter [279]. For the oxygen atom, in order to increase the
transferability, an additional condition of “chemical hardness” conservation
has been imposed.

The bs, bp and 6s levels of barium, the 3s, 3p and 3d levels of titanium
and the 2s and 2p levels of oxygen have been treated as valence states. The
reference configuration and core radii of the pseudopotentials are reported
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Table A.1: Reference configuration and core radii of the pseudopotentials
that we have used in our study of BaTiOs.

Ba Ti O
Reference 552 5p® 659 3s? 3p° 3d? 4sY 2% 2p*
Core radius (a.u.) s 1.7 1.25 1.65
p 1.7 1.25 1.65
d 1.7 1.65 -

in Table A.1. The local and non-local part of the pseudopotentials as well
as the radial part of the pseudo-wavefunctions are plotted in Ref. [55]. We
note that due to the description of the Ti 3s semi-core level as a valence
state, the Ti pseudopotential is relatively hard and imposes to work at a
relatively high cutoff energy (35-45 Ha).

A.2 Convergence study

Typically, the plane-wave energy cutoff and the mesh of k-points to be used
in order to obtain well converged results are dependent from one property
to the other. The convergence problems are now briefly discussed.

A.2.1 Ground-state properties

In Chapter 3, a convergence better than 10 meV has been obtained on the
electronic band structure when using a 4 x 4 x 4 mesh of special k-points
and a 45 Ha cutoff (about 6200 plane-waves included in the basis set).

Although the lattice constant in the cubic phase was fairly insensitive
to the quality of the Brillouin zone integration, the optimization of the
atomic positions in the ferroelectric phases required a denser mesh of spe-
cial k-points. A convergence of the order of 0.001 (see Table A.2) has been
obtained on the atomic positions (in reduced coordinates) in the rhombo-
hedral phase when using a 6 x 6 x 6 mesh of special k-points and a 35 Ha
cutoff (about 4100 plane-waves). A similar convergence is expected for the
other ferroelectric phases.
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Table A.2: Convergence of the atomic positions with k-point set and energy
cutoff (Hartree) for a rhombohedral distortion in the cubic unit cell of
BaTiOs. Notations have been defined in Chapter 3.

k-point mesh  E.; Ap_1; Ap-01 Agr-02
2xX2x%x2 35 -0.0000  0.0000  0.0000
4x4x4 35 -0.0104 0.0121 0.0181

45 -0.0104 0.0120  0.0183
6x6x6 35 -0.0110 0.0133  0.0192

A.2.2 Response functions

The Born effective charges and the dielectric tensors presented in Chapter
5 and 6 were obtained with a 6 x 6 x 6 mesh of special k-points and a 35 Ha
cutoff. These parameters guarantee a convergence better than 0.5% on Z*
as well as on each of its band by band contributions. A similar accuracy is
obtained on €.

Well converged phonon frequencies also required a 6 x 6 x 6 mesh of
special k-points (this mesh was verified by different authors to give sufficient
accuracy [141, 292]). The phonon frequencies at the T' point were already
well converged (up to the order of 1 em™!) at a 35 Ha cutoff. Similarly,
the phonon eigenvectors were fully converged at this specific cutoff energy.
However, in order to minimize convergence errors on further associated
quantities (like the interatomic force constants), all our calculations in the
cubic phase presented in Chapter 7 have been performed at a higher 45 Ha
cutoff energy. The Born effective charges and dielectric tensor, required to
evaluate the long-range Coulomb interaction were coherently recomputed
at this higher cutoff energy. We note that the results concerning the T
point of the rhombohedral structure were obtained at a 35 Ha cutoff, at
which the structural optimization had been previously performed and for
which Born effective charges and dielectric tensors were already available.

A.3 Structural optimization

In Chapter 3, we reported results concerning the structural optimization
of BaTiOj3 in its four different phases. As mentioned in that Chapter, the
theoretical results are in satisfactory agreement with the experiment. How-
ever, the error is larger than that usually observed within the LDA for
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Figure A.1: The cohesive energy (¢ = E,op ) of cubic BaTiOs and its kinetic
(A = Egin), electrostatic (00 = Fee.) and exchange-correlation (O = Ey.)
contributions as a function of the lattice parameter. As shown in the inset,
when neglecting the exchange-correlation contribution (B = Ey;, + Fetec),
the optimum lattice parameter is shifted from 3.94 to around 4.9 A.

other materials. This is not a particular feature of our calculations but
it was similarly observed by different groups studying the family of ABO3
compounds: it was intuitively attributed to the approximate description
of the exchange-correlation energy within the LDA. In order to investigate
the role of the exchange-correlation energy in the identification of the op-
timized structures, we decomposed the total crystal energy into its kinetic,
electrostatic and exchange-correlation contributions.

A first result, reported in Fig. A.1, concerns the evolution of the cohesive
energy of cubic BaTiOg in terms of the lattice parameter. In the same spirit,
in Fig. A.2, we examine the contribution of the exchange-correlation energy
to the lowering of the total energy along a path of atomic displacements
from the cubic to the rhombohedral structure (the macroscopic strain has
been neglected).

In both cases, it is observed that the well, from which the equilibrium
structural parameter is deduced, i1s very flat. This provides from the near
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Figure A.2: Kinetic (A = FEyipn), electrostatic (0 = Ege.) and exchange-
correlation (O = Ey.) contributions to the lowering of the crystal energy
(e = Eiot) along a path of atomic displacements from the cubic (A = 0) to
the rhombohedral (A = 1) structure. As shown in the inset, when neglecting
the exchange-correlation contribution (B = Ey;n + Feiec), the ferroelectric
instability disappears.

compensation between large but antagonist kinetic and electrostatic con-
tributions. At the scale of the well depth, the small exchange-correlation
energy appears as a major contribution to the lowering of the crystal energy,
necessary to reproduce the correct structure (see the insets of Fig. A.1-A.2).

From these graphs, it appears clearly that the exchange-correlation
energy plays an important role in the description of BaTiOsz. There-
fore, it should not be surprising if the results were more strongly sensi-
tive than for other compounds to the approximate description of this term
within the LDA. It is expected that the amplitude of the calculated opti-
mized parameters should be particularly sensitive to distinct handling of
the exchange-correlation effects from one approximation to the other (LDA,
GGA, WDA). Recently, it was observed that the lattice parameter of the
cubic phase obtained within the WDA [270] is in better agreement with the
experiment than that computed within the LDA.
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Appendix B

The atomic charges

B.1 The static atomic charges

In this Appendix, we give a few additional informations concerning some
of the static atomic charges that were briefly discussed in Chapter 5.

Mulliken population analysis [203]: this method makes use of the
basis functions that are used to represent the wavefunctions (it basically
consists in an analysis of the density matrix: see for instance Ref. [194]).
Although widely used, this charge has long been recognized as strongly de-
pendent on the basis set. It can also yield unphysical negative value for
the population of some orbitals. Finally, it seems sometimes to give an
unreasonable physical picture in materials having significant ionic charac-
ter. An interesting improvement of this method that circumvents most of
its drawback, was proposed by Weinhold et al. [237] who introduced the
concept of natural atomic orbitals.

Hirshfeld method [120]: this method separates the charge density
into overlapping contributions. The charge density at each point of space is
separated between the constituent atoms in the same proportions as they
contribute to the charge density to that point in a hypothetical compound,
constructed by the superposition of the spherically symmetrized charge
density distributions of the isolated atoms. Note that various alternative
methods for fitting overlapping atomic densities have been proposed (see
Ref. [194]).

Bader method [8]: this method splits the electronic density between
non-overlapping regions on the basis of topological arguments [48, 265].
Critical points are first identified that correspond to minimum charge den-
sity along the bond between the different atoms. From these points, paths
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for which the charge density decreases most rapidly are then developed in
direction perpendicular to the bond. The sets of these paths define zero-flux
surfaces separating the atoms. This method is very elegant but it suffers
from some problems. There is a possibility of empty loges, portions of space
that do not belong to any particular atom. Moreover, since a high density
on a particular atom repels the zero-flux surface, the Bader charge value
usually exaggerate the atomic charges. In spite of these inconvenients, this
charge is sometimes considered as the best choice [300].

ESPD charge of Lee et al. [165]: this method is based on a fit,
through a variational principle, of the electrostatic potential energy from
spherical atom model potentials. This technique is a generalization from
commonly employed methods that derive atomic charges from least-squares
fitting of the electrostatic potential at a given set of points and that are
usually dependent from the choice of these fitting points. The new method
of Lee et al. depends only on the electron density and does not require
fitting points.

Harrison charges [113]: a static effective charge concept appears nat-
urally within the tight-binding model of Harrison. This charge differ from
the bare ionic charge expected in a purely ionic compound by a static trans-
fer of electrons between the atoms, determined from the orbital interaction
parameters. It is the additional bond-length dependence of these parame-
ters that is at the origin of the dynamic contribution to the Born effective
charge.

B.2 The Harrison model

In this Section, we briefly describe the bond orbital model proposed by
Harrison for the case of ABOs compounds [113]. In particular, we pay
a particular attention to the definition and the calculation of static and
dynamic charges within this model. Values are reported for SrTiOs.

The bond orbital model of Harrison consists in a simplified tight-binding
model, where the Hamiltonian is limited to the on-site and nearest neigh-
bour terms. Moreover, for ABO3s compounds, it is assumed that the A
atom has no other function than to provide electrons to the system, and
is fully 1onized. The only considered interactions involve B and O atom
orbitals.

The model includes O 2s, O 2p and B d orbitals, interacting through
Vido, Vpd,o and Vpg » parameters. The matrix elements V4, and V,4, are
nearly identical. It is therefore suggested to construct two sp hybrids on
the oxygen, (|s > x|p >)/v/2, that each will have a large matrix element
(Vh-lc—l,a = [Vidgo + Vpdyg]/\/ﬁ) coupling one hybrid to the d state on one side



B.2. THE HARRISON MGODEL 233

and a negligible matrix element (Vh_dﬁ = [Vid,o — Vpdyg]/\/i) coupling that
hybrid to the d state on the other.

B.2.1 Effective static charge

In absence of interactions, the static charges of Sr'TiOs should be of 42
on Sr, +4 on Ti and —2 on O. Due to the Ti-O orbital interactions, the
transfer of electrons from Ti to O is not complete and the effective static

charge on O becomes:
Zo==2+41T+1T; (B.1)

where

_ Vh-lc—l,a ’
To= 4([ed e+ ep>/2]) (B2)

(“4” because there are 2 hybrids composed of 2 electrons that each interacts
mainly with one Ti neighbour) and

V-I(?lﬂ' ’
T, =8 ([Edp_igp)]) (B.3)

(“8” because there are 4 electrons that are each partly delocalized on the
2 Ti neighbours).

For SrTiO3, from the parameters of Matheiss, 7T, = 0.35 and 7 = 0.68
so that Zop = 0.96.

B.2.2 Born effective charge

The calculation of the Born effective charge now requires to make use of the
dependence of the matrix elements V' upon the bond length d. From the
Harrison table, the previous matrix elements have all the same interatomic
dependence:

V=Kd"? (B.4)
7_4d
0V =gV (B.5)
so that
(V+3V)? = V242V V +0(2) (B.6)
7. ,dd

Vg2 (7)v2?+0(2) (B.7)
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When displacing the O atom along the Ti-O direction, there will be an
additional transfer of electron from O to the nearest Ti that is equal to

T Vhdo pidd

0T, = 22(—)(——)*]— B.
R A b (B.8)

6T, = 4[2(__7 M2]6_d (B.9)

2 eg—¢p d

On the other hand, there will be the same transfer of charge from the
other neighbour Ti atom to O, so that the previous electrons are globally
transferred on a distance 2d. The change of polarization associated to this
transfer of charge is:

5P, = —28(—=2-)%6d (B.10)
€4 — €p
Vpd,m 12

6P, = —56(—")%6d (B.11)
€d — €p

The associated dynamic contribution to the Born effective charge is (§ P/dd):

577 = —QS(M)2 (B.12)
€4 — €p

5z = —56(M)2 (B.13)
€d — €p

The effective charge on the O atom for a displacement along the Ti-O
direction is therefore:

Zhy = Zo + 075 + 07} (B.14)

For SrTi03, from the parameters of Matheiss, 627 = —2.45 and 07 =
—4.76 so that Z(*)” = —8.18.



Appendix C

Phonons

C.1 The acoustic sum rule

As mentioned in Chapter 7, the total energy of a crystal must remain in-
variant under homogeneous translations, so that the dynamical matrix at
I’ should admit homogeneous translations as eigenvectors with zero eigen-
frequencies. This condition imposes a requirement on the elements of the
dynamical matrix well known as the “acoustic sum rule” (ASR). This rule
1s however not exactly satisfied in practical calculations due to technical
approximations that slightly break the translational invariance of the total
energy. In this Section, we first reinvestigate the origin of the problem. We
then discuss how it can be efficiently eliminated for the case of BaTiOs.

The different contributions to the total energy (see Chapter 2) are eval-
uated in a translational invariant way, except the exchange-correlation part
for which the integration in real space over the unit cell is approximated
by a sum on a finite grid of points:

Eye[n] = /ﬂ EPAn(r)] . n(r) dr (C.1)

~ Y P n)] . n(r) (C.2)

The exchange-correlation energy so obtained is not independent on the
position of the atoms with respect to the grid so that small oscillations of
the energy are observed when the atoms are homogeneously shifted.

This is illustrated in Fig. C.1-a for the case of BaTiOgs, for which we
used a grid composed of 48 x 48 x 48 points. It is seen that the total energy
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Figure C.1: (a) Evolution of the total energy of BaTiOs under homoge-
neous translation of the crystal. (b) Kinetic, electrostatic and exchange-
correlation contributions to the change of total energy for §x = 0.5x (a,/48)

in (a).
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of the crystal 1s not invariant under translation but oscillates at a frequency
directly related to the space between points of the grid. In Fig. C.1-b it
is highlighted that this oscillation is induced by the exchange-correlation
term while the other contributions compensates.

It should be argued that the amplitude of the oscillations is very small
compared to the total energy of the crystal (-133.137 Ha/cell). However,
the wavelength of the oscillations is also very small so that the curvature
of the energy at the origin is not negligible. When identifying the elements
of the dynamical matrix (i.e., the second energy derivatives of the energy
with respect to a specific atomic displacement), this unphysical curvature
will produce an erroneous contribution.

For instance, the dynamical matrix of BaTiOg at the I' point, obtained
by linear response, does not satisfy the ASR and the associated eigenfre-
quencies of the transverse modes are equal respectively to: 156 ¢, 101, 263
and 524 em~'. No one of these modes is associated to a perfect translation
of the crystal; no one has zero frequency. From the curvature of the energy
at the origin in Fig. C.1, we can estimate the fictitious frequency of the
translational mode to 121 em~!. The frequency of the same translational
mode, calculated from the dynamical matrix obtained by linear response is
equal to 122 ecm™!. This result clearly identifies the ASR problem with the
break of translational invariance induced by our technique of calculation of
the exchange-correlation energy.

The ASR imposes a requirement on a specific collective displacement
of the different atoms. In order to correct efficiently the different elements
of the dynamical matrix (eventually also at other wavevectors than T') it
is important to quantify the contribution from each atom to the break of
the sum rule. For that purpose, we now consider different cubic unit cells,
identical in volume to that of BaTiO3, but composed of a single atom of
Ba, Ti and O respectively. For each of them, we then study the evolution
of the total energy under translation. The result is reported in Fig. C.2.
We observe that (i) for Ba and Ti atoms, the translational invariance is
well preserved, (ii) the evolution of the energy in BaTiOz (Fig. C.1) is
reproduced in good approximation as three times the evolution of the energy
associated to the displacement of a single isolated O atom. This points out
that our ASR problem is associated to the oxygen atom only and is not
dependent on the environment in which this atom is placed.

The predominant role plays by the oxygen is confirmed from the in-
spection of the dynamical submatrix, associated to displacements along
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Figure C.2: Evolution of the total energy under homogeneous translation
for hypothetical single cubic crystals of Ba, Ti and O, in comparison with
the evolution observed in BaTiOs (see text).

the x-axis !:
+3.374 —-1.996 -0.306 -0.306 —0.766
-1.996 -0.177 —-0.511 -0.511 +3.297
CN'Kly,Qll = —0.306 —0.511 +5.569 +0.343 —2.603 (C.3)
—0.306 —0.511 +40.343 +5.569 —2.603
—0.766 +3.297 —-2.603 —-2.603 +5.157

for which it can be checked that the sum of the elements of a row are roughly
zero for the first two rows associated to Ba and Ti, but significantly non-
zero for the three last rows associated to oxygen.

We note that the problem mentioned here for the oxygen is significantly
larger than that typically observed in other calculations. It is in fact directly
related to the specific “chemical hardness conserving” pseudopotential that
was used in our calculation. Interestingly, using another oxygen pseudopo-

16’,{17,{/1 = 82Ee+l‘/87',{71 97y 1, where atoms &, &' are labeled as follows: Ba, Ti, O1,
02 and O3 (following notations of Chapter 3).
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Figure C.3: Phonon frequencies (cm~!) at the I' point in the experimental
cubic phase of BaTiOs. We report frequencies of transverse (e), longitudi-
nal (o) and “silent” (4) modes before (ASR=0) and after (ASR=1) the ASR
correction, in comparison with the experimental (EXP) data. Imaginary
frequencies appear as negative frequencies in this graph.

tential, the amplitude of the problem was significantly smaller, and of the
same order of magnitude than for Ba and Ti.

As the ASR problem, inherent to our study of BaTiOg, is intrinsic
to the oxygen atom and is roughly independent on its environment (i.e.
presence and cooperative displacement of other atoms within the cell), the
ASR can be coherently restored by correcting only the diagonal elements of
the dynamical matrix following Eq. (7.25). The effect of this correction is
illustrated in Fig. C.3 for the case of BaTiO3. Moreover, the error induced
by the oxygen atom being in first approximation independent from the
presence and displacement of other atoms within the cell, it will be a fortior:
independent on the displacement of the atoms in adjacent cells: it should
therefore be independent on the wavevector so that the correction can be
generalized at each wavevector following Eq. (7.26).

In this Section we have emphasized that ASR problems may occur be-
cause of the presence of a finite grid in real space on which the exchange-
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Table C.1: Phonon frequencies (cm~1!) at the T point in the experimental
cubic phase of SrTi0Os. The LO-TO splitting was computed from the the-
oretical Z7* and €., (see text). Values in brackets were deduced with the
experimental dielectric constant e,, = 5.18.

Mode Present Ref. [313] Experiment
Fr.(TOL) 873 I -
Fr,(LO1) 140 (141) 158 171
F1,(TO2) 149 165 175
F,(LO2) 443 (451) 454 474
F1,(TO3) 519 546 545
F1,(LO3) 746 (811) 829 795
Iy, 223 - -

correlation energy is evaluated. The problem was particularly stringent in
our study of BaTiO3. The bad feature was directly related to the specific
oxygen pseudopotential that was used in our calculation. Furtunately, a
coherent procedure has been found to eliminate the problem. From our
experience, 1t is suggested that invariance under translation should be an
additional criterion to be checked when generating atomic pseudopotentials
for the study of the dynamical properties of solids.

C.2 SrTiO;

In the same spirit than for BaTiOg, the phonon frequencies at the I' point
have been obtained for the cubic phase of StTi03. Computations have been
performed on a 6 x 6 x 6 mesh of special k-points and at a 45 Ha cutoff.
The results are presented in Table C.1 and are associated to a cubic phase
at the experimental lattice parameter of 7.38 bohr 2. The LO-TO splitting
was deduced from the Born effective charges reported in Chapter 5 and
from the theoretical optical dielectric constant €., = 6.33.

We note the existence of an unstable mode at the I' point that is as-
sociated to the ferroelectric displacement of the titanium atom against the
oxygen cage. Similarly to what was discussed for BaTiOgs, we have observed
that the small instability (w? = —7537 cm™?2) associated to the ferroelec-
tric polar distortion comes from the near cancellation between destabilizing

?The LDA optimized lattice constant is of 7.27 bohr [55].
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dipolar forces (w% = —369265 cm~?) and stabilizing short-range forces
(wip = +361728 cm—?).

In spite of its small ferroelectric instability, St'TiO3 is however never
ferroelectric: it undergoes an anti-ferrodistortive transition induced by an-
other more unstable phonon at the R-point, which is associated to a tilt of
the oxygen octahedra.
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Appendix D

One-dimensional model
semiconductor

It was shown in Chapter 1 that, within Kohn-Sham (KS) formulation of
the density functional theory, the interacting electron problem is mapped
onto another system of non-interacting particles [147] within an effective
potential vs = Vext + vV + Uxe, Where veyt 18 the external potential, vy is
the Hartree potential and vy, 1s the exchange-correlation potential. This
fictitious system satisfies the KS equation:

[_%vz + exe () -+ Vi (E) + vee (1)] W (1) = €5 5 (x) (D.1)

Stricto sensu, the eigenvalues and eigenfunctions of the KS equations are
unphysical quantities, that appear only for a mathematical reason. How-
ever, the formalism guarantees that the KS particles reproduce correctly
the total ground-state electron density of the real system as far as the ex-
act form of the exchange-correlation potential is known. As discussed in
Chapter 2, this potential is however unknown and, in practice, it must be
approximated.

In Chapter 1, we also mentioned that, within many-body theory (MBT),
the proper procedure to obtain the one-particles excitations of a system is to
solve a Schrodinger-like equation containing a non-local energy-dependent
self-energy operator X(r,r’,w) [114]:

[—%Vz—l—vext(r)—i—vH(r)]\I!Z'(I‘)—i—/E(I‘,I‘/,w)\lli(r')d?’ "= E;¥,(r). (D.2)

The eigenfunctions W; are usually called the Dyson amplitudes and E;
correspond to the quasi-particle energies. This is another independent-
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particles approach of the many-body problem. It gives the exact ground-
state charge density as far as the exact self-energy operator is known.

In practical computations, ¥ 1s usually calculated in the so-called GW
approximation [114, 126, 83] using the one-particle Green’s function (QG)
and the screened Coulomb interaction (W). Godby, Schliiter and Sham [83]
showed that, within this approximation, the self-energy operator X of four
classic semiconductors (Si, GaAs, AlAs, diamond) can be approximated by
the following simple functional form:

S, v, w) & %[f(r) + 7)]g(Jr —x'Dh(w) (D.3)

They observed that the non-locality (g) is essential in determining the cor-
rect bandgap which is only slightly affected by the energy dependence (h).

For our one-dimensional semiconductor, we chose a similar model self-
energy operator, but neglecting the energy dependence '. We define our
model semiconductor as being ezxactly described by this simplified self-
energy operator. Following the procedure describe below, we will then
build a KS theory and investigate the behaviour of the associated exchange-
correlation potential, exact within the model. The results must be under-
stood as follows. At a formal level, the DFT theorems are general and
can be applied to any system, so in particular, to our model. Our results,
considered as exact within the model, will allow to point out formal lim-
its of the KS construction. For instance, quantities that are not correctly
reproduced from the KS system within the model have no guarantee to
be correctly reproduced in the exact KS representation of a real many-
body system. At a more speculative level, it can also be expected that
consequences directly related to the non-locality of X should be similarly
present in real many-body systems, for which the non-locality appears as a
fundamental feature.

Our model consists in the same one-dimensional semiconductor as first
used by Godby and Sham in Ref. [86]. This solid is treated numerically in
a supercell consisting of N basic unit cells of length a. We consider that
the exact description of our system is given by Eq. D.2 where the external
plus Hartree potential is taken to be:

Vext (#) + vi(x) = Ve cos(2ma/a) + Vi sin(dmwa/a) + Acos(2rnz/Na) (D.4)

IWhen neglecting the energy dependence of the self-energy operator, the Dyson am-
plitudes become orthogonal and can be squared and summed to obtain the electron
density. For this particular case, the macroscopic polarization can also be deduced from
a Berry phase of the Dyson amplitudes.
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where V. 1s the amplitude of the main part of the potential. V; is the
amplitude of an optional potential required to mimic an asymmetric polar
solid. The parameter A is the amplitude of another optional slowly varying
potential intended for reproducing the action of an electric field. In the
limit of an infinitely long supercell (N — o0), this term will reproduce the
action of an homogeneous electric field. The self-energy operator is taken
to be

2o, 2/ ) = 57(2) + £ gl — ') (05)
where f(r) = —Fy[l—cos(27z/a)] is a negative function with the periodicity
of one unit cell and g(y) = 7~/ 2w exp[—(y/w)?] is a normalized gaussian
of width w. Note that our model self-energy operator X, although non-
local, does not have any non-locality on the scale of the supercell and is the
same in two cells whose electron density is the same. This is a physically
reasonable in the absence of long-range Coulomb effects.

In this particular framework, and for each particular choice of the pa-
rameters of the model, we can first solve the many-body problem by direct
diagonalization of the equations containing the self-energy operator (Eq.
D.2), using a plane-wave basis set and a supercell technique. The asso-
ciated many-body ground-state density i1s deduced from the sum of the
squares of the eigenfunctions of the occupied states.

Then, using nonlinear optimization techniques, an ezxact density fonc-
tional theory can be constructed by determining the local potential vy which
when filled with non-interacting electrons (Eq. D.1) reproduces the same
density as in the many-body case. The exact exchange-correlation potential
is deduced has vye = v5 — (Vexs + v1)-

Independently of the two optional potentials, our model is characterized
by the lattice constant a and three additional parameters: V. for the local
potential of Eq. (D.2); Fy and w for the self-energy oprerator. In this
work, we usually considered the same set of non-critical parameters than
already used by Godby and Sham [86]: a= 4 a.u., V.= 0.0 eV, Fy= -4.08
eV, w= 2 a.u.. They were chosen to be reasonably representative of a real
semiconductor. With these parameters, the bandbap is of 2.2 eV in the non-
local calculation and of 1.89 eV in the DFT case. A plot of the electronic
density and associated effective potential are reported in Ref. [86]. Both the
optional potentials (V; and A parameters) can now be alternatively turned
on in order to create a non-zero macroscopic polarization.
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