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Introduction

Since their discovery in 1920, ferroelectrics have attracted joined scientific and indus-
trial interest. Within this class of materials, the ABO3 compounds are probably the
most intensively studied. Their simple structure combined with their wide range of
applicability in technological devices, make them attractive to both theoretical and
experimental studies [1-4].

During the last decade, several theoretical advances combined with a gigantic jump
of computational power lead to an intensive study of ferroelectric oxides from first-
principles density functional theory (DFT) [5,6] and greatly improved our understand-
ing of these materials. These techniques have been applied successfully to a large
number of systems and provided insightful information on their electronic and struc-
tural properties as well as on their responses to perturbations such as electric fields,
atomic displacements and strains.

A first crucial advance concerns the emergence of the modern theory of polarization
[7-9]. Until the early 1990s, the formulation of a proper quantum mechanical approach
for the calculation of the electronic polarization in periodic solids had remained a tricky
and challenging problem. The modern theory of polarization offered an elegant solution
to this problem by associating the polarization of continuous periodic charge densities
to a Berry phase of the Bloch functions. The modern theory of polarization was also
at the origin of the theory of electron localization [10-14] and of the recently proposed
finite electric field techniques [15,16].

A second advance is the first-principles effective Hamiltonian approach [17,18] for
ferroelectrics. This formalism makes it possible to study the structural phase transi-
tions of ferroelectrics and the temperature dependence of their dielectric and piezo-
electric properties [19,20] that are inaccessible from standard DFT techniques. In this
formalism, the soft mode is considered as the driving mechanism of the phase transi-
tion. The Hamiltonian is constructed from a Taylor expansion of the energy around
the paraelectric phase. All parameters that appear in this expansion are determined
from DFT total energy and linear response calculations. Since its development in
1994, this formalism has been applied successfully to numerous ABOj ferroelectrics
and ferroelectric alloys [21-27].

A third advance is the development of a technique to compute mazimally localized
Wannier functions [28-31]. These Wannier functions provide an insightful picture of
the nature of the chemical bonds in solids that is missing in the Bloch picture of ex-
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tended orbitals. Moreover, maximally localized Wannier functions provide a physically
appealing interpretation of the modern theory of polarization and of the theory of elec-
tron localization. They can also be used as basis functions in order-N methods [32] or
for the construction of model Hamiltonians allowing to study the transport properties
of nanostructures [33].

Finally, the development of density functional perturbation theory [34 38] made
accessible from first-principles an increasing number of important physical properties
such as phonon frequencies, infrared intensities, dielectric, piezoelectric and elastic
constants ....

Nowadays, the increasing capabilities of first-principles techniques to predict with
a good accuracy properties of complex materials meet the requirements of experimen-
talists for helpful theoretical data. These techniques can guide the experimental work
and help to interpret the experimental results since they allow to relate the measured
properties to the microscopic structure of the materials. In the recent studies on fer-
roelectrics, we have to distinguish whether the experiments are performed on bulk
crystals or on nanostructures in which case finite size effects influence the properties
of the materials.

During the last decade, bulk ferroelectric oxides have been intensively studied be-
cause of their unusual dielectric and piezoelectric responses. For example, solid so-
lutions of PbTiO3 and PbZrO3 (PZT) are widely used in piezoelectric applications
because of their excellent electromechanical properties [2]. In addition, a new genera-
tion of mixed relaxor and ferroelectric ABO3-type crystals such as Pb(Mg; ;3Nby/3)O3-
PbTiO3 (PMN-PT) or Pb(Zn; /3Nb,/3)03-PbTiO3 (PZN-PT) have been found to ex-
hibit ultrahigh piezoelectric coefficients that may revolutionize applications in medical
imaging, telecommunications and ultrasonic devices. Theoretical studies showed that
the large piezoelectric responses of these materials are driven by polarization rotation
induced by an external electric field [39]. Moreover, they emphasized that atomic order
strongly affects the properties of these materials so that properly oriented compounds
can be used to tune their electromechanical responses [25,40].

More recently, nano-sized ferroelectrics have attracted a lot of interest. Especially
the properties of thin ferroelectric films and their compatibility with current silicon-
based technologies have been intensively studied by both theorists and experimentalists
[41-44]. In addition, there is presently an increasing interest in other ferroelectric
nanostructures such as nanowires and nanoparticles [45,46]. In these structures, the
properties of the materials are modified by effects that are usually negligible at the bulk
level. For example, in case of epitaxial films, the lattice mismatch between the substrate
and the ferroelectric may affect the structure and other properties of the materials so
that strain engineering offers new possibilities to tune the properties of nanoscaled
ferroelectrics [47,48]. Moreover, ferroelectricity is a collective phenomenon driven by
long-range electrostatic interactions. It is therefore believed that ferroelectricity is
altered in nanoscaled structures. Recent theoretical studies revealed the existence of
a critical thickness for ferroelectricicty in thin ferroelectric films between conducting
electrodes due to the imperfect screening of the depolarizing field [49]. It has also
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become possible to make heterostructures in which single crystalline perovskite-oxide
films of thicknesses down to 1 to 2 lattice constants can be epitaxially matched at
atomically sharp interfaces [41,50]. The properties of these structures can be tuned
by varying the superlattice period and the constituents. Moreover, it is possible to
combine ferroelectrics with other functional materials such as ferromagnetic materials
or superconductors to obtain materials with new multifunctional properties.

Multiferroics [51] form another class of multifunctional materials. These compounds
have coupled electric, magnetic and structural order parameters that result in simulta-
neous ferroelectricity, ferromagnetism and ferroelasticity. They present opportunities
for potential applications in information storage or the emerging field of spintronics.
There has been recent research interest in a number of prototypical magnetic ferro-
electrics, including YMnO3 [52], TbMn2Os5 [53] and BiFeOg [54].

In spite of the large activity in the field of ferroelectric oxides and of the exceptional
optical properties of these compounds, only few first-principles studies of their non-
linear optical properties have been performed [15,55,56]. The purpose of the present
work was to develop theoretical methods to study the nonlinear responses of insulators
to electric fields in order to determine nonlinear optical properties of ferroelectrics. In
this manuscript, we will focus on bulk crystals and study both the amplitude of these
properties at 0 K as obtained from standard first-principles techniques and on their
temperature dependence in the framework of an effective Hamiltonian approach. We
will pay a particular attention to the contribution of the soft mode to nonlinear optical
properties such as the electro-optic coefficients.

The nonlinear response of insulators to electric fields is interesting for both funda-
mental and practical reasons. On the one hand, the response of insulators to electric
fields is a difficult problem that has only become tractable recently. On the other
hand, these nonlinearities determine many interesting properties such as the nonlinear
optical susceptibilities or the electro-optic coefficients that are currently used in vari-
ous device applications. In contrast to the linear response formalism that is nowadays
routinely applied to various systems (see for example Ref. [34]), the applications of
the nonlinear response formalism in condensed matter physics have focused on rather
simple cases [56-63].

Our work has been done in the framework of the ABINIT project [64]. ABINIT is a
plane wave, pseudopotential density functional theory code. It has been developed as
an international collaboration between several universities in Europe, North America
and Asia. We implemented the formalism developed in this work in the ABINIT code so
that it is freely accessible and can now systematically be applied to study the nonlinear
responses of insulators to electric fields.

This thesis is organized as follows. Chapter 1 serves as a general introduction in
which we summarize the physical and theoretical background of our work. We first
discuss the basic aspects of three ferroelectric oxides and of the nonlinear response
properties that will be studied in the following Chapters. We then reintroduce sev-
eral theoretical concepts such as density functional theory and the modern theory of
polarization.
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In Chapter 2, we introduce a physical quantity that makes it possible to quantify
the degree of electron localization in insulating crystals and we show, how this quantity
can be decomposed into contributions of individual groups of bands. We then apply
this formalism to selected oxides and we study the change of electron localization at
the phase transitions of BaTiO3 and LiNbO3.

In Chapter 3, we develop a formalism to study the nonlinear responses of insulators
to electric fields. This formalism uses either density functional perturbation theory or
finite electric field techniques. In particular, we discuss the computation of nonlinear
optical susceptibilities, Raman scattering efficiencies and the electro-optic coefficients.

In Chapter 4, we apply the techniques developed in Chapter 3 to selected ferro-
electrics and semiconductors. We first compare the performance of density functional
perturbation theory to the performance of the finite electric field technique. We then
discuss the Raman spectrum and electro-optic coefficients of various ferroelectrics.

In Chapter 5, we develop an effective Hamiltonian approach to study the tempera-
ture dependence of the electro-optic coefficients and refractive indexes of ferroelectrics
and we apply it to BaTiOsj in its tetragonal phase.

Finally, we provide a summary of our main results and some perspectives.



Chapter 1

Background

1.1 Introduction

The physical properties of macroscopic solids can nowadays be predicted accurately
from first-principles density functional theory (DFT). This method makes it possible to
study the ground-state of complex systems such as ferroelectric oxides as well as their
linear and nonlinear responses to external perturbations. The aim of this work is to
develop several methods to determine the nonlinear responses of insulators to electric
fields in order to study nonlinear optical properties of ferroelectrics. This introductory
Chapter is intended to prepare the ground for this work.

Ferroelectric oxides are an important class of multifunctional materials character-
ized by unusual dielectric, piezoelectric and optical properties. In Sec. 1.2, we describe
the basic aspects of these materials and we characterize the structure and phase tran-
sitions of three compounds: barium titanate (BaTiOs), lead titanate (PbTiO3) and
lithium niobate (LiNbO3).

In Sec. 1.3, we introduce several nonlinear optical properties. We reinvestigate
the definition of the nonlinear optical susceptibilities, the electro-optic coefficients and
the elasto-optic coefficients and we summarize some applications of these properties
in technological devices. We also discuss the physical mechanisms that determine the
amplitude and frequency dependence of the nonlinear coupling coefficients.

The rest of this Chapter is devoted to the description of the theoretical framework
of this work. We summarize the basic formalism of density functional theory (Sec.
1.4.1), density functional perturbation theory (DFPT) (Sec. 1.4.2), the modern theory
of polarization (Sec. 1.4.3) and Wannier functions (Sec. 1.4.4). In Sec. 1.4.5, we
introduce the electric field perturbation in extended solids and in Sec. 1.4.6, we show,
how the response properties of insulators are related to derivatives of their energy.

11
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1.2 Ferroelectric oxides: an important class of mul-
tifunctional materials

A crystal is said to be ferroelectric when (i) it has two or more orientational states
in the absence of an electric field and (ii) it can be shifted from one to another state
by an electric field [1]. Each of these orientational states is characterized by a zero-
field spontaneous polarization, P?, and two states only differ in the direction (and
amplitude) of P®. The dependence of the polarization on the electric field can be
represented by an hysteresis loop such as the one shown in Figure 1.1.

Figure 1.1: Hysteresis loop of a ferroelectric.

P

\ 4

A ferroelectric may have several phases: in most cases a prototype paraelectric
phase stable at high temperature and one or more ferroelectric phases stable at lower
temperature. The paraelectric phase is characterized by a high degree of symmetry
and a vanishing spontaneous polarization. As the temperature is lowered below a
critical temperature, 7., the crystal undergoes a transition to a ferroelectric phase
characterized by a polar distortion of the unit cell and the appearance of a spontaneous
polarization.

Ferroelectricity was discovered in 1920 by Valasek who observed that the polariza-
tion of Rochelle Salt can be reversed by the application of an external electric field.
Since then, ferroelectricity has been observed in many different systems [1,2] such as
hydrogen bonded crystals (f.ex. KH;PO4 (KDP)), narrow gap semiconductors (f. ex.
GeTe) or polymers. In this section, we focus on (partially) ionic crystals with the gen-
eral formula ABO3;. We consider two structures: the perovskite structure of BaTiO3
and PbTiO3 and the trigonal structure of LiNbQOs.

1.2.1 Crystal structure

The ABO3 compounds can crystallize in various structures. The simplest is the per-
ovskite structure of barium titanate (BaTiO3) or lead titanate (PbTiO3) shown in
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Figure 1.2. Above T,, the symmetry of these materials is cubic (Pm3m) with 5 atoms
per unit cell. As the temperature is lowered, BaTiO3 undergoes a sequence of three
ferroelectric phase transitions. Around 403 K, it transforms to a tetragonal structure
(P4mm) with a spontaneous polarization along the (100) direction [Figure 1.2 (b)].
This phase is stable until about 278 K where there is a transformation to a phase of
orthorhombic symmetry (Pmm2) with P® along the cubic (110) direction. The last
phase transition arises around 183 K. The low temperature structure of BaTiOj is
rhombohedral (P3m1) and the polarization of this phase is aligned along the cubic
(111) direction. In contrast to BaTiOsz, PbTiO3 undergoes a single phase transition
around 763 K to a tetragonal P4mm phase as shown in Figure 1.2 (b).

Figure 1.2: Primitive unit cell of BaTiO3 and PbTiOj3 in the paraelectric phase (a)
and atomic displacements at the transition to the tetragonal phase (b).

®Ba/Pb CTi 0

In Chapter 4, we study the nonlinear optical properties of the tetragonal phase
of BaTiO3 and PbTiOj3. Following Ref. [65], these calculations have been performed
at the experimental lattice parameters. In contrast, the atomic positions have been
relaxed until the residual forces on the atoms are smaller than 10~° hartree/bohr. The
atomic positions in reduced coordinates are reported in Table 1.1 and the results of
the optimizations are reported in Table 1.2.

Another structure adopted by ABO3 compounds is the trigonal structure of LiINbO3 !
shown in Figure 1.3. Above T, LiNbOj is in a centrosymmetric R3¢ phase with 10
atoms per cell (Figure 1.3 (a)). Around 1480 K, it undergoes a ferroelectric phase
transition to a structure of R3c symmetry as shown in Figure 1.3 (b). The calculations
of the nonlinear optical properties of the ferroelectric phase of LiNbO3 presented in
Chapter 4 have been performed at the theoretical lattice constants and atomic po-
sitions. In Table 1.3, we define the parameters that determine the atomic positions
in the ferroelectric phase by reporting the hexagonal coordinates of five atoms of the

ISee Ref. [68] for a more detailed discussion of the structure of LiNbO3.
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Table 1.1: Atomic positions (in reduce coordinates) in the tetragonal phase of BaTiO3
and PbTiOs;.

Atom Position
Ba/Pb 0,0,0)
Ti (3,33 +0m)
0, (1,1,04460,)
0, (1,0,2 +d0,)
03 0,1, +60,)

Table 1.2: Lattice constants and atomic position parameters (see notations of Table
1.1) in the tetragonal phase of BaTiO3 and PbTiOs3.

BaTi03 PbT103
Present Exp. [66] Present Exp. [67]
a (A) 3.994 3.904
¢ (A) 4.036 4.152
o7 0.0136 0.0215 -0.0478 -0.040
5o, -0.0273  -0.0233 -0.1205 -0.112

00, -0.0167 -0.0100 -0.1278 -0.112
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Figure 1.3: Primitive unit cell of LiNbOg3 in the paraelectric phase (a) and atomic
displacements during the phase transition (b).

®
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rhombohedral unit cell. The coordinates of the other atoms can easily be obtained by
using the symmetry operations of the space groups R3c. The results of the structural
optimizations are summarized in Table 1.4 (see also Ref. [69]).

To discuss the electro-optic (EO) tensor of LiNbOj3 in Chapter 4, we have to define
a set of mutually orthogonal z, y and z axes. In this work, we follow the I. R. E.
Piezoelectric standards [70]. The z axis is taken orthogonal to a mirror plane of the
crystal, and the z axis parallel to the threefold symmetry ¢ axis. The positive end of
the y axis is the end that becomes electrically negative, due to the piezoelectric effect,
when the crystal is compressed along the y axis. Similarly, the positive end of the z
axis becomes negatively charged under compression along z.

1.2.2 Ferroelectric instabilities

The ferroelectric phase transition in BaTiOz, PbTiO3z and LiNbQO3 can be associated
to an unstable zone-center phonon mode in the paraelectric phase. If the atoms are
displaced from their high symmetry positions of Figures 1.2 (a) or 1.3 (a) along the
eigenvector of a stable phonon mode the energy increases and the atoms feel a force
that tends to bring them back to their equilibrium positions. In contrast, if the atoms
are displaced along the eigenvector of an unstable mode, the energy decreases. The
potential energy projected along the soft-mode eigenvector has the shape of a double
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Table 1.3: Atomic positions (in hexagonal coordinates) in the ferroelectric phase of
LiNbOs.

Atom Position

Nb, (0,0,0)

Li; (0,0,1 +2)

0, (-3 —u,—1+v, 5 —w)
(02 (3 -v,—u—v, 3% —w)
O3 (u+v,3+u,5—w)

Table 1.4: Lattice constants and atomic position parameters (see notations of Table
1.3) in the ferroelectric phase of LiNbQOs.

a(A) c(A) z u v w
Exp. [71] 5.151 13.876 0.0329 0.00947 0.0383 0.0192
Present 5.067 13.721 0.0337 0.01250 0.0302 0.0183

well with a negative curvature at the origin 2. In the harmonic approximation, this

negative curvature corresponds to an imaginary phonon frequency.

The origin of the instabilities in BaTiOz and LiNbOg has been explained from a
model based on a seminal idea of Cochran [72]. The interatomic forces in a crystal
can be decomposed into short-range forces (covalent interactions and repulsions be-
tween ionic cores) and long-range Coulomb (dipole-dipole) interactions. A structural
instability can appear from the cancellation of both contributions. As discussed in
Refs. [65,69], the covalent interactions between O 2p and Ti/Nb d atomic orbitals are
responsible for the giant Born effective charges in BaTiO3 and LiNbOg3. These effective
charges couple together for the specific displacement pattern associated with the soft
mode, in order to generate a giant dipolar interaction that leads to the ferroelectric
instability.

As an illustration, we show in Figure 1.4 the phonon dispersion curves of LiNbOj3
computed for a structure in which all atoms occupy the high symmetry positions of
Figure 1.3 (a) (see also Ref. [73]). The corresponding dispersion curves of BaTiO3
and PbTiO3 can be found in Ref. [74]. At the I'-point, LiNbO3 has three unstable

2Strictly speaking, the number of equivalent minima of the multi-well potential depends on the
number of equivalent directions for the spontaneous polarization. For example, there are only two
equivalent minima in case of LiNbOg3 where the polarization can only have two directions. In contrast,
in BaTiOga, there are 6, 12 and 8 equivalent minima that correspond respectively to the equivalent
directions of the polarization in the tetragonal, orthorhombic and rhombohedral phases.
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Figure 1.4: Phonon band structure in the paraelectric phase of LiNbO3.
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modes. The eigenvector of the transverse Ay, mode has an overlap of 0.99 with the
vector representing the atomic displacements at the phase transition shown in Figure
1.3 (b) [69].

The soft mode is not only responsible for the phase transition of ferroelectrics. It
is also the origin of their unusual dielectric properties. This can be understood as
follows: as mentioned above, the soft mode in the paraelectric phase is highly polar *.
In the ferroelectric phase it transforms into a highly polar (usually stable) mode of low
frequency that can strongly interact with an electric field and generate a huge dielectric
response.

In Chapter 4, we study the EO coefficients of the three materials discussed above
in order to elucidate the contribution of the soft mode to these quantities.

1.2.3 Multifunctional materials

Ferroelectric oxides combine many interesting properties such as high dielectric, piezo-
electric and pyroelectric constants and nonlinear optical coefficients (see f. ex. Refs.

3Roughly speaking, we can say that the polarity or mode effective charge of the soft mode is at
the origin of the spontaneous polarization in the ferroelectric phase.
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[1,75,76]). Some examples of their applicability in technological devices are sum-
marized in Figure 1.5. Their high dielectric constants make ferroelectrics attractive
for capacitors as they can be used in dynamic random access memories (DRAMSs) or
as gate oxides for metal-oxide-silicon field-effect transistors (MOSFETs). Their high
piezoelectric coefficients are exploited in applications where mechanical energy has to
be converted into electrical energy (transducers) and vice versa (actuators). Such de-
vices are currently used in medical imaging, for the generation of sonar or ultrasonic
waves or to displace the tips of atomic force microscopes and scanning tunneling micro-
scopes. The temperature dependence of the spontaneous polarization of ferroelectrics
is used to build pyroelectric detectors of infrared radiation and the possibility to switch
the polarization by an electric field is potentially interesting to build nonvolatile fer-
roelectric random access memories. Finally, ferroelectric oxides have good nonlinear
optical properties as will be discussed in Sec. 1.3.

Figure 1.5: Summary of the most important properties of ferroelectric oxides and their
applications in technological devices.
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1.3 Nonlinear optical properties

In this Section, we present different nonlinear optical properties and we discuss the
physical mechanisms, which are at their origin. To simplify, we only discuss the basic
aspects of the nonlinear response properties. In particular, we neglect any anisotropy
in the response of the crystals and we suppose that the relation between the response
and the applied perturbation is given by a scalar equation.
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1.3.1 Nonlinear optical susceptibilities

The dielectric polarization, P, induced by a macroscopic electric field, £, is given by
the relation

P = x(&)E, (1.1)

where x(&) is the dielectric susceptibility. For weak electric fields, the electric field
dependence of x(£) can be neglected to a good approximation and the relation between
P and €& is linear. For strong electric fields, this linear relation is no more valid and
we can write P as a power series of the electric field

7):X(1)5+X(2)55+X(3)555+..., (1.2)

where Yy, ¥® and y®) are respectively the linear optical susceptibility and the
second- and third-order nonlinear optical susceptibilities.

In the present work, we are mainly interested in the second-order nonlinear optical
susceptibilities. These quantities vanish in systems with a center of inversion such as
the ferroelectric oxides discussed in Sec. 1.2 in their paraelectric phase. In order to
illustrate how y(2) affects the optical properties of a crystal, let us consider an electric
field of frequency w:

& = & cos(wt). (1.3)

The second-order nonlinear polarization, PN%, induced by this field has a frequency
dependence of 2w:

PNE = g2 cos? (wt) = %X(Q)Eg[l + cos(2wt)]. (1.4)
PNL can act as a source of radiation and generate an electromagnetic wave of frequency
2w. This phenomenon is called second-harmonic generation. It is notably applied for
the frequency doubling of laser [77].

Another second-order nonlinear phenomenon is the optical parametric process [78].
It describes the breakdown of a pump photon into a signal and an idler photon. Energy
conservation requires that the sum of the frequencies of the signal and idler photon
equals the frequency of the pump photon. This phenomenon is notably used in para-
metric oscillators, which are sources of coherent radiation that are continuously tunable
over a wide range of frequencies.

Ferroelectric oxides are particularly interesting for this kind of applications. On
the one hand, their nonlinear optical susceptibilities are unusually high. On the other
hand, they can be quasi phase matched by periodically inverting their spontaneous
polarization, which allows to obtain high conversion efficiencies in the second-harmonic
generation process [79].

1.3.2 Electro-optic coefficients

The optical properties of a crystal can be described by its index ellipsoid. Applying
an electric field, this index ellipsoid can be distorted, which allows to influence the
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Figure 1.6: EO modulator build from an epitaxial film of BaTiOz (BTO) grown on a
MgO substrate. From Petraru et al. [84].
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propagation of a light wave inside the crystal. In noncentrosymmetric systems, this
change is given by a linear relation

s(L) = 05

where r is the linear electro-optic (EO) coefficient.

This effect is important for several technological applications. For example, pho-
torefractive materials used for holographic applications [80,81] are required to exhibit
large EO coefficients in addition to other properties such as good photoconductivity
and low dark conductivity [78]. This effect is also exploited to build EO modula-
tors [78,82,83] that are used in integrated optics and fiber-optic communications sys-
tems to modulate the amplitude of a light wave in a wave guide. Recently, there has
been an increasing interest to build EO modulators from thin ferroelectric films. Figure
1.6 shows an intensity modulator build from a thin film of BaTiOg3 epitaxially grown
on a MgO substrate [84]. This device uses a Mach-Zehnder interferometer to modulate
the intensity of a light wave in a wave guide. By varying the potential applied to the
central electrode while keeping constant the potential of the two outer electrodes, it
is possible to induce a phase shift between the light waves in the two branches and to
modulate the output of the interferometer.

1.3.3 Elasto-optic coefficients

The elasto-optic effect describes changes in the refractive index of a compound induced
by a strain, n. It is defined by a similar relation as the EO effect

S(2) = 0
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where 7 is the elasto-optic coefficient of the medium. In contrast to the EO coefficients
and nonlinear optical susceptibilities, which vanish in centrosymmetric crystals, the
elasto-optic coefficients are nonzero in all crystals as well as amorphous solids.

This effect is interesting for several reasons. First, as we will see in Sec. 3.3.4, it
determines the piezoelectric contribution to the EO coefficients. Second, this effect is
used for applications such as acousto-optic modulators or deflectors where an acoustic
wave interacts with an electromagnetic wave to change its direction or intensity [78].
Third, in microelectronics, there is an increasing use of UV laser sources in precision
optical applications such as lithography. These energetic beams induce a local densifi-
cation of the SiQ, optical lenses, which causes an increase of the absolute value of the
refractive index and a loss of resolution due to birefringence [85, 86].

1.3.4 Frequency dependence

The amplitude of the nonlinear coefficients discussed above depends on several physical
mechanisms. Each mechanism has a characteristic response time and its contribution
to these coefficients depends on the frequencies of the electric fields involved in the
process. In this work, we distinguish between (i) pure electronic contributions, (ii)
ionic contributions due to electric field induced atomic displacements and (iii) piezo-
electric contributions due to homogeneous deformations of the crystal*. Moreover, for
specific frequencies, the nonlinear coupling coefficients can present a resonance, due
to electronic excitations, excitations of phonon modes or mechanical resonances of the
whole crystal®.

In the discussion that follows, we suppose that the frequencies of the electric fields
are always far away from any resonance. In this case, we can distinguish three charac-
teristic regions®:

e Optical frequencies, i.e. frequencies higher than the frequencies of the optical
phonons but lower than the fundamental absorption gap. In this case, only the
electrons contribute to the linear and nonlinear susceptibilities while the atomic
positions and the unit cell shape are clamped to their equilibrium values.

e Frequencies higher than the highest mechanical resonance of the crystal but lower
than the frequencies of the optical phonons (typically between 10? and 106 MHz).
In this case, the atoms in the unit cell are able to respond to the electric field
while the shape of the cell remains fixed. The linear and nonlinear susceptibilities
are the sum of the electronic and ionic contributions.

e Frequencies lower than the frequency of the first mechanical resonance of the

41In this work, we consider only intrinsic contributions to the nonlinear coefficients. We do not take
into account extrinsic effects that may eventually influence the nonlinear response of ferroelectrics to
electric fields such as the reorientation of ferroelectric domains.

5These mechanical resonances usually depend on the shape and dimension of the crystal.

6In addition, the linear and nonlinear susceptibilities present a frequency dependence inside each
region. This dependence is usually quite weak and will be neglected in this work.
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Figure 1.7: Schematic illustration of the dependence of the EO coefficients on the
frequency of the modulating electric field. From Wemple et al. [87].
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sample (for example static electric fields). In this case, the electrons, the ions
and the strain contribute to the linear and nonlinear susceptibilities.

The discussion presented above is general an applies to most phenomena related to
the response of insulators to electric fields. We now particularize it to the specific case
of the EO coefficients. Figure 1.7 shows the typical dependence of the EO coefficients
on the frequency of the modulating field. For high-frequency fields, the ions can be
considered to be clamped to their equilibrium positions. As a consequence, the EO
coefficients are determined by pure electronic processes. For frequencies higher than
the mechanical resonance frequencies but lower than the frequencies of the optical
phonons, the ions are able to respond to the electric field. This is the region of the so-
called clamped (strain-free) EO coefficients that are the sum of the electronic and ionic
contributions. Finally, for low frequencies, the shape of the unit cell is modified by the
electric field. This is the region of the so-called unclamped (stress-free) EO coefficients
that are the sum of the electronic, ionic and piezoelectric contributions. In Sec. 3.3.4,
we will give explicit expressions of the three contributions to the EO coefficients.

1.4 Theoretical Background

In this section, we summarize the formalisms that are the basis of the theoretical
developments and calculations of this work. We first reinvestigate the basic aspects
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of density functional theory and density functional perturbation theory that make it
possible to compute most of the ground-state and response properties of solids and
molecules with an accuracy of a few percent. We then summarize the formalism of
the modern theory of polarization, the theory of Wannier functions and the electric
field perturbation in extended systems. Finally, we show how the response properties of
solids are related to derivatives of their energy. We focus on periodic systems described
within Born- von Karman boundary conditions.

1.4.1 Density functional theory

From a quantum mechanical point of view, a solid (or a molecule) can be described
as a system of electrons and nuclei in interaction. The ground-state of this system
can, in principle, be determined by solving the corresponding many-body Schrodinger
equation. Unfortunately, the direct solution of this equation is not possible except
for a few simple systems. In order to study the properties of complex systems from
first-principles we have to make some approximations and simplifications.

A first simplification is obtained from the Born and Oppenheimer approximation
that allows to decouple the dynamics of electrons and nuclei and to study properties of
the electrons in some frozen in configuration of the nuclei. To determine the electronic
ground-state we use the Kohn-Sham density functional theory (DFT) [5, 6,32, 88, 89].
This technique allows one, in principle, to map exactly the problem of a strongly
interacting electron gas onto that of independent particles moving in an effective po-
tential v(r). The ground-state energy of this system can be derived by minimizing the
following expression with respect to the (single-particle) Kohn-Sham orbitals 1, (r)

occ

E[¢a] = Z(Z%\T + ’Ueth}a) + EHzc[n]- (17)

@

The sum in Eq. (1.7) runs over all occupied states. T is the kinetic energy operator,
Vert(r) the (nuclear) potential external to the electronic system, Ep,.[n] the sum of
the Hartree (Fy[n]) and exchange-correlation (E,.[n]) energy functionals and n(r) the
ground-state density

occ

n(r) = [alr). (1.8)

07

The occupied Kohn-Sham orbitals are subject to the orthonormalization constraints

(1/)a|1/}3> = 6055' (19)

The minimization of Eq. (1.7) under the constraints (1.9) can be achieved using
the Lagrange multiplier method. The problem turns into the minimization of

occ

F[¢a] = E[¢a] - ZABQ(<¢Q‘¢B> - 6055)7 (1'10)
a,B
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where Ag, are the Lagrange multipliers. The corresponding Euler-Lagrange equation
is

H|pa) = Agalts), (1.11)
B

where the Hamiltonian
H=T+v=T + Vet + VHzec (1.12)

has to be determined self-consistently since it depends on the Hartree and exchange-
correlation potential vg,.(r) that is a functional of the ground-state density

_ 6EH'I’(‘[’"]

VHze(T) = 0 (1.13)

The Lagrange multipliers Ag, are the matrix elements of the Hamiltonian between the
corresponding wave functions

Aga = (Y| H|ba). (1.14)

The solution of Eq. (1.11) is not unique. In fact, we can always apply a unitary
transformation U to the wave functions of the occupied states

occ

[Ya) — Y Usalts) (1.15)
5

without affecting the energy or the density. Such a transformation is called a gauge
transformation. Since the Hamiltonian is a hermitian operator, it is possible to work
in the so-called diagonal gauge where the Lagrange multiplier matrix (1.14) is diagonal

(s|H Vo) = £50pa- (1.16)

In this work, we consider periodic crystals where the wave functions v, (r) are Bloch
functions characterized by their wave vector k and a band-index n

Yo (r) = K Tuy (r) (1.17)

with u_j (r) a periodic function that has the same periodicity as the crystal lattice.

The self-consistent solution of Eq. (1.11) allows to determine the exact ground-state
energy and charge density. Unfortunately, the expression of the exchange-correlation
energy functional is not known and we have to use an approximation for this term. In
this work, we consider two kinds of approximations: the local density approximation
(LDA) and the generalized gradient approximation (GGA).

1.4.2 Density functional perturbation theory

Having defined the DFT equations in Sec. 1.4.1, we investigate in the present sec-
tion the response of a quantum mechanical system to a perturbation of the external
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potential. As will be shown in Sec. 1.4.6, many interesting properties of a solid can
be characterized by the derivatives of its energy or thermodynamic potentials. In this
section, we focus to the response to infinitesimal perturbations. In this context, the
energy derivatives are obtained from perturbation theory.

Let us expand all perturbed quantities, X, in terms of a small parameter, A, around
their unperturbed values, X (©):

XA =XO 4 xMOX 4 X2 4 XxON3 (1.18)
where L dnx
() = — . (1.19)
n!d\" |, _,

X can be one of the quantities E, ¢, (r), n(r), H, Agq, Vige(r) O vege(r). Because E
satisfies a variational principle, it is possible to derive two major theorems [35, 36]:

1. A variational principle can be established for the even order perturbations. It

states that
n (2n)
> Mw&“] } . (1.20)
i=0

This theorem establishes that the nt*-order derivatives of the wave functions can
be obtained by minimizing the functional expression of E(*") with respect to

B2 — 11;1(1711)1 {E()\)

zZJ((In). For example, in this work we deal with the first-order derivatives of the
wave functions that are computed by minimizing the variational expression of
the second-order energy derivatives E(2).

2. A 2n + 1 theorem can be demonstrated for the odd order perturbations:

n (2n+1)
Bt — {E(A) [Z ,\w(j)H . (1.21)
i=0

It states that the derivatives of the energy up to the order 2n+1 can be computed
from the derivatives of the wave functions up to the order n. For example, in
this work, we focus on third-order energy derivatives that are computed from the
ground-state and first-order derivatives of the wave functions.

More explicit expressions of even and odd order energy derivatives can be found in
Refs. [35,36]. In Chapter 3, we particularize Eq. (1.21) to the case of third-order
energy derivatives with respect to at least two electric fields.

1.4.3 The modern theory of polarization

In Sec. 1.2, we defined a ferroelectric as a material which exhibits a spontaneous
polarization, P?, that can be switched by an electric field. In this section, we give a
rigorous definition of P*® and we show how this quantity can be computed in practice.
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Let us consider first a finite piece of matter of volume V. The polarization of this
system can be computed as the dipole moment per unit volume

1
P = 7 [e;ZmRm - e'/v dr rn(r)] , (1.22)

where Z,, and R, are the atomic number and position, e the absolute value of the
electronic charge and n(r) the electronic charge density defined in Eq. (1.8). Although
such a dipole moment is in principle well defined, it is not a bulk property since it
depends upon truncation and shape of the sample. In contrast, the variations of P
are measured as bulk properties in several circumstances. In fact, most macroscopic
properties such as the dielectric tensor, the piezoelectric tensor or the nonlinear optical
susceptibilities are just derivatives of P with respect to suitably chosen perturbations.
Moreover, the spontaneous polarization of a ferroelectric measured via hysteresis
cycles (see Figure 1.1) — is usually obtained as the difference, AP, between two states
of the crystal.

In infinite solids, described in the framework of periodic Born- von Karman bound-
ary conditions, Eq. (1.22) can no more be used to compute the polarization as a dipole
moment, per unit volume. In fact, the position operator, r, is not compatible with
Born- von Karman boundary conditions. Consider a supercell of size L; = M;a; (i =
1, 2, 3) where a; is a lattice vector. The Hilbert space of a single-particle wave function
1(r) is defined by the condition ¢ (r) = ¢ (r + M;a;). An operator maps a function of
this Hilbert space into a function belonging to the same space. The position operator r
is therefore not a legitimate operator when periodic boundary conditions are adopted
since ry(r) is not a periodic function when v (r) is such.

For crystalline dielectrics, the problem of the polarization was solved by King-
Smith, Vanderbilt and Resta in Refs. [7-9]: P is a manifestation of a Berry phase [90],
i.e. it is an observable which cannot be cast as the expectation value of any operator,
being instead a gauge invariant phase of the wave functions.

In the discussions that follow, we consider an insulating crystal with N doubly
occupied bands separated from the unoccupied bands by a finite gap F,. Let us
consider a continuous adiabatic transformation of the crystalline potential connecting
two states of the crystal. We parameterize this transformation by a variable A and we
note \; and A, its values in the initial and final states. The change in polarization
induced by this transformation can be expressed as

Ao 8
AP = [ 22 Py - POw). (1.23)
/. “ o

The polarization P(\) can be decomposed as the sum of a bare ionic and an electronic
polarization

P(A) =Pion(A) + Per(N). (1.24)

The ionic polarization can be computed through an expression similar to the first term
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of the right hand side of Eq. (1.22)

cell

Pion(A) = ZZR (1.25)

where the sum runs over all atoms in the unit cell. The electronic polarization can be
computed as a Berry phase of the occupied bands [7]

21
'Pel( ’Leq Z/ dk nk‘vk‘unk> (126)

where BZ is the Brillouin zone, unk(r) is the periodic part of the Bloch functions and
the factor of 2 accounts for spin degeneracy. The Bloch functions are chosen to satisfy
the periodic gauge condition

e’G'runk+G(r) =u, ) (r) (1.27)
where G is a reciprocal lattice vector. With this choice of gauge, the polarization
changes given by Eq. (1.23) are given to within a factor (/)R where R is a lattice
vector. Using Eq. (1.23), the spontaneous polarization of a ferroelectric, P*, can be
defined as the change in polarization, AP, when the crystal is transformed from the
high-symmetric paraelectric structure to a ferroelectric one.

In order to use Eq. (1.26) in practical calculations, the integration over the BZ, as
well as the differentiation with respect to k, have to be performed on a discrete mesh of
M, = My x My x M3 k-points. The standard approach is to build strings of k-points
parallel to a vector of the reciprocal space G;. The projection of the polarization along
that direction can then be computed as the sum of the string-averaged electronic Berry
phase, ©¢;, and the ionic phase, ;on,

P(\) -G, = Qiowi? + o) (1.28)
with
5 M(f) _
(45) o

Per = _7‘+1)] (1.29)

MJ_ =1 i=0

] cell

Pl = 2WZZKRM- (1.30)

In these expressions, Mj_l)

ing M, points” k§1) = kﬁf) + jG1/M;, S the overlap matrix between Bloch functions
Snom(k, k') = (u e lu 1) (1.31)

and R,;; the reduced coordinates of atom x in the unit cell.

= M5 x M3 is the number of strings along Gy, each contain-

7Mi2) and Mf) are given by similar expressions.
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1.4.4 Wannier functions

Wannier functions W,,(r —R) (=(r|Rn)) are orthonormal functions that span the same
space as the Bloch functions ¢ ; (r) of a band or group of bands [91,92]. They are
characterized by two quantum numbers: a band index, n, and a lattice vector, R.
Wannier functions are an interesting tool in the study of the electronic structure and
dielectric properties of materials. They are the solid state equivalent of ”localized
molecular orbitals” [10,12,93] and thus provide an insightful picture of the nature of
the chemical bonding, otherwise missing from the Bloch picture of extended orbitals.
Moreover, Wannier functions are used as a very accurate minimal basis in ”order-N”
methods [32], the construction of effective Hamiltonians for the study of transport

properties of nanostructures [33], strongly correlated electrons [94] and other systems.

3

Wannier functions are Fourier transforms of the Bloch eigenstates

Qg k- (r-R)
Wa(r—R) = @n) ./Bz dke’ u, 1 (r). (1.32)
They allow an interesting interpretation of the Berry phase formalism presented in Sec.
1.4.3. Inserting Eq. (1.32) into Eq. (1.26), we obtain

N
Pa(N) = 9—206 Z/dr r [W,(r)|%. (1.33)
n=1
Physically, Eqgs.(1.23) and (1.33) state that the change in polarization of the solid is
proportional to the displacement of the center of charge of the Wannier functions of
the occupied bands induced by the adiabatic change in the Hamiltonian.

One of the most serious drawbacks of the Wannier representation is that the func-
tions are not uniquely defined but that they can vary strongly in shape and range.
This is a consequence of the phase indeterminacy of the Bloch orbitals at every wave
vector k. In addition, Bloch orbitals belonging to an isolated group of bands, G;, (i.e.,
a set of bands that are connected between themselves by degeneracies, but separated
from others by energy gaps) can undergo arbitrary unitary (gauge) transformations
between themselves at every k

w1 (0) > 0 U, g (x). (1.34)
meg;

Marzari and Vanderbilt developed a method to construct Wannier functions that
are maximally localized around their centers [28,30,31]. For each group of bands, G;,
they proposed to minimize the spread functional

Q=" [(0n[r?|0n) — (Onfrjon)?] = Y [(r*)n — (r)}] (1.35)

neg; neg;

with respect to the unitary transformations U&ljl) Eq. (1.35) can be decomposed into
two terms,

Q=0,+0 (1.36)



1.4. THEORETICAL BACKGROUND 29

where
Q=Y [<1«2>n -y Z|(Rm|r|0n)2-| (1.37)
neg; [ meg; R J
and B ‘
a=>" > r|(Rmir(0n)]”. (1.38)
neG; meg; R

The prime in Eq. (1.38) indicates that the terms Rm = On have to be omitted. It can
be shown that Q; and  are positive definite. Moreover, €; is also gauge-invariant,
i.e. it is invariant under any unitary transformation (1.34) among the Bloch orbitals.
The minimization of Eq. (1.35) therefore corresponds to the minimization of Q and
Q7 corresponds to a lower bound of the spread functional €.

In a one-dimensional crystal this lower bound can be realized by choosing an ad-
equate phase factor for the Bloch functions. In fact, the Wannier functions can be
chosen to be eigenfunctions of the position operator projected onto the group of bands
under consideration, Pz P. In this case, it is straightforward to show that {2 vanishes
so that Q = Qy [28]. In a three-dimensional crystal, it is no more possible to diagonal-
ize PxP, PyP and PzP simultaneously. As a consequence, Q > 0 and Q will always
be larger than Q;. The problem is therefore to find a set of Wannier functions that
makes the best possible compromise in the attempt to diagonalize all three operators
simultaneously .

1.4.5 The electric field perturbation in extended systems

In this section, we discuss the main difficulties related to the electric field perturbation
in extended systems and show, how they can be overcome in practice. In the scalar-
potential gauge, the interaction between the electrons and a homogeneous electric
field, &€, is described by the potential V(r) = e€ - r, where e is the absolute value of
the electronic charge. Although this potential is widely used to study the response
of confined systems such as molecules to electric fields, its application to extended
systems such as solids is not straightforward. The main difficulty is the nature of the
scalar potential which, is non-periodic and unbound from below.

The non-periodicity of V (r) is related to the position operator r. As it is discussed
in Sec. 1.4.3 this operator is not compatible with periodic boundary conditions so that
it cannot be applied in a straightforward way in extended solids.

The unboundness of the scalar potential can be explained as follows. Figure 1.8
shows the electronic bands of an insulating crystal in the presence of an electric field.
As can be seen, the field "bends” the energy bands so that the potential energy of the
electrons is lower on the right side of the figure than on the left side. It is therefore

8 Another approach consists in the minimization of the spread of the Wannier functions in one given
direction as realized for the so-called hermaphrodite orbitals introduced in Ref. [12]: these particular
functions are localized (Wannier-like) in a given direction and delocalized (Bloch-like) in the two
others.
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Figure 1.8: Potential energy of an electron, e, in an electric field, £. Ey is the energy
of the band gap at zero electric field.
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possible to lower the energy of the system by transferring charge from the valence
bands (E,) in one region to the conduction bands (E.) in a distant region. Because
of this interband (Zener) tunneling, an infinite crystal in an electric field has no true
ground-state.

However, for sufficiently small fields, the tunneling current through the band gap
can be neglected and the system is well described by a set of electric field dependent
Wannier functions. As shown by Nunes and Vanderbilt [95], these Wannier functions
minimize the energy functional

F Wy €] = E[W,] — Q€ - P (1.39)

where E is the Kohn-Sham energy under zero field and P the macroscopic polarization
that can be computed from the Wannier function centers (Eq. (1.33), see also Ref. [96]).
It is important to note that these Wannier functions do not correspond to the true
ground-state of the system but rather to a long lived metastable state.

In practical applications, it is not mandatory to evaluate the functional Eq. (1.39)
in a Wannier basis. It can equivalently be expressed using Bloch functions u j (r)
related to W, (r) by Eq. (1.32). In this case, the polarization can be computed as a
Berry phase of the occupied bands using Eq. (1.28). This approach is discussed more
in detail in Chapter 4.

1.4.6 Energy derivatives and multifunctional properties

The linear and nonlinear responses of insulators to selected perturbations can be char-
acterized by the derivatives of its energy and other thermodynamic potentials. In this
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Table 1.5: Physical quantities related (within a factor of normalization) to first- and
second-order derivatives of F.
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work, we consider three kinds of perturbations: atomic displacements, 7., (the index
k labels an atom and « a Cartesian direction), macroscopic strains, 1,,, and homo-
geneous electric fields, €. The corresponding thermodynamic potential is the energy
functional, F, defined in Eq. (1.39). To simplify the notations, we represent the three

perturbations by a single parameter, A, defined as
A=(r,n,€E). (1.40)

The functional, F, can be expressed as a Taylor series around the zero-field equi-
librium structure
1 0?F
2 £~ 0NiOA;
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(1.41)
The derivatives of F in Eq. (1.41) have a well defined physical meaning. As can be seen
in Table 1.5, the first-order derivatives are related to the forces on the atoms, f, the
stress-tensor, ¢ and the spontaneous polarization, P*. The second-order derivatives
characterize the linear response of the solid. They are related to the interatomic force
constants, C, the optical dielectric constants, €, the rigid-atom elastic constants, c°, the
Born effective charges, Z*, the rigid-atom piezoelectric constants, e® and the internal
strain coupling parameters, . Finally, the third-order derivatives of F characterize
the nonlinear response of the solid. In this work, we do not consider the whole set of
third-order derivatives. We will focus on third-order derivatives of F with respect to
three electric fields and third-order derivatives of F with respect to two electric fields
and one atomic displacement that are related to the nonlinear optical susceptibilities,
¥ and the first-order derivatives of the linear optical susceptibilities with respect to

L &)
atomic displacements, 8’(§T )

1.5 Conclusions

In this Chapter, we first discussed the structure and phase transitions of three ferro-
electric oxides: BaTiQOz, PbTiO3z and LiNbQO3;. We then defined the nonlinear optical
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susceptibilities, the EO coefficients and the elasto-optic coefficients of insulators and we
showed that we can distinguish three contributions to the EO coefficients: an electronic
contribution, an ionic contribution and a piezoelectric contribution.

To define the theoretical framework of this work, we summarized the main aspects
of density functional theory, density functional perturbation theory, the modern theory
of polarization, Wannier functions, the electric field perturbation in extended systems
and we showed, how linear and nonlinear response properties of insulators are related
to their energy derivatives.
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Chapter 2

The electron localization
tensor

2.1 Introduction

Our qualitative understanding of electron localization in solids is often based on ap-
proximate pictures. The core electrons are tightly bound and localized around the
nuclei. In insulators, the valence electrons are confined to the chemical bonds (cova-
lent crystals) or to particular atomic sites (ionic crystals) while they are ”free to move”
and delocalized in metals. In order to quantify the degree of electron localization, this
simple description is no more sufficient and we have to adopt a rigorous formalism
based on quantum mechanics. However, in this context, even a qualitative description
of electron localization is not clear. In periodic solids, described within Born- von Kar-
man periodic boundary conditions, the electronic wave functions are Bloch functions.
As a consequence, core and valence electrons appear as delocalized over the whole
crystal since the Bloch functions are periodic over the Born- von Karman supercell.

Alternatively, we can choose a Wannier representation of the electronic ground-
state. Wannier functions are localized orbitals that can be computed from a unitary
transformation of the Bloch functions. But even in the Wannier representation, a
rigorous quantification of electron localization is not straightforward. As discussed in
Sec. 1.4.4, the Wannier functions are not unique so that their spatial extension cannot
directly be used to quantify the degree of electron localization.

The basics of a quantitative characterization of electron localization were formu-
lated by Kohn in 1964 [97]. Recently, this problematic was renewed thanks to the
development of the modern theory of polarization [7 9]. Polarization and localization
are manifestations of the same phenomenon and they can be studied from essentially
the same formalism. Following Resta and Sorella, we define in Sec. 2.2 a characteristic
electron localization length that is finite in insulators and diverges in metals. In or-
der to describe anisotropic media, this concept is further generalized to a localization
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tensor. We also discuss the physical meaning and drawbacks of the definition of the
electron localization tensor. In Sec. 2.3, we propose a decomposition of the localiza-
tion tensor into contributions originating from isolated sets of bands composing the
energy spectrum of a solid. Using a simple model, we then illustrate the role of the
covalent interactions on the different terms of the decomposition. We also make a con-
nection between the localization tensor and the Born effective charges and we discuss
the relation between pseudopotential and all-electron calculations. In Sec. 2.4, we give
the technical details underlying our first-principles calculations. In Secs. 2.5 and 2.6,
we present the results obtained on three ferroelectric oxides (BaTiO3z, PbTiO3 and
LiNbO3) as well as on two binary oxides (BaO and a-PbQO). We investigate the varia-
tions of electron localization during the phase transitions of BaTiO3z and LiNbOj3 and
show that the evolution is compatible with the electronic structure of these compounds.

2.2 The electron localization tensor

2.2.1 Definition

Let us consider first a one-dimensional system of side a and a large Born- von Karman
cell of side L = Ma. The localization length is defined through the expectation value
of the many-body phase operator [98,99]

.= <\I! ‘e(in/L) PR

\1/> (2.1)

where N, is the number of electrons and ¥ the many-body wave function defined as
a Slater determinant of the one-particle orbitals. The phase of z corresponds to the
ground-state expectation value of the position operator, intrinsically connected to the
macroscopic polarization, while its modulus provides an unambiguous definition of a
localization length

I\ 2
(%) = —— (—) In |z|%. (2.2)
2
If the system is insulating with N (= N./2M) doubly occupied bands, z can be com-
puted from the overlap matrices between Bloch functions defined in Eq. (1.31)

M-1
Vz =[] detS(k;, kjs). (2.3)
Jj=0
In the limit M — oo, Eq. (2.2) can be expressed as an integral over the BZ
N N
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Eq. (2.4) can be generalized to three-dimensional crystals [12] where the localization
length takes the form of a second-order tensor, the so-called localization tensor

o = i 3 {( k| Sk
CTBNIANES R

2.2.2 Physical interpretations

The localization tensor in Eq. (2.5) may look like an abstract mathematical concept.
In this section, we see that it has a well-defined physical meaning and that it can be
related to various physical quantities.

Maximally localized Wannier functions

First, the diagonal elements of the localization tensor give a lower bound of the average
spread of the Wannier functions build from the Bloch orbitals of all occupied bands.
Indeed, it is straightforward to show [12,13,28] that these elements are related to Q;
defined in Eq. (1.37) by

Qr=N Z(rara)c. (2.6)

Geometric quantum distance and quantum metric

Second, let us consider a general quantum mechanical Hamiltonian that has a para-
metric dependence H(&)[y(&€)) = E(&)]¥(&£)). For example, H(&) could be identified
to the electronic Hamiltonian of a molecule or a solid in the Born and Oppenheimer
approximation and £ to the nuclear coordinates or [1(£)) could be identified to the
cell-periodic part of the Bloch functions and € to their wave vector. The geometric
distance Di2 between two eigenstates |1(€1)) and |¢(&2)) can be defined as [10]

Diy =1 [(¢(&)|v (&) (2.7)

For an infinitesimal separation d€ between the two states, we can write

D ¢rae = 1— [($(&)|Y(€ + dE)) Zgag )d€,d€s (2.8)

where go3(€) is the metric tensor

i) =2 (52|55 ) (e o) (o5 o
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The form of the metric tensor is similar to the argument of the integral in Eq. (2.5).
If we identify ¢ to the cell periodic part of the Bloch functions and £ to their wave
vector, k, we can define a metric to determine the “quantum distance” along a given
path in k-space. Generalizing Eq. (2.9) to a system composed of N doubly occupied

bands, we obtain [28]
0
“‘n'k> <“‘n'k ‘ ;gﬁk> } . (2.10)

N ou k
gap (k) = Z {<_n
et Okq
The elements of the localization tensor are the BZ average of the metric tensor g.s
[13,28]

8unk EN: aunk
Ok ke,

n'=1

(rarg)e = % '/BZ dkgas (k). (2.11)

Fluctuations of the polarization and optical conductivity

Finally, let us consider an extended solid subjected to periodic boundary conditions
over a large supercell containing M unit cells. The Cartesian components of the polar-
ization undergo quantum fluctuations related to the elements of the localization tensor.
In the thermodynamic limit we can write [13]

2
(rars)e = lim QO_M(AP;’AP51>. (2.12)

M—oo €2

This equation is particularly interesting since it shows that the localization tensor is
more than a mathematical concept. It is a measurable quantity. Using the fluctuation-
dissipation theorem [100] we obtain the following relation between the localization
tensor and the optical conductivity (imaginary part of the electronic dielectric tensor)

[e%e] 8 2 2N
/0 e 5(w) dw = % (rars), - (2.13)

Relation to the optical gap

In a cubic crystal, we can use the sum rule for oscillator strengths [101] together with
Eq. (2.13) to obtain the following relation between the localization tensor and the
band gap E,
: h?
2
<
rade < 3y

(2.14)

where m, is the electronic mass. This inequality shows that the polarization fluctu-
ations are controlled by the optical gap, lending support to the intuitive notion that
the larger the gap, the more localized the electrons.
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2.2.3 Drawbacks

The localization tensor as it is defined in Eq. (2.5) is a global quantity that char-
acterizes the occupied Kohn-Sham manifold as a whole (all k-points and all bands).
This statement calls for two comments. First, applications of DFT to solids often
make use of the frozen-core and pseudopotential approximations, while Eq.(2.5) re-
quires an all-electron calculation. Second, the behavior of core and valence electrons is
treated globally while both kinds of electrons are expected to exhibit strongly different
localization properties interesting to identify independently.

As it has been discussed in the preceding sections, the localization tensor gives a
lower bound for the spread of maximally localized Wannier functions as defined by
Marzari and Vanderbilt. In order to get some insight into the physics of the chemical
bonds in molecules and solids, such Wannier functions are usually constructed consider-
ing only a restricted number of electronic bands close to the Fermi level. The spread of
the resulting Wannier functions is strongly dependent on the electronic states included
in the minimization process. In this context, it seems interesting to try to identify the
intrinsic localization of the electrons in a specific set of bands and to understand how
this quantity is affected when including other bands. This would allow to solve the
problem associated to the use of pseudopotentials and to characterize separately the
behavior of core and valence electrons.

2.3 Band-by-band decomposition of the localization
tensor

2.3.1 Formalism

Contrary to the polarization and the Born effective charges, for which band-by-band
decompositions have been previously reported [102-105], the localization tensor [Eq.
(2.5)] involves scalar products between Bloch functions of different bands, making the
identification of the contribution of isolated sets of bands less straightforward. In
order to explain this fact, we have to remember that the localization tensor is related
to the second moment of Wannier functions while the Born effective charges and the
spontaneous polarization are linked to their first moment. From standard statistics, it is
well known that first and second moments do not add the same way: when considering
two random variables z; and x5, the mean value of the sum z; + x5 is simply the sum
of the mean values while the variance of the sum is the sum of the variances plus an
additional term, the covariance.

These considerations can be transposed in the simple context of a confined model
system made of two orthonormalized states v (z) and ¥o(x). The total many-body
wave function ¥(zq,z2) is a Slater determinant constructed on the one-particle or-
bitals. The center of mass is given by the expectation value of the position operator
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X = > 1,2 %i
= (U|X W) = Y (i) (2.15)

i=1,2

while the total spread (two times the localization tensor) is related to X2,

o’ = (¥|X?|0) — (V|X|¥)?
= Z [(ila? (i) — (Wil wlei)?] — 20 ||1ha) (a]a|ihr). (2.16)

We see that the first moments of the one-particle orbitals add to form the total dipole
of the many-body wave function. In contrast, the total spread is not equal to the sum
of the individual spreads of v, and ¥ but involves also matrix elements of the one-
particle position operator & between ¢, and 1». The additional term would be absent
if the many-body wave function was a simple product of the one-particle orbitals. It
arises from the anti-symmetry requirement. In analogy with the language of statistics,
we will name it the covariance.

Based on the previous arguments, we can now define a band-by-band decomposition
of Eq. (2.5). Suppose that the band structure is formed of N, groups labeled G;, each
of them composed of n; bands (i = 1,..., Ny). The variance of a particular group G; is
defined as

. Q(] 8unk 6“‘nk
(rars)e(@) = b /B de{ §;< k| o
8unk 8unk
_ Z < o un,k> <un,k‘ ks > (2.17)
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where the sums have to be taken over the bands of group G;. The covariance of two
groups G; and G; (i # j) is given by the following relationship:
ou, 1
i) (e ik )

—Qy ou
(rarp)e(Gi, Gj) = W/ dk Z Z < .
(2.18)

neg; n'€g;
Using these definitions, the total tensor, associated to the whole set of occupied bands,
can be written as

Ng

(raTs)e an (rars)e(Gi) + > nj(rars)e(Gi. G;) ¢ - (2.19)
Jj#i

The variance (r,rz).(G;) is intrinsic to an isolated set of bands. As discussed in
section 2.2.2, it is related to the quantity ; introduced by Marzari and Vanderbilt
through Eq. (2.6). (rora)c(G:) is thus the lower bound of the average spread [Eq.
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(1.35)] 5+ X cq, [(ra)n—(ra)s] where the sum is taken over all Wannier-like functions in
the unit cell belonging to group G;. This lower bound is reached for Wannier functions
that are maximally localized in direction a. The variance therefore gives some insight
on the localization of the electrons within a specific set of bands taken independently.
This localization is affected by the hybridizations between atomic orbitals giving rise to
the formation of the considered electronic bands within the solid so that the variance
can act as a probe to characterize these hybridizations.

The covariance is no more related to an isolated set of bands. It teaches us how the
construction of Wannier functions including other bands can improve the localization.
As discussed in Ref. [28], the definition of groups of bands in a solid is not unique and
sometimes there is a doubt about which bands have to be considered together. If we
consider two sets of bands G; and G; as one single group, its total variance is the sum
of the individual variances and covariances, that have to be rescaled by the number of
bands in each group

(rars)e = —— {n: [(rar8)e(G) + n5{rars)e(Gr.G5)]

n; + nj

+ nj [(Tﬂrﬂ>ﬂ(gj) + n'i<rar,8>c(gj, gl)]} . (220)

Until now, we considered separately the two Cartesian directions e and 8. Stronger
results can be obtained when diagonal elements of the localization tensor are consid-
ered, or when this localization tensor is diagonalized, and the eigenvalues are consid-
ered. Different inequalities can be derived. In particular, from Eq. (2.18), it appears
that the covariances for @« = § are always negative. This means that the diagonal
elements of the full tensor are always smaller than those obtained by the sum of the
diagonal variances. In other words, it is always possible to obtain more strongly lo-
calized orbitals by constructing Wannier functions considering more than one group of
bands. As a consequence the covariance appears as a tool to identify which bands have
to be considered together in the construction of Wannier functions in order to improve
their localization.

In appendix A, we give an interpretation of the variance and covariance in terms
of the optical conductivity. It illustrates from a different viewpoint the influence of
the fermionic nature of the electrons on the localization tensor: the appearance of the
covariance in Eq. (2.19) is a direct consequence of the Pauli principle.

2.3.2 Simple model

In this section we will investigate a one-dimensional model system. This will help us
to understand the role of the covalent interactions on the electron localization length
and related quantities such as the Born effective charges. We will deal with a confined
system for which the localization tensor can be computed from matrix elements of the
position operator and its square as described in Refs. [10,12].

Let us consider a diatomic molecule XY. In order to describe the chemical bonds
of this model system we adopt a tight-binding scheme [106] defined by the hopping
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integral, ¢, and the on-site terms A and —A. We will call a the interatomic distance and
¥ x , Yy the s-like atomic orbitals that are used as basis functions. The Hamiltonian can
be rescaled by A (A=t/A) in order to become a one parameter Hamiltonian defined

by
H:( ;11 f) (2.21)

We further assume that ¢ x is centered at the origin, ¢y in a and that these two
functions do not overlap at any x

Yx (z)hy (x —a) = 0. (2.22)
The eigenfunctions of the Hamiltonian correspond to
¢1.2(x) = up 2¥x (z) + v1 20y (£ — a) (2.23)

where the coefficients u1 2 and vy 5 can be expressed in terms of the bond polarity [106]

1
[1+oa, _ 1—a,
Uy = _205 , U1 = 2a (2 24)

ap (ap = W)i
Uy =

Vg = —

In order to see the meaning of the different terms appearing in the band-by-band
decomposition of the localization tensor and the Born effective charges let us first
consider the molecular orbitals independently.

The variance of state ¢; can be computed from the coefficients u; and v;. It writes

1+« 1« a? A2
2 _ 2 P 2 p

where 0% and o2 are the second central moments of ¢x and ty. The variance of
¢- is given by a similar expression. This quantity is composed of three positive terms
that summarize the mechanisms that are able to delocalize the electrons with respect
to the atomic orbitals. On one hand, the electronic cloud on a particular atom is not
a delta-Dirac function but presents a degree of delocalization related to 0% and o}
(first and second term). When the state ¢; is made entirely of ¢x, that is, when «,
equals one, the localization length is correctly equal to 0% (first term). Incorporating
more ¥y changes the localization length in proportion of e, (the balance between first
and second terms). On the other hand, the electrons can occupy two sites X and YV
that are separated by a distance a (third term). This term scales as a®. Even a small
covalent interaction is thus able to induce an important delocalization if it acts on a
sufficiently large distance.

The Born effective charge of atom X is defined as the derivative of the dipole
moment p with respect to a. This dipole moment is the sum of the nuclear and static
electronic charges multiplied by the interatomic distance. The contribution coming
from the electrons occupying state ¢, is equal to

p1 = —2euia = —e(l + a,)a (2.26)
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where e is the module of the electronic charge. The derivative of Eq. (2.26) with
respect to a gives the contribution of these electrons to the total effective charge

op A 0A

Z§(7] = % = —6(1 + ap) + eam%.

(2.27)

The first term is the (static) effective atomic charge [106] of atom X while the second
term represents an additional dynamical contribution due to a transfer on electrons
between X and Y during a relative atomic displacement. The contribution of the
electrons occupying state ¢, is given by a similar expression

A A

;(72 — % = 76(1 — Ofp) — eamg—a. (228)

This simple model illustrates how both the variance of the localization tensor and
the Born effective charges depend on the covalent interactions defined by the parameter
A. The variance is a static quantity depending on the amplitude of the covalent
interactions only while the Born effective charges are dynamical quantities that also
depend on the variations of these interactions during a relative atomic displacement.

If we now consider the states ¢; and ¢ as a single group we have to add their
variances and covariances to get the whole localization tensor. The covariance reduces
to 2 42

9 —a
(2%)c(1,2) = TV

By adding this covariance to the variance in Eq. (2.25), we remove in some sense
the delocalization induced by the covalent interactions. The total localization tensor
becomes independent of the hopping A and the interatomic distance a. It reduces to
the mean spread of the atomic orbitals ¢x and ¢y :

(2.29)

2 2
(), = XY (2.30)
Eq. (2.30) defines the mean spread of the Wannier function constructed as linear
combinations of ¢; and ¢, that minimize the spread functional Q (see Eq. (1.35)). As
shown in Ref. [28] (see also Sec. 1.4.4), these orbitals diagonalize the position operator
Z projected on the subspace of occupied states. They are thus equal to the atomic
orbitals since the hypothesis of zero overlap (Eq. (2.22)) implies (¢ x |Z|¢y) = 0.

The total Born effective charge of atom X can be obtained by adding the nuclear
charge Z¥ . = 2e to the terms (2.27) and (2.28). It is easy to check that for this
model Z% is equal to zero. This result can be interpreted in two ways. The point
of view usually adopted is to say that the two molecular orbitals are of the opposite
polarity so that the total dipole of the molecule vanishes. Based on the results of
the preceding paragraph, we can also affirm that each maximally localized Wannier
function is confined on a single atom so that no interatomic charge transfer can take

place.
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This result suggests that the variance gives more information about the localization
of electrons of particular chemical bonds than the total localization tensor. It also
illustrates the observation of Ghosez et al. [102,103] that anomalous effective charges
mainly come from hybridizations between occupied and unoccupied states. In fact,
the different chemical bonds generate opposite effects so that a net charge transfer is
possible only if some of them are unoccupied.

In summary, we have illustrated the mechanisms that govern the variance of the
localization tensor and the Born effective charges in the particular case of a one di-
mensional model system. The observations made in this section give us an intuitive
understanding of how delocalized electrons can generate anomalous effective charges.
Hybridizations between occupied states generate opposite effects that tend to cancel
out when they are summed. Because of the simplicity of the above adopted picture,
we have however to be careful when we apply this model to real materials. First, we
considered only hybridizations between two types of atomic orbitals, while the chem-
ical bonds in real systems generally result from more complicated interactions. In
particular, we neglected on-site hybridizations that are also able to generate anoma-
lous effective charges but that induce a stronger localization on the electronic cloud.
Second, the hypothesis of zero overlap (2.22) is not always fulfilled so that maximally
localized Wannier functions constructed on the whole set of occupied states generally
not reduce to the atomic orbitals. Nevertheless, this simple model will allow us to
interpret some results in Secs. 2.5 and 2.6.

2.3.3 Pseudopotentials

As mentioned in Sec. 2.2.3, there is a fundamental problem in the computation of the
total localization tensor when pseudopotentials are used. This is due to the fact that
the localization tensor is related to the bands of the system as a whole : first, there is no
cancellation between the core electrons and the nuclear charge, as it is the case in the
computation of the total polarization; second, the localization tensor is a kind of mean
over all bands, that combines strongly localized (core) states, and weakly localized
(valence) states. This is clearly seen in Eq.(2.5), where the number of bands explicitly
appears both in the denominator of the prefactor and in the two summations. The
band-by-band decomposition allows us to overcome this problem partly, by focusing
only on the variances of isolated groups of bands. Thanks to Eq. (2.20) it is also
possible to get some insight into the physics of the all-electron localization tensor
when pseudopotentials are used. In this section, we focus on the diagonal elements of
the electron localization tensor a = f (of course, any direction can be chosen as «).

In an all-electron calculation, let us consider separately two sets of bands: core
bands (labeled as ’co’), and valence bands (labeled as 'va’). The total localization
tensor can be obtained from the localization tensors of each group of bands, combined
with the covariance between the two groups of bands:

1

(raTa)e = T {nco(Tara)c(co) + nya(rara)e(Va) + 2ncoNpa(rara)c(co,va)} .
nCO nv[L
(2.31)
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Both variances (ro7a.).(co) and (r,r,).(va) are positive quantities. The covariance
times the product of the number of bands n.on,q(rara)c(co,va), a negative quantity,
must always be smaller in magnitude than each of the related variances multiplied
by the corresponding number of bands. This translates to bounds on the diagonal
elements of the total localization tensor:

INya({Tara)e(Va) — nep(rara)e(co)l Nya({Tala)e(Va) + Neo(rara)e(co)
S <rara>c S -
nCO + nv[L nCO + nv[L

(2.32)

In the frozen-core approximation, (r,r,).(co) can be obtained from separate all-

electron calculations for each atom of the system. The localization tensor of the va-

lence bands is (likely) computed accurately in the pseudopotential approximation : the

spread of the Wannier functions should be quite similar if estimated from all-electron
valence wave functions or from pseudo-wave functions.

2.4 Method and implementation

In the remaining part of this Chapter, we apply the previous formalism to various
oxides. The electronic wave functions are obtained within DFT [5,6] and the local
density approximation (LDA) thanks to the ABINIT [64] package. At variance with
a previous work on semiconductors [12], the first derivatives of the wave functions
with respect to their wave vector are not computed from finite differences but from a
linear-response approach [37] within the parallel-transport gauge. The wave functions
are further transformed to the diagonal gauge [105]. In all compounds, the ground-
state and first-order wave functions are expanded in plane waves up to a kinetic-energy
cutoff of 45 Hartree. We use a 8 x 8 x 8 mesh of special k-points [107] for BaO, a-PbO,
BaTiO3 and PbTiO3 and a 6 x 6 x 6 mesh of special k-points for LiNbQ3. With these
parameters, the convergence of the localization tensor for the investigated compounds is
better than 103 Bohr?. In BaO, a-PbO, BaTiO3 and PbTiOs3, the ionic-core electron
potentials of the atoms are replaced by ab initio, separable, extended norm-conserving
pseudopotentials, as proposed by M. Teter [108]. Ba 5s, 5p and 6s electrons, Pb 6s,
5d and 6p electrons, Ti 3s, 3p and 3d electrons, O 2s and 2p electrons are considered
as valence states. In LiNbQOg3, we use the same norm-conserving pseudopotentials as
in Ref. [69]. Nb 4s, 4p, 4d and 5s electrons, Li 1s and 2s electrons as well as O 2s
and 2p electrons are considered as valence states. Besides calculating the localization
tensor on bulk-materials, we also computed it on the isolated atomic systems Ba2t,
Pb2t, Lit, Nb%t and O by placing each atom at the origin of a periodic supercell of
20 Bohrs.

As shown by Sgiarovello et al. [12], the localization tensor and thus the variances
and covariances, are real. Moreover, they are obviously symmetric in @ and 5. Con-
sequently there exists a set of Cartesian axes where they are diagonal and their eigen-
values are also real numbers. In the discussion of our results we will always work in
this particular frame so that we do not need to consider the off-diagonal elements of
the localization tensor.
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2.5 Results

2.5.1 Structural and electronic properties

We will consider the two binary oxides BaO and a-PbO, the ferroelectric perovskites
BaTiO3 and PbTiOg3 as well as the trigonal ferroelectric LiNbO3. BaO has a rocksalt
structure while the tetragonal a phase of lead oxide is formed of parallel layers of Pb
and O atoms. As discussed in Sec. 1.2, BaTiO3 and PbTiO3 have a high-temperature
cubic perovskite structure with five atoms per unit cell. As the temperature is lowered,
the former compound undergoes a sequence of three ferroelectric phase transitions
transforming to tetragonal, orthorhombic and rhombohedral structures while the latter
compound undergoes one single transition from the cubic to the tetragonal phase.
Finally, LiNbOj3 has a trigonal symmetry with 10 atoms per unit cell. It undergoes
a single transition from a centrosymmetric paraelectric R3c phase to a ferroelectric
R3c ground state. We will consider explicitly the cubic, tetragonal and rhombohedral
phases of BaTiQOs3, the cubic phase of PbTiO3 as well as the two phases of LiNbO3.

The electronic structures of these compounds have been previously studied [69,104,
109 111] and are illustrated in Figs. 2.1 and 2.2. They are formed of well-separated
groups of bands. Each of them has a marked dominant orbital character and can
be labeled by the name of the atomic orbital that mainly composes the energy state
in the solid. In all compounds, the bands at the Fermi level are mainly composed
of O 2p states that show significant interactions with other atomic orbitals such as
the well known O 2p-Ti 3d hybridization in BaTiO3 and PbTiO3 or the O 2p-Nb 5d
hybridization in LiNbOj3. The band structures in the ferroelectric phases of BaTiO3
and LiNbQOj3 are similar to those in their paraelectric phases. The phase transitions
principally affect the band gap and the spread of the O 2p bands while the positions
of the deeper lying bands remain quite constant. The main difference in the electronic
structures of BaO and BaTiO3 on one hand and PbO and PbTiO3 on the other hand
comes from the presence or absence of Pb 6s electrons (that form the so called lone-
pair in PbO). These electrons show a strong hybridization with the O 2p states. As
a consequence, the O 2p and Pb 6s bands are degenerate at the R point in PbTiO3
and around the Z point in PbO. Consequently, we have to consider them as one single
group of bands in the decomposition of the localization tensor.

2.5.2 Localization tensor and Born effective charges

As the total localization tensor is meaningless in pseudopotential calculations that do
not include covariances with the core states, we focus on the variances of the different
groups of bands. The values can be found in the Tables 2.1, 2.2 and 2.3 where they
are compared to the variances of the dominant atomic orbitals. We do not report any
values associated to the deepest lying Ti 3s and Ti 3p bands although they have been
included in our pseudopotential calculation. Their variances are in fact close to the
atomic ones and they do not show any sizeable covariance with other bands in BaTiO3
and PbTiO3.
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Figure 2.1: Band structures of BaQ, cubic BaTiO3, cubic PbTiO3 and a-PbO.
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Table 2.1: Variances (Bohr?) of the Ba 5s, O 2s, Ba 5p and O 2p bands for the isolated
atomic systems Ba?" and O, BaO and the cubic (C), tetragonal (T) and rhombohedral
(R) phases of BaTiOs3.

System  Str. Element Band
Babs 02 Babp O2p

Atom —

(r?), 1.011 0929 1.370 —
BaO - (r?), 1.065 1.552 2.023 2.199
BaTiO; C (r?). 1.091 0.950 2.189 1.875
T (r’).  1.091 0.945 2.180 1.852
(rﬁ)c 1.088 0.965 2.175 1.842
R (r*).  1.092 0963 2.196 1.862
)

2, 1.092 0.949 2.189 1.804

Table 2.2: Variances (Bohr?) of the O 2s, Pb 5d and Pb 6s +0 2p bands in PbTiOs,
a-PbO and for the isolated atomic systems Pb?*+ and O.

System  Element Band
O2 Pbbd Pb6s+ O2p
Atom (r*). 0929 0.657 —
PbTiO;  (r?).  1.874 1.490 1.749
PbO (rﬁ_)c 2.234 1.142 2.178
(rﬁ)c 1.724  0.990 1.968

In the cubic crystals BaO, BaTiO3z and PbTiOg3 as well as in the atomic systems, the
reported tensors are isotropic so that we only mention their principal values (r?).. This
is no more true in the ferroelectric phases of BaTiO3 and the two phases of LiNbO3
where a weak anisotropy can be observed. The tensors have an uniaxial character as
the corresponding dielectric ones: they are diagonal when expressed in the principal
axes and the elements (r? ). and (rﬁ)C refer to Cartesian directions perpendicular and
parallel to the optical axis (that has the direction of the spontaneous polarization).
A much stronger anisotropy is observed in a-PbQO where the localization tensor has
the same symmetry as in the ferroelectric phases of BaTiO3. Due to its particular
structure formed of atomic Pb-O planes the electrons of each group of bands are more
delocalized in a direction parallel ((r1).) to the atomic planes' than perpendicular
((rﬁ)p) to them. This observation agrees with our intuitive picture that the covalent
interactions between atoms inside a layer are stronger than between atoms of different

In a-PbO, the optical axis is perpendicular to the atomic layers.
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Table 2.3: Variances (Bohr?) in the two phases of LiNbQOj3 and for the inner orbitals
of Nb®*, LitT and O.

Band Atom Paraelectric phase Ferroelectric phase

(7“2)5 <ri>c (rﬁ>c (ri>c (rﬁ>c
Nb 4s 0.479 0.514 0.514 0.516 0.514
Li 1s 0.158 0.167 0.164 0.166 0.165
Nb 4p 0.576 0.721 0.719 0.728 0.714
0O 2s 0.892 0.879 0.870 0.893 0.848
O 2p 1.488 1.515 1.483 1.418
Tot. variance 1.110 1.123 1.111 1.066
Tot. covariance -0.388 -0.384 -0.395 -0.377
Tot. tensor 0.722 0.738 0.716 0.689

layers.

Examining the variances of the different groups of bands we see that the Ba 5s
electrons show a similar degree of localization both in BaO and BaTiO3 also equivalent
to that of the corresponding atomic orbital. In contrast, the O 2s electrons behave
differently in the materials under investigation: in BaTiO3 and LiNbQOg, their variance
is close to the atomic one while they show a significant larger delocalization in the
three other compounds. It is in fact surprising to see the degree of delocalization of
the inner bands such as the O 2s, Ba 5p, Nb 4p or Pb 5d bands. In some cases such
as BaTiOg, the electrons of these bands are even more strongly delocalized than those
of the bands at the Fermi level. These results suggest that the corresponding atomic
orbitals are chemically not inert but present non-negligible covalent interactions. An
interesting observation can be made for the O 2s and Pb 5d bands in PbTiO3 and
a-PbO. The delocalization induced by the covalent interactions that generate these
bands tends to disappear when we consider them as one single group. In order to
compute the variance of the whole O 2s and Pb 5d bands, we have to use Eq. (2.20).
As an example let us consider PbTiO3. The different elements can be summarized in
a matrix where the diagonal elements are the variances (Bohr?) and the off-diagonal
elements the covariances (Bohr?) of the individual groups

1.874 —0.240
—0.240 1490 )
The total variance of the (O 2s + Pb 5d) group considered as a whole reduces to 0.734
Bohr?. For a-PbO, we obtain similar values of 0.732 Bohr? for (r? ). and 0.701 Bohr?
for (rﬁ)c. These values can be compared to the mean spread of the atomic orbitals
£(0.929 + 5 x 0.657) = 0.702 Bohr?.

The results presented above show that inner orbitals such as O 2s, Ba 5p, Nb 4p or
Pb 5d are chemically not inert in the materials under investigation. This observation
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Table 2.4: Band-by-band decomposition of the Born effective charges (a. u. of charge)
in PbTiO3 and a-PbO. The contributions have been separated into a reference nominal
value and an anomalous charge.

PbTiO3 a-PbO
Band 7o Zpp1 ZI*DbH
Core 14.00 14.00 14.00
0 2s 0+ 3.47 0+ 189 0+ 0.26
Pb 5d -10 - 3.36 -10- 1.80 -10 - 0.40
Pb 6s + O 2p -2+ 1.78 -2+ 1.06 -2+ 0.48
Tot. 2+ 1.89 2+ 115 2+ 0.34

seems in contradiction with the conclusions drawn from partial density of states anal-
ysis [110] that these states are rather inert. Nevertheless the inspection of the Born
effective charges in BaO, BaTiO3 or LiNbOj3 [69,102,104] confirms our observations
that will now be illustrated for a-PbO and PbTiOs. This points out that the global
shape of the band structure is less sensitive to the underlying covalent interactions
than the variance of the localization tensor or the Born effective charges.

In order to investigate the connection between the localization tensor and the Born
effective charges we report in Table 2.4 the band-by-band decomposition of Z}, in
PbTiO3 and a-PbO. In the perovskite, this tensor is isotropic while in a-PbQ it has
the same symmetry as the localization tensor. The contribution of each group of
bands has been separated into a reference nominal value and an anomalous charge 2.
For a-PbO, we observe the same anisotropy as for the localization tensor: the covalent
interactions inside an atomic layer (Z},,) generate larger anomalous contributions
than the interactions involving atoms of different layers (Z}Sb”). By looking at the
O 2s and Pb 5d bands we see that they generate important anomalous charges that
confirm our observations concerning the variances of these bands. Interestingly, in both
materials these contributions cancel out when they are summed. We observe thus the
same tendencies for the Born effective charges and the localization tensor: the effects
induced by the covalent interactions between inner orbitals tend to disappear when the
resulting bands are considered together.

2.6 Discussions

Based on the simple model exposed in Sec. 2.3.2 we can suggest the following mech-
anism to explain the results presented in the preceding section. The atomic orbitals

2The Born effective charges are usually compared to an isotropic nominal value that is the charge
expected in a purely ionic compound. All deviations with respect to this reference nominal value are
referred to as anomalous.
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O 2s and Pb 5d (for which the hypothesis of zero overlap (2.22) is reasonable) present
weak covalent interactions that generate the corresponding energy bands in PbTiO3
and a-PbO. When we construct maximally localized Wannier functions for each indi-
vidual group, the resulting orbitals are delocalized on Pb and O atoms so that during
an atomic displacement an interatomic transfer of charges — generating anomalous
Born effective charges — is possible. The fact that the variance of the global (O 2s
+ Pb 5d) group of bands is close to the mean spread of the atomic orbitals suggests
that the maximally localized Wannier functions constructed on these bands are similar
to the original atomic orbitals. In other words, they are confined on a single atom.
This confinement also suppresses the interatomic charge transfer so that the anomalous
charges disappear. We can make similar observations for the Ba 5p and O 2s bands
in BaO and BaTiOg, although, in the latter compound, the cancellation in the Born
effective charges and the variance is not as complete as in the three remaining ones.
This suggests that in the lead oxides as well as in BaO, the inner bands Pb 5d and O
2s (respectively Ba 5p and O 2s) mainly result from hybridizations between two types
of atomic orbitals. In contrast, in BaTiO3 the Ba 5p and O 2s bands are formed of
more than two types of atomic orbitals.

Looking now at the bands at the Fermi level, we see that their variance is sig-
nificantly larger in BaO and a-PbO than in the corresponding perovskites and that
it remains nearly constant in the different phases of BaTiOz and LiNbOg. This lat-
ter observation seems surprising for two reasons. (i) In BaTiOg, the LDA band gap
presents drastic changes when passing from the cubic (1.72 eV) to the rhombohedral
(2.29 eV) phase. In LiNbO3, we observe a similar strong variation when passing from
the paraelectric (2.60 eV) to the ferroelectric (3.48 eV) phase. These increases suggest
much stronger localization of the O 2p electrons in the ferroelectric phases. (ii) The
giant Born effective charges observed in the paraelectric phases [69,102,103] imply an
important reorganization of the electronic cloud during an atomic displacement. It
appears surprising that this reorganization has such small effects on the localization
tensor.

Considering point (i), we note that the correlation between the band gap and the
localization tensor is not as tight as one might think. The variance of the O 2p bands
for instance is significantly larger in BaO than in BaTiOs3 in spite of the fact that its
LDA band gap (1.69 eV) is close to the gap in the cubic phase of BaTiOs3.

Considering point (ii), we note that it is possible to have an important reorgani-
zation of the electronic charge without affecting the localization tensor significantly.
Following the ideas of the Harrison model [106], the giant effective charges in ferro-
electrics result from dynamical orbital hybridizations changes generating interatomic
transfers of charges. In Figure 2.3 (a) we have drawn schematically an O centered
Wannier function in the cubic phase of BaTiO3 along a Ti - O chain. Due to the O
2p - Ti 3d hybridization, this Wannier function has a finite probability on the neigh-
boring Ti; and Tiy atoms. According to the Harrison model, a fraction of electrons
is transferred from Ti; to Tiy during a displacement dr of the O atom (Figure 2.3
(b)). Even if the quantity of charges involved in this process is small, the large scale
on which this transfer takes place (of the order of the lattice parameter) implies a shift
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a)

® ®
Tiy Tiy
b)

Figure 2.3: Oxygen centered Wannier functions in the cubic phase (solid line) of
BaTiOj3 (a) and its variation during the transition to the tetragonal phase (dashed
line) (b).

of the Wannier function center larger than the underlying atomic displacement and
explains the anomalous effective charges. During the transition from the cubic to the
tetragonal phase, the central O atom is displaced by few percent of the lattice constant
a (4T = 0.045) with respect to Ti; and Ti,. The resulting shift of the Wannier function
center generates the spontaneous polarization in the ferroelectric phase.

Based on this simple picture the origin of the small variations of the O 2p variance
during the phase transitions becomes more obvious: when the electrons are transferred
from Ti; to Tiy their distance to the initial Wannier function center remains unaffected
and their distance to the displaced Wannier function center slightly decreases due to
its shift towards Tiy. Mathematically speaking, due to the fact that the variations do
not depend on the direction of the atomic displacement, they are of the second order
in %T

In order to get a numerical estimate of the charges transferred during this process
and its impact on the localization tensor we can consider a one dimensional model

Wannier function whose square is the sum of three delta-Dirac functions

!
W (2)]? = % { 2 QZO 6z — a) + 8(z + )] + Zbé(a:)} . (2.33)
This model only takes into account the delocalization of the electrons on different
atoms (third term of Eq. (2.25)) while it completely neglects the delocalization of the
electronic cloud on the individual atoms (first and second term of Eq. (2.25)). In
this particular case we can identify the localization tensor to the second moment of
the Wannier function. This is no more completely true in a real, three-dimensional
crystal. In BaTiOg for instance, the O 2p group contains 9 different Wannier functions
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per unit cell located on three different O atoms. These orbitals extend in different
spatial directions so that their average spread in the z-direction is lower than the
spread of one single Wannier function as the one shown in Figure 2.3.

In Eq. (2.33), Z(, represents the probability of the electrons to be found on the O
atom. It can be computed from the value of the O 2p variance in the paraelectric phase
of BaTiO3 and the lattice constant a using the relation [ z2|W,(2)|?dz = (r?). 02p.
This yields Z}, = 1.73. This quantity allows an estimate of the static charge of the
O atom in BaTiO3 by subtracting three times Z¢, from the charge due to the nucleus

and the core electrons O 1s and O 2s. This yields Zp, o+ =4—-3-1.73=—-1.19 e.

When the O atom is displaced, the shift of the Wannier function center is directly
related to the quantity of charges e transferred from Ti; to Ti;. The value of € can
be computed from the value of the effective charge generated by the O 2p electrons
(Z83, = —9.31) in the cubic phase [103] by taking into account that the anomalous
charges are generated by three Wannier functions located on the same O atom [29]. To
get the polarization due to one single Wannier function, we have to divide this quantity
by 3 since each of them brings a similar contribution to Z¢),,. In the tetragonal phase,
the model Wannier function writes

1 2-Z,—¢

2— 7
W () = 5 {fé(az +a) + ZH6(x — dr) + Z-%0%*¢

5 oz — a)} . (2.34)
By identifying twice its first moment to Z52pdr/3 one gets € = 0.0614 at the transition
from the cubic to the tetragonal state. It implies a decrease in the spread of the model
Wannier function of 0.18 Bohr?.

This variation is larger than the observed one (0.023 Bohr?). Part of the discrepancy
is probably due to the fact that we considered Zp,, to be constant along the path of
atomic displacement from the paraelectric to the ferroelectric phase. Using the value
of Zp,, in the tetragonal phase we obtain a value of 0.0467 for & while the variance
decreases of 0.12 Bohr?. Moreover, one has to bear in mind that the localization tensor
in BaTiO3 is an average value that has to be taken over 9 Wannier functions. Six of
them are centered on O atoms that lie in a plane perpendicular to the direction of the
spontaneous polarization. They are probably less affected by the phase transition. As
a consequence, the variation of the Wannier function located on the remaining O atom
(the one represented on Figure 2.3) is expected to be larger than the variation of the
localization tensor.

In summary, even if there is no formal connection between the real Wannier func-
tions in BaTiO3 or LiNbO3 and Eq. (2.33), this simple model shows that small vari-
ations of the localization tensor are compatible with giant effective charges and their
interpretation in terms of the Harrison model. As illustrated with the model Wannier
function, the transfer of charges along the Ti—O chains only implies a slight decrease
in the spread of one single Wannier function. This decrease is expected to be larger
than the decrease in the variance because this latter quantity is an average value over 9
Wannier functions that are not modified to the same extent during the phase transition.
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2.7 Conclusions

The characterization of electron localization in extended systems had been a challeng-
ing problem that was only solved recently. Thanks to the modern theory of polariza-
tion, it is now possible to study the electronic polarization and localization length from
a unified formalism. In this Chapter, we used a plane-wave-pseudopotential approach
to DFT to compute the electron localization tensor for various oxides. Our study was
based on the work on semiconductors performed by Sgiarovello and co-workers but
used linear-response techniques to compute the first-order wave functions.

In order to investigate the properties of electrons occupying individual groups of
bands independently, we first set-up a band-by-band decomposition of the localization
tensor. In analogy with the field of statistics we had to distinguish between variance and
covariance in this decomposition. The significance of these new concepts was illustrated
in terms of Wannier functions and explained on a simple model. The variance allows
to get some insight into the hybridizations of atomic orbitals. The covariance can be
useful to help constructing maximally localized Wannier functions: it identifies the
bands that have to be considered together in order to improve their localization. We
also made a connection between the localization tensor and the Born effective charges
and we discussed the difference between all-electron and pseudopotential calculations.

We applied these techniques to binary oxides (BaO and a-PbO) and ferroelectric
oxides (BaTiOg3, PbTiO3 and LiNbO3). By considering first the electrons of the inner
bands we showed that some of them present a strong delocalization with respect to the
situation in an isolated atom. This observation suggests that the underlying atomic
orbitals are chemically not inert but present non-negligible covalent interactions. This
fact had been confirmed from an inspection of the Born effective charges.

Finally, the variations of the O 2p variance during the ferroelectric phase transi-
tions of BaTiO3 and LiNbOg were found to be very small. This surprising result was
explained in terms of the electronic structure of these compounds as it is interpreted
in the Harrison model.

We think that, when combined with Born effective charges, the band-by-band de-
composition of the localization tensor could provide a powerful tool for the qualitative
characterization of bonds in solids. However, more studies are needed, for different
classes of materials [112], in order to make it fully effective.

3
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Chapter 3

Nonlinear response of
insulators to electric fields:
theory

3.1 Introduction

Having discussed the electric field perturbation in Sec. 1.4.5, we present in this Chapter
two methodologies to study the nonlinear response of insulators to electric fields. The
first technique uses density functional perturbation theory (DFPT) and the second
one uses finite electric fields. We report the expressions that we implemented in the
ABINIT code [64]. In the following Chapter, these techniques will be applied to various
semiconductors and ferroelectrics.

Our interest in the nonlinear response of insulators to electric fields lies in the
fact that many interesting properties are determined by this behavior. In particular,
the nonlinear optical susceptibilities, Raman scattering efficiencies and electro-optic
coefficients are related to third-order derivatives of the energy with respect to two or
more electric fields. In contrast to the linear response formalism that is nowadays
routinely applied to various systems (see for example Ref. [34]), the nonlinear response
formalism has been mostly restricted to quantum chemistry problems. Although the
hyperpolarizabilities of a huge number of molecules have been computed, taking into
account both electronic and vibrational (ionic) contributions [113,114], applications in
condensed matter physics have focused on rather simple cases [56-63].

The formalism we describe in this Chapter takes advantage of several recent theoret-
ical developments. Nunes and Gonze [115] used Eq. (1.39) as an ansatz for a periodic
energy functional. In their formalism, the polarization was computed as a Berry phase
of field polarized Bloch functions (Eqs. (1.26) and (1.28)). This ansatz was justified
later by Souza and co-workers [116] who showed that the minima of the functional of

95
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Nunes and Gonze are stationary solutions of the time dependent Schrodinger equation
for sufficiently weak fields. Using perturbation theory, Nunes and Gonze showed that
it is possible to obtain analytic expressions of the derivatives of the energy with respect
to electric fields up to any order. In particular, at the lowest order, they recovered
the same expressions of energy derivatives as given by more conventional perturbation
methods [37,117]. While Nunes and Gonze considered the response of extended sys-
tems to infinitesimal fields, Souza and co-workers [15] and Umari and co-workers [16]
studied the response of extended systems to finite electric fields (FEF) by minimizing
the energy functional in Eq. (1.39) with respect to the field polarized Bloch functions.

In this Chapter, we first particularize the formalism of Nunes and Gonze to the com-
putation of selected third-order energy derivatives. We report the local density approx-
imation (LDA) expressions of the nonlinear optical susceptibilities and the derivatives
of the linear optical susceptibilities with respect to atomic displacements. We then
show how these quantities can be used to compute the Raman scattering efficiencies
of transverse and longitudinal optical phonons and the EO coefficients under different
mechanical boundary conditions. Finally, we discuss the finite electric field method of
Souza and co-workers [15].

3.2 Third-order density functional perturbation the-
ory

3.2.1 Mixed third-order energy derivatives

In this section, we present the general framework of the computation of third order
energy derivatives based on the 2n + 1 theorem [35,36,118]. Using the notations of
Sec. 1.4.6 (see also Refs. [37,38]), we consider three Hermitian perturbations labeled
A1, A2 and A3. The mixed third-order derivatives of the Kohn-Sham energy Eq. (1.7)

O*E

EMA2As —
N1 9A203 A1=0,A2=0,A3=0

_ % (3.1)

can be computed from the ground-state and first-order wave functions
Fridads 1 (Exl,\zxg L EMAh o Bredids 4 Bhadadi 4 Bhadeh 4 E'\S"lkz) (3.2)
6

with

MM = S (T 4 0e00) 2 [B0) + (0 [(T + Vet + virae) ™ [902°)

«
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(3.3)

A=0

T is the kinetic energy and Fp,. (VHz:) is the sum of the Hartree and exchange-

correlation energy (potential). The first-order potential v;‘fzc can be computed as a

second-order functional derivative of Ep,. [36]:
(52EHm[n(°)] As

Ao Y HHzel®® ] ! '
Vifpe = S (0)on(e) n*2(r") dr' +

d (5EHM[71,(0)]

Do) (3.4)

A=0

Within the parallel gauge, the first-order Lagrange multipliers are given by

ABe = (W7 1T+ vewe + vree) * U 0). (3.5)

As a consequence of the 2n + 1 theorem, the evaluation of Eq. (3.3) requires no
higher order derivative of the wave functions than the first one. These first-order
wave functions are nowadays available in several first-principles codes. They can be
computed from linear response by minimizing a stationary expression of the second-
order energy as described in Sec. 1.4.2 or equivalently by solving the corresponding
Sternheimer equation [119]. It follows that the computation of third-order energy
derivatives does not require additional quantities other than the calculation of second-
order energy derivatives.

Eq. (3.3) is the general expression of the third-order energy derivatives. In case at
least one of the perturbations does not affect the explicit form of the kinetic energy or
the Hartree and exchange-correlation energy, it can be simplified: some of the terms
may be zero. This is the case for the electric field perturbations treated in this work
as well as for phonon type perturbations. Further simplifications can be made in case
pseudopotentials without nonlinear exchange-correlation core-correction are used.

3.2.2 The electric field perturbation

As discussed in Sec. 1.4.5, in case one of the perturbations A; is a macroscopic electric
field £, we can no more use the Kohn-Sham energy as it is defined in Eq. (1.7).
Instead, we have to consider the electric field dependent energy functional, F, defined
in Eq. (1.39) where the polarization is computed as a Berry phase of the field-polarized
Bloch functions [Eq. (1.26)]. In order to use Eq. (1.26) in practical calculations, the
integration over the BZ and the differentiation with respect to k have to be performed
on a discrete mesh of M}, k-points. As discussed in Sec. 1.4.3, in case of the ground-
state polarization, the standard approach is to build strings of k-points parallel to a
vector of the reciprocal space, G||. The polarization can then be computed as a string-
averaged Berry phase [Eq. (1.28)]. Unfortunately, the adaptation of this method to
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the computation of the energy derivatives is plagued with several technical difficulties,
like the following. The general form of the nonlinear optical susceptibility tensor of a
compound is imposed by its symmetry. For example, in zinc-blende semiconductors,
this tensor, expressed in Cartesian coordinates reduces to ngl) = X(2)\€ijl|, where €
is the Levi-Civita tensor. It follows that the reduced coordinate formulation of ngl)

satisfies the relation

A
” =9 (36)
Xgi) 3

where at least one of the three indices i, j and [ are different from the two others.
When we tried to use strings of k-points to compute XS,) Eq. (3.6) was not satisfied.
However, we were able to avoid these problems, by using the finite difference formula

of Marzari and Vanderbilt [28] on a regular grid of special k-points (instead of strings)

Vk) =Y wpb[f(k+b) - f(k)], (3.7)
b

where b is a vector connecting a k-point to one of its nearest neighbors and wy, is
a weight factor. The sum in Eq. (3.7) includes as many shells of first neighbors as
necessary to satisfy the condition

Ja
> wpbabs = (%’;2 , (3.8)
b

where b, are the reduced coordinates of b and g, is the metric tensor associated with
the real space crystal lattice.

In the case of the ground-state polarization, we cannot apply the discretization Eq.
(3.7) directly to Eq. (1.26). As shown by Marzari and Vanderbilt, the discretization
of Eq. (1.26) does not transform correctly under the gauge transformation

u, 3 (r) = eiik'Runk(r). (3.9

Since Eq. (3.9) is equivalent to a shift of the origin by one lattice vector R, P must
change accordingly by one polarization quantum. In order to obtain a discrete expres-
sion that matches this requirement, we must combine Eq. (3.7) with the King-Smith
and Vanderbilt formula [7, 8]

2e
= — o
P = YA % % w, b Indet [S(k, k + b)], (3.10)

where S is the overlap matrix between Bloch functions at k and k + b defined in Eq.
(1.31).

As discussed by Nunes and Gonze [115], when we apply the perturbation expansion
of the preceding section to the energy functional Eq. (1.39), we can adopt two equiv-
alent approaches. The first possibility is the use of Eq. (1.26) for the polarization and
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a discretization after having performed the perturbation expansion. The second possi-
bility is to apply the 2n + 1 theorem directly to Eq. (3.10) in which case no additional
discretization is needed. Using the notations of Nunes and Gonze, we will refer to the
first case as the DAPE (discretization after perturbation expansion) formulation and to
the second one as the PEAD (perturbation expansion after discretization) formulation
of the third-order energy. In the following sections, we will discuss both expressions. In
addition, in Sec. 4.3.1, we will compare their convergence with respect to the k-point
sampling to the convergence of the finite electric field technique discussed in Sec. 3.4.
The perturbation expansion of the first term (E) of Eq. (1.39) can easily be performed
as it is described in the Sec. 3.2.1. In contrast, the expansion of the second term
(—Qo& - P) is more tricky since it explicitly depends on the polarization. In the two
sections that follow, we will focus on the —Qp€ - P term of Eq. (1.39). It will be
referred to as Fy.

3.2.3 DAPE expression

According to the formalism of the preceding section, the £-P term acts as an additional
external potential that has to be added to the ionic one. The £ - P perturbation is
linear in the electric field and does not depend explicitly on other variables such as the
atomic positions. It just enters the terms of Eq. (3.3) that involve the first derivative
of vezr with respect to €. In other words, the only terms in Eq. (3.2) that involve
the expansion of P are of the form EMEXs where A1 and A3 represent an arbitrary
perturbation such as an electric field or an atomic displacement.
The DAPE expression of the third-order derivative of E,, is written as follows

_ &, 27?90 occ occ
E;\OZ&M — o / dkz u (— Z 11,:‘:1()(71,;2;{) |uff{>, (3.11)

3

where u)‘k are the projection of the first-order wave functions on the conduction bands.

The complete expression of various third-order energy derivatives, taking into account
the expansion of both E and E,, are reported in Sec. 3.3. Eq. (3.11) was derived
first by Dal Corso and Mauri [117] in a slightly different context: they performed the
perturbation expansion of the energy functional Eq. (1.39) using a Wannier basis.
The resulting expression of the third-order energy derivatives was expressed in terms
of Bloch functions by applying a unitary transform to the Wannier orbitals.
Using the finite difference expression of Marzari and Vanderbilt Eq. (3.7), E

(3.11) becomes

occe

E;\;lﬁ irs 2ie Z Z Zwb (b-Gy)

k b n,m
X {(u k|u k+b>< i(+b‘u‘£zoli>
)0 (312)
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where G; is a basis vector of the reciprocal lattice.

3.2.4 PEAD expression

Applying directly the 2n + 1 theorem to Eq. (3.10) we obtain the alternative PEAD
formulation of the third-order energy derivatives:

Buf = 9 Y upb-6)
"k b

x |2 Z(u:‘l]k|u2:k+b>an(k, k+b)

occ

=Y Sl k+ b)Qui(k k + b)
n,m,l,l'

x Sii (k. k + b)Qum (K, k + b) (3.13)

where () is the inverse of the overlap matrix S and S its first-order perturbation
expansion

SN (k,k+b) = (7L2i{|u$i{+b> + @fﬁ\uj;km). (3.14)

3.3 Computation of nonlinear optical properties

In the preceding section we have discussed the general expressions of third-order en-
ergy derivatives. We now particularize them to the computation of selected nonlinear
properties.

3.3.1 Nonlinear optical susceptibilities

As shown in Sec. 1.3.1, in an insulator the polarization can be expressed as a Taylor
expansion of the macroscopic electric field

3 3
Po— P+ e + 3 13
j=1 jl=1

where P§ is the zero-field (spontaneous) polarization, X(l-) the linear optical suscepti-

ij
bility (second rank tensor) and ngl) the second-order nonlinear optical susceptibility

(third rank tensor). In the literature on nonlinear optics, one often finds another defi-
(2)

nition of the nonlinear optical susceptibility: instead of Xiji» 1t is more convenient to

rely on the d tensor defined as
1@

dijl = §X1',jl‘ (316)
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In general, the polarization depends on valence electrons as well as on ions. In the
present section, we deal only with the electronic contribution: we will consider the
ionic cores as clamped to their equilibrium positions. This constraint will be relaxed
in the following sections where we allow for ionic displacements.

Experimentally, the electronic contribution to the linear and nonlinear susceptibil-
ities corresponds to measurements for electric fields at frequencies high enough to get
rid of the ionic relaxation but low enough to avoid electronic excitations. In case of
the second-order susceptibilities, this constraint implies that both the frequency of £,
and its second harmonic, are lower than the fundamental absorption gap.

The general expression of the electronic nonlinear optical susceptibility depends on
the frequencies of the optical electric fields [see for example Ref. [120]]. In the present
context of the 2n + 1 theorem applied within the LDA to (static) DFT, we neglect
the dispersion of ngl) As a consequence, ngl) satisfies Kleinman’s [121] symmetry
condition which means that it is symmetric under a permutation of 4, 7 and /. In order
to be able to investigate its frequency dependence, one would need either to apply the
formalism of time-dependent DFT [56] or to use expressions that involve sums over
excited states [55,122-125].

Following the work of Dal Corso and co-workers [56,117] we can relate the nonlinear
optical susceptibilities to a third-order derivative of the energy functional defined in
Eq. (1.39) with respect to an electric field

3 _s¢,
e A (3.17)

where FE&&& is defined as the sum over the permutations of the three perturbations
FEi&i&1 (3.2). Using the PEAD formulation of Sec. 3.2.2 we can express these terms
as follows:
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3.3.2 Raman susceptibilities of zone-center optical phonons

We now consider the computation of Raman scattering efficiencies of zone-center optical
phonons. In the limit ¢ — 0, the matrix of interatomic force constants C' can be
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expressed as the sum of an analytical part and a non-analytical term [38]

Crampla—0)=CAN. 5(a=0)+CNAus(g —0). (3.19)

The analytical part corresponds to the second-order derivative of the energy with re-
spect to an atomic displacement at g = 0 under the condition of vanishing macroscopic
electric field. The second term is due to the long-range electrostatic interactions in po-
lar crystals. It is at the origin of the so-called LO-TO splitting and can be computed
from the knowledge of the Born effective charges, Znp. and the electronic dielectric
tensor [38] ;5. The phonon frequencies, wy,, and eigendisplacements, U, (ka), are
solutions of the following generalized eigenvalue problem

Zéna,n’BUm(’i,B) = an;anm(’ia): (320)

where M, is the mass of atom k. As a convention, we choose the eigendisplacements
to be normalized as
ZM Upn () Up (K@) = G- (3.21)

In what follows we consider non-resonant Raman scattering where an incoming
photon of frequency wy and polarization e; is scattered to an outgoing photon of
frequency (wg —wm) and polarization eg by creating a phonon of frequency w,, (Stokes
process). The scattering efficiency [126,127] (cgs units) corresponds to

dsS
v les - R™ - el”
(wo — Wm) m 2
= A ‘ES SO eg\ m(nm + ].) (322)

where ¢ is the speed of light in vacuum and n,, the boson factor

1
m = . 2
& exp(hwy, /kgT) — 1 (3.23)

The Raman susceptibility a™ is defined as

)

\/_Z X”U 8), (3.24)

where ngl-) is the electronic linear dielectric susceptibility tensor. V is the angle of

collection in which the outgoing photon is scattered. Due to Snell’s law, V is modified
at the interface between the sample and the surrounding medium. Experimentally, the
scattering efficiencies are measured with respect to the solid angle of the medium while
Eq. (3.22) refers to the solid angle inside the sample. In order to relate theory and
experiment, one has to take into account the different refractive indices of the sample
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and medium. For example, in the isotropic case, Eq. (3.22) has to be multiplied [126]
by (n'/n)? where n and n' are, respectively, the refractive indices of the sample and
the medium.

For pure transverse optical phonons, 8)(5?/8@5 can be computed as a mixed third-
order derivative of the energy with respect to an electric field, twice, and to an atomic
displacement under the condition of zero electric field

8x§;) 6

87’,0\ - QO

Freabibs, (3.25)

In case of longitudinal optical phonons with wave vector ¢ — 0 in a polar crystal,
Eq. (3.24) must take into account the effect of the macroscopic electric field gener-
ated by the lattice polar vibration. This field enters the computation of the Raman
susceptibilities at two levels. On one hand, it gives rise to the non-analytical part of
the matrix of interatomic force constants Eq. (3.19) that modifies the frequencies and
eigenvectors with respect to pure transverse phonons. On the other hand, the electric
field induces an additional change in the dielectric susceptibility tensor related to the
nonlinear optical coefficients XSI)c For longitudinal optical phonons, Eq. (3.25) has to
be modified as follows [128]:

Oxij _ Oxij 87 > Zia 3

(2)
B i di- 3.26
Orer  OTex|e—g Qo Doy wEwar Xaji (3.26)

l

The mixed third-order derivatives (3.25) can be computed from various techniques
including finite differences of the dielectric tensor [129-131] or the second derivative of
the electronic density matrix [132,133]. Here, we follow an approach similar to Deinzer
and Strauch [60] based on the 2n + 1 theorem. The third-order energy derivatives can
be computed as the sum over the 6 permutations Eq. (3.2) of 7., & and £;. According
to the discussion of Sec. 3.2.2, we have to distinguish between the terms that involve
the discretization of the polarization such as F=*&i€i or F&ifimx» and those that can
be computed from a straightforward application of the 2n+ 1 theorem such as F&i =&
The former ones show an electric field as second perturbation. They can be computed
from an expression analogous to Eq. (3.18):
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We obtain a similar expression for FEi€imex The remaining terms do not require any
differentiation with respect to k. They can be computed from the first-order change
of the ionic (pseudo-) potential with respect to an atomic displacement vz}

occ
Fert Y3

k n.m

Tn)\

\u & )(5,17m

Tk Tk i gj
— (Y7 + vmz|uf,‘ji<><u;k|unk>]
1 d 6°En
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1 rdr' dr" 63Ewc[n0] n™ > (¢ ,nfi r ,né‘j r’
+6,/d drd on(r)on(r')on(r") (r)yn™ ()™ (7). (3.28)

né (r)n (x')
n(0)

In pseudopotential calculations, the computation of the first-order ionic potential v]%}

requires the derivative of local and non-local (usually separable) operators. These
operations can be performed easily without any additional workload as described in
Ref. [37].

In spite of the similarities between Eqs. (3.27) and (3.28) and the expression pro-
posed by Deinzer and Strauch we can quote few differences. First, our expression of the
third-order energy derivatives makes use of the PEAD fomulation for the expansion of
the polarization. Moreover, Eq. (3.28) is more general since it allows the use of pseu-
dopotentials with nonlinear core correction through the derivative of the second-order
exchange-correlation energy with respect to 7, (third term).

3.3.3 Sum rule

As in the cases of the Born effective charges and of the dynamical matrix [134], the

coefficients 8Xg;.)/8rm must, vanish when they are summed over all atoms in the unit
cell.

Z Ox = (3.29)

OTka

Physically, this sum rule guarantees that the macroscopic dielectric susceptibility re-
mains invariant under a rigid translation of the crystal. In practical calculations, it is
not always satisfied although the violation is generally less severe than in case of C
or Z*. Even in calculations that present a low degree of convergence, the deviations
from this law can be quite weak. They can be corrected using similar techniques as in

case of the Born effective charges [38]. For example, we can define the mean excess of
8)(5?/87m per atom

axﬁ-_}) 1 axz(-;) (3.30)
01y  Nu - OTin '
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and redistribute it equally between the atoms

X' . X' B X'
OTra OTwa Ot

(3.31)

3.3.4 Electro-optic tensor

The optical properties of a compound usually depend on external parameters such
as the temperature, electric fields or mechanical constraints (stress, strain). In the
present section we consider the variations of the refractive index induced by a static or
low-frequency electric field £,. At linear order, these variations are described by the
linear EO coefficients (Pockels effect)

3
=Y Ty (3.32)
y=1

where (7');; is the inverse of the electronic dielectric tensor and r;;., the EO tensor.
As discussed in Sec. 1.3.4, within the Born and Oppenheimer approximation, the
EO tensor can be expressed as the sum of three contributions: a bare electronic part
r¢l.,, an ionic contribution r}9” and a piezoelectric contribution rPiezo
The electronic part is due to an interaction of &£, with the valence electrons when

considering the ions artificially as clamped at thelr equilibrium positions. It can be
computed from the nonlinear optical coefficients. As can be seen from Eq. (3.15), Xgﬂ)

defines the second-order change of the induced polarization with respect to £,. Taking
the derivative of Eq. (3.15), we also see that ngl) defines the first-order change of the
linear dielectric susceptibility, which is equal to 4]—,rA€ij- Since the EO tensor depends
on A(e~');; rather than Ag;;, we have to transform Ag;; to A(e~');; by the inverse

of the zero field electronic dielectric tensor [77]

3
Ale )i = — Z Az—:mnsm (3.33)

m,n=1

Using Eq. (3.33) we obtain the following expression for the electronic EOQ tensor

Ufy —8m Z llel’k( B )l'j‘ . (334)

k=
L=1 v

Eq. (3.34) takes a simpler form when expressed in the principal axes of the crystal
under investigation *
—8r (@)

= 53 Xijk
n;n;

) (3.35)
k=~

'In some cases, the electric field can induce a rotation of the principal axes. Eq. (3.35) is expressed
in the principal axes of the crystal under zero electric field.
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where the n; coefficients are the principal refractive indices.

The origin of the ionic contribution to the EO tensor is the relaxation of the atomic
positions due to the applied electric field £, and the variations of ¢;; induced by these
displacements. It can be computed from the Born effective charges Z; 5 and the %
coefficients introduced in Sec. 3.3.2. As shown in appendix B [see also Refs. [128,135]],
the ionic EO tensor can be computed as a sum over the transverse optic phonon modes
atgq=20

i = -ty (3.36)
gy T anfn? — w?n ) .

where ™ is the Raman susceptibility of mode m [Eq. (3.24)] and p,,, the mode
polarity

Py = Y 755U (B) (3.37)
K3

which is directly linked to the mode oscillator strength

Sm,aﬁ = Pma " Pmg- (338)

For simplicity, we have expressed Eq. (3.36) in the principal axes while a more general
expression can be derived from Eq. (3.33).

Finally, the piezoelectric contribution is due to a relaxation of the unit cell shape
due to the converse piezoelectric effect [87]. As it is discussed in appendix B, it can be
computed from the elasto-optic coefficients 7;;,, and the piezoelectric strain coefficients

Ay

f;;zo = Z Tijuv Ay - (3.39)

wv=1

In the discussion of the EO effect, we have to specify whether we are dealing
with strain-free (clamped) or stress-free (unclamped) mechanical boundary conditions.
The clamped EO tensor r?m takes into account the electronic and ionic contributions
but neglects any modification of the unit cell shape due to the converse piezoelectric
effect [87]:

n _ el ion
iy = Tiy 105y (3.40)

Experimentally, it can be measured for frequencies of £, high enough to eliminate the
relaxations of the crystal lattice but low enough to avoid excitations of optical phonon
modes (usually above ~ 100 MHz). To compu‘re the unclamped EO tensor 77, we
have to add the piezoelectric contribution to sz

o _ p1€zo
"y = Tijy T (3.41)

Experimentally, 77, can be measured for frequencies of £, below the (geometry de-

pendent) mechanical body resonances of the sample [87] (usually below ~ 1 MHz).
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3.4 Finite electric field techniques

The 2n + 1 theorem is not the only formalism to study the nonlinear response of
insulators to electric fields. An alternative approach consists in the direct minimization
of the energy functional, F, defined in Eq. (1.39) for a finite electric field € [15,
16,136,137]. Different schemes to perform these calculations have been proposed in
the literature [15,16,138]. Here, we describe the method of Ref. [15] that has been
implemented in the ABINIT code.

As explained in Sec. 1.4.5, because of the interband (Zener) tunneling, an insulator
in an electric field has no true ground-state. In practical calculations, the problem of
the tunneling current can partially be overcome by the use of a finite grid of k-points. In
most calculations, a discrete mesh of k-points is introduced for computational reasons,
to integrate quantities such as the energy or the charge density. In the presence of a
finite electric field however, the use of a finite k-point grid plays the additional role to
eliminate the possibility of runaway solutions, allowing for stable stationary solutions
of Eq. (1.39) to exist.

To illustrate how the discretization procedure endows the energy functional with
minima, we consider in Figure 3.1 a one dimensional system with periodic boundary
conditions over a supercell of size L. Since the number of k-points, M, is equal to the
number of unit cells in the supercell we have L. = Ma where a is the lattice constant.
This system is can be visualized as a ring of perimeter L [139]. For a given number
of k-points, the energy functional will have minima only if £ is small enough to avoid
Zener tunneling. This should happen as long as the distance across which the electrons
have to tunnel to lower their energy is larger than the ring perimeter L. According to
Figure 1.8, the potential energy drop across the supercell, AE = e£ L, must be smaller
than the band gap, F, of the system. In other words, the electric field must be smaller
than the critical field 5

.= .

eMa

Eq. (3.42) shows that &, decreases as the number of k-points increases. This behavior

can impose some limitations on practical calculations. One the one hand, we usually

need a large number of k-points to obtain well-converged results. On the other hand,

for large M, the critical field can be quite low (depending on the band gap of the
system) and we are limited to study the effect of relatively weak fields.

For electric fields smaller than &., the minimization of the energy functional, F, can
be performed using standard techniques such as a preconditioned conjugate-gradient
algorithm [15,88]. At the minimum Eq. (1.39) yields the energy and polarization of
an insulator in an electric field. In addition, since the field-polarized Bloch functions
are stationary points of Eq. (1.39), we can use the Hellmann-Feynman argument [88]
to compute forces and stresses at £ # 0. The force on an atom & along direction «
can be computed as the sum of the standard Hellmann-Feynman expression at zero
electric field plus a contribution due to the ionic cores

fea=-2F OB | k., (3.43)

OTra OTra

(3.42)
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Figure 3.1: A one dimensional system with periodic boundary conditions over M unit
cells can be visualized as a ring with perimeter L = Ma where a is the lattice constant.

€
/\

where Z,; is the ionic charge of the nucleus and the core electrons.

In case of the stress tensor
1 OF

Ouwv = 543
. QO 67};w
we have to specify the electrical boundary conditions under which the strain derivatives

of F are computed. Let us first use Eq. (1.28) to rewrite the field coupling term in
Eq. (1.39) in terms of the electronic and ionic Berry phases

(3.44)

0 3
QWE-P = 2N (E-a)(P G))
2w —
= =Y (€l + el (3.45)
™

i=1

When a crystal is deformed by a homogeneous strain, n,

we can keep constant either the electric field, £, or the potential drop across each lattice
vector, V; = —& - a;. If we keep constant the potential drop?, the strain derivatives of
the electric field coupling term Eq. (3.45) vanish because ¢, and ¢;,, do not explicitly
depend on 7). The stress tensor at constant potential can therefore be computed as the
strain derivative of the zero field Kohn-Sham energy

(V) 1 OF

=—— 3.47
% = O B (3.47)

2This situation is often met in practical experiments where a voltage is applied across a sample
between conducting electrodes.
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In contrast, if we keep constant the electric field, the derivatives of the field coupling
term no more vanish. The stresses in the two cases are related by

3

€ i i
of) = ok = 5= > Eulailu (ol +¢ion). (3.48)

i=1

The formalism presented in this section offers an alternative approach to compute
the nonlinear response of insulators to electric fields. In fact, all quantities discussed
in Sec. 3.3 can be computed from finite differences of the energy, the polarization or
the forces with respect to electric fields as will be illustrated in the following Chapter.
Compared to the perturbative approach of Secs. 3.2 and 3.3, the finite electric field
technique has the advantage to be very general and to be easily applicable to the
computation of physical quantities other than those of Sec. 3.3 such as the tunability
of the dielectric constant [140] or higher-order nonlinear optical responses. Moreover,
this technique allows to use the functionals for the exchange-correlation energy that are
already available for zero-field ground-state calculations. In contrast, in order to apply
the perturbative approach of Secs. 3.2 and 3.3, all physical quantities and expressions
for the exchange-correlation energy must be implemented explicitly. However, when
the additional coding is terminated, the perturbative approach offers a more systematic
and elegant way to compute nonlinear response functions than the finite electric field
technique. Moreover, in the perturbative approach, there are no problems related to
critical fields as it is the case of the finite electric field technique.

3.5 Conclusions

In this Chapter, we presented two methodologies to study the nonlinear response of
insulators to electric fields. The first technique is based on density functional pertur-
bation theory and the second technique is based on finite electric fields.

Starting from the work of Nunes and Gonze, we reported the LDA expressions of
the nonlinear optical susceptibilities and the derivatives of the linear optical suscep-
tibilities with respect to atomic displacements as we have implemented them in the
ABINIT code. We then showed how these quantities can be used to compute the Raman
scattering efficiencies of transverse and longitudinal optical phonons and the clamped
and unclamped EO coefficients. We finally discussed how the finite electric field tech-
nique of Souza and co-workers can be applied to compute the energy of a solid in an
electric field as well as the forces on the atoms and the stress tensor under distinct
electrical boundary conditions.

In Chapter 4, the present formalism will be applied to selected ferroelectrics and
semiconductors.
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Chapter 4

Nonlinear response of
insulators to electric fields:
results

4.1 Introduction

Ferroelectric oxides are well known to exhibit unusual linear and nonlinear response
properties and are currently used in many devices. In order to find better materials for
such applications, it is important to understand the physical mechanisms that are at
the origin of these properties and to clarify the role of the soft mode in the electrome-
chanical coupling of these materials. Unfortunately, the experimental characterization
of ferroelectrics is not always easy. In addition, experiments give no direct information
about the mechanisms responsible for the observed results. For example, the measure-
ments of nonlinear optical properties require high-quality single crystals that are not
always accessible nor easy to make. Moreover, the determination of phonon frequen-
cies from Raman spectroscopy can be quite difficult as it is the case of the E-modes in
LiNbOs3.

For such reasons, accurate theoretical calculations of Raman scattering efficiencies
and EO coefficients are highly desirable. On the one hand, these calculations can be
used to predict the amplitude of the EO coefficients in situations where no experimental
data are available. On the other hand, the microscopic quantities computed from first-
principles help to identify the mechanisms responsible for the observed properties and
to assign the peaks on an experimental Raman spectrum to specific phonon modes.

In this Chapter, we apply the formalism of Chapter 3 to selected ferroelectrics in
order to (i) identify the mechanisms responsible for their large EO responses and (ii) to
clarify the assignation of the F-modes in LiNbO3. The theoretical study of the Raman
spectrum of ferroelectrics has the additional benefit that it will help us to understand

71
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the ionic contribution to the EO coefficients in these materials.

To start, we illustrate in Sec. 4.3 the formalism of the preceding Chapter by com-
puting the nonlinear optical susceptibilities, Raman polarizabilities and EO coefficients
of selected semiconductors. In particular, we compare the convergence of different ex-
pressions to compute third-order energy derivatives with respect to the number of k-
points and we discuss the effect of the approximations used for the exchange-correlation
energy.

In Sec. 4.4, we discuss some of the basic ingredients required to study the Raman
spectra and EO coefficients in BaTiO3z, PbTiO3 and LiNbO3. We report the nonlinear
optical susceptibilities and the derivatives of the linear optical susceptibilities with
respect to atomic displacements. As in case of the semiconductors, we compare the
results obtained from the 2n + 1 theorem to the results obtained from the finite electric
field technique.

In Sec. 4.5, we discuss the Raman spectra of PbTiO3 and LiNbO3. We find that the
theoretical Raman spectra are sufficiently accurate to be compared to the experiment
and that they can be helpful to interpret experimental Raman spectra. In particular,
we are able to clarify some of the ambiguities in the assignation of the phonon modes
in LiNbOs.

Finally, in Sec. 4.6, we study the EO tensor of the three ferroelectric oxides LiNbO3,
BaTiO3 and PbTiO3. We find that first-principles calculations are fully predictive and
provide significant new insights into the microscopic origin of the EO effect in these
materials. In particular, we highlight the predominant role of the soft mode in the EO
coupling in LiNbO3 and BaTiOs, in contrast with its minor role in PbTiO3.

4.2 Technical details

All results presented in this Chapter have been obtained with the ABINIT package [64].

The convergence study on AlAs in Sec. 4.3.1 (Figure 4.2) has been performed at
the theoretical lattice constant. We used the LDA for the exchange-correlation energy,
Troullier-Martins pseudopotentials [141] and a plane wave kinetic energy cutoff of 10
hartree.

For all other calculations on semiconductors, presented in Sec. 4.3 we used either
the LDA or the GGA for the exchange-correlation energy. In case of the LDA, we chose
the parameterization of Perdew and Wang [142] and in case of the GGA, we chose the
parameterization of Perdew, Burke, Ernzerhof [143]. In order to isolate the effect of
these approximations on the nonlinear optical properties from other effects, such as
the dependence of these properties on the lattice constants or the parameters of the
pseudopotentials, we worked at the experimental lattice constants. Moreover, we used
the fhi98PP code [144] to build norm-conserving pseudopotentials. For each atom,
the same parameters (cutoff radius, nonlinear exchange-correlation core-correction, ...)
were used to build the LDA and GGA pseudopotentials. These calculations have been
performed using a 16 x 16 x 16 grid of special k-points and a plane-wave kinetic energy
cutoff of 20 hartree.
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For BaTiO3 and PbTiO3, we used extended norm-conserving pseudopotentials [108],
a plane-wave kinetic energy cutoff of 45 hartree and a 10 x 10 x 10 k-point grid. The
theoretical atomic positions relaxed at the experimental lattice constants have been re-
ported in Sec. 1.2. For LiNbQOj, we used the same norm-conserving pseudopotentials
as in Ref. [69] as well as the Born effective charges, phonon frequencies and eigenvectors
already reported in that paper. For this compound, a 8 x 8 x 8 k-point grid and a plane
wave kinetic energy cutoff of 35 hartree give converged values for XE?,) and axﬁ;)/aTm.
The theoretical lattice constants and atomic positions have been reported in Sec. 1.2.

4.3 Nonlinear response of semiconductors to electric
fields

In order to illustrate the computation of third-order energy derivatives described in
Chapter 3, we performed a series of calculations on various cubic AB semiconductors
where A denotes the cation (f. ex. Al) and B the anion (f. ex. As). The aim of
these calculations is to compare the results obtained from the 2n + 1 theorem to the
results obtained from the finite electric field technique and to study the effect of the
exchange-correlation functional on the nonlinear optical properties. We first discuss
the computation of nonlinear optical susceptibilities. In particular, we compare the
convergence of the PEAD and DAPE formulations to the convergence of the finite
electric field technique. We then discuss the computation of Raman polarizabilities
and EO coefficients.

4.3.1 Nonlinear optical susceptibilities

In cubic semiconductors, the second-order nonlinear optical susceptibility tensor (Voigt
notations) has a very simple form

.o dse - .
d=1| - - - - d3 - . (4.1)
o - ds
It has only one independent element!, ds (= %xé? = %Xg)] ). The computation of this

element from the 2n + 1 theorem has been described in Sec. 3.3.1. In order to compute
dsg from finite electric fields, we have to apply an electric field along two (or more)
distinct Cartesian directions and to study the nonlinear evolution of the polarization,
P, along the third direction. This is illustrated in Figure 4.1 for an LDA calculation
on AlAs. The electric field is chosen along the (1,1,1) direction with an amplitude, &,
defined as

E=£(1,1,1). (4.2)

IThe elements of the nonlinear optical susceptibility tensor in these compounds can also be defined
as d;j; = dasl€;;;], where ¢;;5; are the elements of the Tevy-Civita tensor.
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The polarization can be decomposed into
Pi(&) = PE(E) + PNL(€) i=1,2,3 (4.3)
where P} and PN are respectively the linear and nonlinear components of P;

PEE) = Pr+xeE (4.4)
PNL(E) = 4dsE% + O(EP). (4.5)

The parameters P/, ¥ and ds¢ have been determined by fitting the first-principles
data with Eq. (4.3). The second term of the right-hand side of Eq. (4.5) is related
to higher-order effects. It will not be discussed here 2 although it was included in the
fit. Figure 4.1 shows the dependence of PN’ on £. The points are the first-principles
data from which we have subtracted the linear part, P{, and the line corresponds to
Eq. (4.5). The inset of Figure 4.1 shows the values of the total polarization for various
electric fields (points) and the fit of Eq. (4.3) (line) to the first-principles data. For a
given field, the nonlinear polarization is about two orders of magnitude smaller than
the total polarization. On the one hand, this result shows that the dependence of
P on £ is dominated by linear effects. On the other hand, we need to compute the
polarization with a high accuracy of |AP/P| < 103 if we want to compute nonlinear
optical susceptibilities. This requires a high degree of convergence of the wave functions
obtained from the minimization of Eq. (1.39). The value of d3 computed from the
curvature of PNE at the origin is 38 pm/V, in excellent agreement with the value
computed from the 2n + 1 theorem (see Table 4.1).

The formalism of the 2n + 1 theorem presented in Sec. 3.2.2 involves an integration
over the Brillouin zone and a derivative with respect to k. In practical calculations,
these operations must be performed on a discrete mesh of special k-points. As ex-
plained in Sec. 3.2.2, the discretization can either be performed before (PEAD) or
after (DAPE) the perturbation expansion of the energy functional Eq. (1.39). Up
until now, the applications of the present formalism to real materials [56,60] made use
of the DAPE formula of the third-order energy. The only application of the PEAD
formula has been reported by Nunes and Gonze [115] on a one-dimensional model sys-
tem. These authors observed that the PEAD formula converges better with respect to
the k-point sampling than the DAPE formula. In order to compare the performance
of these two approaches for a realistic case, we applied both of them to compute the
nonlinear optical susceptibility, dsg, of AlAs. We performed a series of calculations
on an xn xn grid of special k-points. In addition, we used the finite electric field
technique (FEF) to compute the nonlinear optical susceptibility for these grids. As

>The factor of 4 in the first term of the right-hand side of Eq. (4.5) can be obtained from the third
term of the right-hand side of Eq. (3.15) and Eq. (3.16). For example, in case of P{VL we obtain:

3 3
PNE= D g8 =2 diji6 = 21228285 + dias€E5) = ddanE”.
ji=1 ji=1
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Figure 4.1: Dependence of the nonlinear polarization of AlAs on an electric field along
the (1,1,1) direction. The amplitude of the electric field, £, used as abscissa is defined
in Eq. (4.2). The inset shows the dependence of the total polarization on £.
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Figure 4.2: Nonlinear optical susceptibility dsg of AlAs computed for various grids of
n x n x n special k-points. The values have been computed using the 2n + 1 theorem
(PEAD and DAPE expressions) and the finite electric field technique (FEF).
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Table 4.1: Nonlinear optical susceptibilities dzg (pm/V) of the semiconductors AlAs,
AlP and GaP computed at the theoretical (T) and experimental (E) lattice constants
(LC). The values in the lines labeled "PEAD + SCI” and "SOS + SCI” have been
obtained using a scissors correction.

LDA GGA
Method LC AlAs AIP GaP AlAs AIP GaP
PEAD (present) E 38 22 064
FEF (present) E 38 22 65 36 20 57
SOS [122] E 39 24 59
PEAD (present) T 35 20 48
DAPE [56] T 32 19 4l
FEF [15] T 32 19 33
SOS [122] T 34 21 33
PEAD + SCI (present) B 24 13 38
SOS + SCI [122] E 24 15 35
Exp. [145] 37
Exp. [146] 11

can be seen in Figure 4.2 the three approaches give the same value of dsg for large n
for large n®. However, the PEAD formula converges faster than the DAPE formula or
the FEF approach. For this reason, the PEAD formula has been applied to obtain the
results presented in the following sections. It is the one that is actually available in
the ABINIT code.

In Table 4.1, we report the nonlinear optical susceptibilities of AlAs, AIP and GaP
computed at the experimental and theoretical lattice constants (LC) using either the
PEAD expression or the FEF technique. In case of the FEF calculations, we used either
the LDA or the GGA for the exchange-correlation energy. Our results are compared
to the results of Dal Corso and co-workers [56] who used the 2n + 1 theorem within the
DAPE formalism, the results of Souza and co-workers [15] who used a FEF technique,
the results of Levine and Allan [122] who used a ”sum over excited states” (SOS)
technique and to the experiment. The values in the lines labeled "PEAD + SCI” and
”SOS + SCI” have been obtained using a scissors correction [147].

The values computed from the PEAD expression are in good agreement with the
values obtained from the FEF technique and the values of Levine and Allan. The

3The crossing between the values obtained from the PEAD expression and the values obtained
from the finite electric field technique and the small difference at large n can be related to the distinct
finite difference expressions used in connection with the two techniques. In case of the finite electric
field technique, we use strings of k-points whereas in case of the 2n + 1 theorem (PEAD and DAPE
expressions) we use the finite difference formula of Marzari and Vanderbilt Eq. (3.7). Nevertheless,
this difference is small compared to the errors introduced by the LDA or the pseudopotentials and
will not be discussed here.
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differences between the results reported in the top of Table 4.1 and the results of
Refs. [15,56] can be related to the fact that the former ones have been obtained at
the experimental lattice constants whereas the latter ones have been obtained at the
theoretical lattice constants. Using the theoretical lattice constants, we obtain values
of 35, 20 and 48 pm/V for the nonlinear optical susceptibilities of AlAs, AIP and GaP
in better agreement with the values obtained in Refs. [15,56].

The nonlinear optical susceptibilities computed within the GGA are smaller than
those computed within the LDA. The scissors correction decreases the values of the dsg
even further, in agreement with the discussion of Ref. [147] *. To the authors’ knowl-
edge, no experimental data are available for AlAs and AIP. In case of GaP, the values
computed within the LDA at the theoretical lattice constant and the values computed
at the experimental lattice constant making use of a scissors correction are close to
the experiment. However, it is not clear that the use of a scissors correction always
improves the agreement with the experiment. Moreover, it will even have a negative
effect in case the LDA (or the GGA) underestimates the experimental nonlinear optical
susceptibilities. In addition, it is not straightforward to isolate the error of the LDA
(or GGA) from other sources of errors. Other factors can have a similar strong influ-
ence on the nonlinear optical susceptibilities. As discusses above, the d;; are strongly
affected by the error on the lattice constants of the crystals. Another important source
of error can be the pseudopotentials used in the calculations as discussed in Ref. [56].

4.3.2 Raman polarizabilities

In the cubic AB semiconductors, the derivatives of the linear optical susceptibilities
with respect to atomic displacements are defined by a single number, dx(!) /d7. Making
use of the Levy-Civita tensor, €;;5, we can write for the cation (A)

oxij’ _ ox

Brax or l€ijal (4.6)

and for the anion (B)
axi  aym
aTB)\ - 87'

l€ijal- (4.7)

The quantities 6)(1(.;)/67,47)\ can be computed from various techniques. A first technique
based on the 2n + 1 theorem is described in Sec. 3.3.2. A second technique consists in

computing the derivatives axgjl-)/(%',{,)\ from frozen-phonon (FP) calculations by taking

4According to the discussion of Ref. [147], we expect the LDA value of the nonlinear optical
susceptibility, drpa, to be related to the value obtained making use of the LDA and a scissors

correction, dgcy, by the relation
3
d d 1 a
SCI R ALDA E, ;

where E; is the band gap and A the amplitude of the scissors correction.
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Figure 4.3: Dependence of the nonlinear component of the force on Al along = in AlAs
on an electric field along the (1,1,1) direction. The amplitude of the electric field, &,
used as abscissa is defined in Eq. (4.2). The inset shows the dependence of the total
force on £.
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Table 4.2: Absolute values of the Raman polarizabilities (A2) of the transverse optical
phonon modes of some semiconductors. Our results have been computed at the experi-
mental lattice constants using the 2n+1 theorem (PEAD expression), the finite electric
field (FEF) technique and frozen phonon (FP) calculations. The three experimental
values for GaP have been obtained by distinct experimental techniques.

LDA GGA

Method Si  AlAs AIP  GaP Si  AlAs AP GaP
PEAD (present) 2153 8.66 4.79  10.70

FEF (present) 2024 823 455  10.19 19.26  7.58 426 8.41
FP (present) 21.81  8.69 4.79  10.79 20.69 7.99 447 883
DAPE [60] 2356  7.39 513  11.38

FP [60] 2044 564 444 948

FP [129] 26.16
Exp. [148, 149] 23+ 4 19,16,23
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m
ij
finite electric field technique to compute the first-order derivatives axgjl-)/(%',{,)\ as a
second-order derivative of the force on atom &, f. x, with respect to the electric field

finite differences of x.,’ with respect to atomic displacements. Finally, we can use the

1
X 1 8fun
67‘,4,7)\ Q() 651653

(4.8)

The third method is illustrated in Figure 4.3 in case of AlAs. The amplitude of
the electric field, &, is defined in Eq. (4.2). The force on the cation along a Cartesian
direction, A, can be expressed as

axM

€ (4.9)

fax=27Z4,,6+ Y

where Z7 ,, is the Born effective charge of the cation.

The data computed from first-principles have been fitted with Eq. (4.9). The points
in Figure 4.3 correspond to the force on Al along x computed for different amplitudes
of the electric field from which we have subtracted the first term of the right-hand
side of Eq. (4.9). The line corresponds to the dependence of f4; . on the electric field
computed through the second term of the right-hand side of Eq. (4.9). The inset shows
the dependence of the total force on the electric field (points) and the fit of Eq. (4.9)
to the first-principles data (line). As in case of the polarization illustrated in Figure
4.1, the nonlinear part of the force is about two orders of magnitude smaller than the
linear part. As a consequence, we need a high degree of convergence of the electronic
wave functions in order to obtain a precision of |Af/f| < 1073 that is required to
compute dx1) /1 accurately.

In Table 4.2, we report the Raman polarizabilities of Si, AlAs, AIP and GaP defined
as
axM

or
All values are found to be negative and we only report their absolute values. The
LDA values we obtained from the 2n + 1 theorem (PEAD expression), finite electric
field (FEF) and frozen-phonon (FP) calculations are very similar. They are close to
the theoretical values of Refs. [60,129]. We should note however that the Raman
polarizabilities computed in Ref. [60] from the 2n + 1 theorem (DAPE expression) are
in worse agreement with the values computed from frozen-phonon calculations than in
our case. The absolute values of the Raman polarizabilities computed within the GGA
are significantly smaller than the corresponding LDA values. This behavior is similar
to what we observed for the nonlinear optical susceptibilities in Sec. 4.3.1.

(4.10)

a:QO

4.3.3 Clamped electro-optic coefficients

The nonlinear optical susceptibilities and Raman polarizabilities discussed in Secs.
4.3.2 and 4.3.1 are related to the nonlinear response of a compound to optical electric
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Figure 4.4: Graphical illustration of the (a) 7- and (b) 4-point formulas used to compute
the second-order mixed derivatives of the polarization.
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fields as defined in Sec. 1.3. They have been computed from the nonlinear dependence
of the polarization and the forces on the electric field. In these calculation, the atoms
were held fixed at their zero-field equilibrium positions. As a consequence, the nonlinear
optical susceptibilities and Raman polarizabilities are determined by pure electronic
processes. In addition to the electronic contribution, the clamped EO coefficients are
determined by an ionic contribution due to electric field induced atomic displacements.
In case we use the formalism of the 2n + 1 theorem presented in Sec. 3.3.4, the ionic
contribution can be computed from Eq. (3.36).

In order to compute the EO coefficients from the finite electric field technique, we
have (i) to relax the atoms within the electric field and (ii) to compute the difference
between the optical dielectric tensors of the zero-field equilibrium structure and the
distorted structure at non-zero electric field. In this section, we illustrate this procedure
for the cubic semiconductors AlAs, AIP and GaP. In Sec. 4.6, we apply it to the
perovskite ferroelectrics BaTiO3 and PbTiOs5.

The form of the EO tensor in cubic semiconductors is given by the transpose of
their nonlinear optical susceptibility tensor in Eq. (4.1). It only has one independent
element, rgz. The computation of this element is performed in two steps. First, we
study the dependence of the polarization on an electric field that is the sum of a static
field, £%¢, and an optical electric field, £°. In analogy with the discussion of Sec. 4.3.1,
the curvature of P gives the nonlinear EO susceptibility d”©. Second, we apply a

transformation similar to Eq. (3.35) to transform d”© into the clamped EO coefficient
Ta3
167
no_ EO
63 = T3 =, (4.11)

where n is the refractive index of the compound.
The computation of d”© is not straightforward. It has to be computed as a second-
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order mized derivative of the polarization with respect to £%* and £°. By analogy with
Eq. (4.2), we consider an electric field along the (1,1,1) direction that is the sum of
&%t and £°.

E=(E"4+£E%(1,1,1). (4.12)

The nonlinear EO susceptibility can than be computed as

JFO — 1 82Pk

- gm k:1,213 (413)

In the discussions that follow, we chose £%¢ and £° equal to 0 or +££. To compute
the second-order mixed derivative of P, we can either use a 7-point formula or a 4-
point formula [150] as illustrated in Figure 4.4. The points labeled ” (i, j)” represent a
polarization

Pr(i-E,§-E)=Pr(E" =i -EE =j-&). (4.14)

The expressions of d¥? obtained from the 7- and 4-point formulas are

4o %(m(am +Pe(=E,0) + Pi0,E) + Py(0, —E)
2P, (0,0) — Py(E,E) — Pr(—E, fg)) (4.15)
a0 = é(m(s,g) = Pi(€, =€) = Pi(=E,E) + Pi(=€, —5))- (4.16)

In order to use Egs. (4.15) and (4.16) we have to apply different combinations
of static and optical fields to the compound. In practice, the change in polarization
induced by an optical field is computed at clamped atomic positions while the change
in polarization induced by a static field is computed by taking into account the electric
field induced atomic displacements. In case both static and optical electric fields are
applied to the solid, we must (i) relax the atoms for an electric field &' equal to the
static component of the field and (ii) compute the polarization for an electric field £?
equal to the sum of the static and optic components of the field while keeping constant
the atomic positions at the values obtained in (i). For example, in order to compute
Pr(E,E), we first relax the atoms for an electric field £' = £(1,1,1). Then, we keep
constant the atomic positions and we compute the polarization for an electric field
£? =2£(1,1,1). The values of £' and £? required to compute the polarizations used
in Egs. (4.15) and (4.16) are summarized in Table 4.3.

The EO coefficients of AlAs, AIP and GaP computed from the 2n + 1 theorem and
from the finite electric field (FEF) technique are summarized in Table 4.4. In case of
the finite electric field calculations, the results obtained from the 4-point formula are
close to the results obtained from the 7-point formula. For example, using Eqgs. (4.15)
and (4.16) to compute the clamped EO coefficient of AlAs we obtained respectively
-1.118 and -1.130 pm/V. The LDA values of rl; computed from the 2n+1 theorem and
from finite electric fields are very close. Moreover, they are close to the corresponding
GGA values. This behavior is opposite to the behavior observed for the nonlinear
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Table 4.3: Electric fields used to relax the atomic positions, £', and electric fields used
to compute the polarization, £2, for the values of i and j used in Figure 4.4.

(i) £ £’
(0,0) 0 0
(1,0) £(1,1,1) £(1,1,1)
(-1,0)  —&(1,1,1)  —&(1,1,1)
(0,1) 0 £(1,1,1)
(0,-1) 0 —£(1,1,1)
(1,1) £(1,1,1)  26(1,1,1)
(-1,1) —&(1,1,1) 0
(1,-1) £(1,1,1) 0
(-1,-1) —&(1,1,1) —2£(1,1,1)

Table 4.4: Clamped EO constant rl; (pm/V) of AlAs, AIP and GaP computed at the
experimental lattice constant using the 2n + 1 theorem (PEAD expression) and the
finite electric field (FEF) technique. The values obtained from the 2n + 1 theorem are
split into the electronic and ionic contributions.

Method XC Contribution AlAs AP  GaP

PEAD LDA  Electronic -1.69 -1.25 -2.24
Tonic 0.64 0.50 0.64
Total -1.05 -0.75 -1.60
FEF LDA Total -1.12 -0.81 -1.71
FEF GGA Total -1.15 -0.84 -1.71

Exp. [151] Total -0.97
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optical susceptibilities and the Raman polarizabilities. In case of these two quantities,
we found the absolute GGA values to be significantly smaller than the corresponding
LDA values.

The EO coefficients computed from the 2n+1 theorem are split into their electronic
and ionic contributions. It is interesting to observe that both contributions are of the
same magnitude and that they are of opposite sign. As a consequence, they tend to
decrease the values of the EO coefficients when we take their sum.

4.4 Nonlinear response of ferroelectrics to electric
fields at clamped atomic positions

In the present section, we discuss the nonlinear optical susceptibilities, d;;, the optical
dielectric constants, €;;, and the derivatives of the linear optical susceptibilities with

respect to atomic displacements, 8XE;)/8TNQ, of BaTiO3 and PbTiOg3 in their tetrag-
onal phase and of LiNbQs3 in its ferroelectric phase. In case of BaTiO3 and PbTiO3,
we also compare the results obtained from the 2n + 1 theorem to the results obtained
from finite electric field calculations. The quantities discussed in this section will be
used in Sec. 4.5 and 4.6 to study the Raman spectrum and the EO coefficients of these
materials.

In the perovskites, the nonlinear optical susceptibility tensor has the three inde-
pendent elements dg;, dsz and di5 (Voigt notations):

. d15 .
d= ds - - |- (4.17)

d31 d3y  d33
In LiNbOg, this tensor has the 4 independent elements d3;, ds3, di5 and dss:

) : ) o dys —dyy
d=| —dy dy - dis - .
d31  dz dss

(4.18)

In case Kleinman’s symmetry rule can be applied, the number of independent elements
of these tensors is further decreased since d3; = dy5. As discussed in Sec. 3.3.1, in case
of the 2n + 1 theorem, this rule is automatically satisfied. In case of a finite electric
field calculation, we will see that it is not strictly satisfied although the differences
between dsz; and d;5 are small and due to the numerical accuracy of the calculation.

In BaTiO3 and PbTiOg, the 8)(2]1.)/67,4(1 coefficients take a very simple form as
shown in Table 4.5. For each atom in the unit cell as defined in Table 1.1, these
coefficients are determined by 5 numbers denoted a, b, ¢, d and e. In case of Ba, Pb, Ti
and Oy, the number of independent elements is even smaller because a = b and ¢ = d.
In LiNbOg3, the form of 8)(2]1.)/87'm is more complicated and we do not discuss these
coefficients here. In Sec. 4.5, we present instead a study of the Raman spectrum of
this compound.
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Table 4.5: 8)(1(-;)/8@& coefficients of Ba/Pb, Ti and O in the tetragonal phase of
BaTiO3 and PbTiO3. z, y and z denote the direction of the atomic displacement, a.
The rows and columns of the matrices correspond to the indexes i and j.

Table 4.6: Nonlinear optical susceptibilities (pm/V) and electronic dielectric constants
of the perovskite ferroelectrics BaTiO3 and PbTiOgz in their tetragonal phase. Re-
ported are the theoretical values computed from density functional perturbation the-
ory (DFPT, PEAD expression) and the finite electric field (FEF) technique as well as
the experimental values reported in Refs. [152-156] for BaTiO3 and Refs. [157-159] for
PbTiOs.

Material Method dis da; das €11 £33
BaTiO; DFPT -11.10  -11.10 -18.38 6.49 5.85
FEF -10.74 -10.73 -17.60 6.31 5.72
Exp. -17.0 -15.7 -6.8 5.19 5.05
PbTiO; DFPT -27.76  -27.76 -5.70 7.31 6.79
FEF -26.42  -26.15 -5.35 7.12  6.67
Exp. -37.9 -42.8 +8.5 6.64 6.63

The results obtained from the 2n+1 theorem and from the finite electric field (FEF)
technique are summarized in the Tables 4.6, 4.7 and 4.8. To compute the nonlinear op-
tical susceptibilities, the electronic dielectric constants and the 8)(5?/87m coefficients
from finite electric fields, we used an approach similar to the one described in Sec. 4.3,
in which we applied electric fields along the (1,0,0), (0,0,1) and (1,0,1) directions. As
in case of the semiconductors, the agreement between the results obtained from the
2n + 1 theorem and those obtained from the finite electric field technique is very good.
The absolute values of the nonlinear optical susceptibilities are in reasonable agree-
ment with the corresponding experimental values. All susceptibilities are found to be
negative. In case of BaTiQg, this result corresponds to what has been observed experi-
mentally. In contrast, the experimental values of d33 in PbTiO3 and ds5 in LiNbO3 are
positive. We should note however that nonlinear optical susceptibilities are difficult
to measure accurately and that the values reported by different authors are often in
substantial disagreement [87]. It is therefore not easy to say whether this discrepancy
is due to the theoretical calculation or to the experiment.
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Table 4.7: Nonlinear optical susceptibilities (pm/V) and electronic dielectric constants
of LiNbO3 computed from density functional perturbation theory (DFPT, PEAD ex-
pression).

Method da das ds3 €11 £33
DFPT -8.08 -1.30 -30.22 5.59 5.51
Exp. [160] -4.64 +2.46 -41.7
Exp. [128]  -6.25 +3.6 -37.5
Exp. [161] 5.0 4.6

Table 4.8: Independent elements of axﬁj)/aTm (Bohr—!) in BaTiO3 and PbTiO3 com-
puted from the 2n + 1 theorem (DFPT, PEAD expression) and the finite electric field
(FEF) technique.

BaTi03 PbT103

DFPT FEF DFPT FEF

Ba/Pb ab -0.0038 -0.0043 -0.0265 -0.0259
c,d -0.0065 -0.0063 -0.0826 -0.0798

e 0.0218 0.0213 -0.0486 -0.0477

Ti a,b -0.0873  -0.0860 -0.1407  -0.1383
c,d -0.1290 -0.1235 -0.1563  -0.1495

e -0.3100 -0.2983 -0.1276  -0.1222

01 a,b 0.0335  0.0332 0.0621  0.0613
c,d 0.1208  0.1153 0.1927  0.1849

e 0.2468  0.2380 0.1786  0.1725

0, -0.0029 -0.0027 -0.0240 -0.0236
0.0606  0.0598 0.1291  0.1265

-0.0063 -0.0061 -0.0363 -0.0347

0.0209  0.0207 0.0825 0.0791
0.0207  0.0194 -0.0012  -0.0013

A0 T
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In case of Ba or Pb, the absolute values of a, ¢ and e are significantly smaller
than the corresponding values for Ti or O;. A similar behavior has been observed for
the Born effective charges [103], Z*: the anomalous effective charges of Ba or Pb are
smaller then the anomalous effective charges of Ti or O;. The amplitude of the Born
effective charges in these compounds can be explained from their electronic structure
as interpreted within the bond orbital model of Harrison [106]: the Ba atom in BaTiO3
and, to a much lower extent, the Pb atom in PbTiO3 are close to a fully ionized con-
figuration whereas there is a partly covalent interaction between Ti and O;. During an
atomic displacement, the parameters that determine the covalent interactions between
Ti 3d and O; 2p atomic orbitals (the hopping integrals) vary. As discussed in Sec.
2.3.2, this variation produces a dynamical charge transfer between Ti and O;, which
is at the origin of the anomalous effective charges of these atoms. The derivatives of
the linear optical susceptibility with respect to atomic displacements can be expressed
as derivatives of the Born effective charges with respect to an electric field:

oy 1 0zz,,
i Tomaj 41
O Qo OE (4.19)

The amplitude of these quantities therefore depends on the way the dynamical charge
transfer is affected by an electric field. In case of Ba and Pb, this transfer of charges is
close to zero and, because of the ionic configuration of these atoms, it is only slightly
affected by an electric field. In contrast, because of the partly covalent interactions
between Ti and O; the transfer of charges between these atoms is more sensitive to an
electric field. The amplitude of the axﬁj)/aTm coefficients can therefore be interpreted
from similar arguments as the amplitude of the Born effective charges.

4.5 Raman spectra of ferroelectrics

The theoretical determination of Raman spectra is highly desirable since it can be used
to associate Raman lines on an experimental spectrum to specific phonon modes. In
the present section, we show that the Raman spectra obtained from first-principles are
sufficiently accurate to be compared to the experiment. We first illustrate the method
for tetragonal PbTiO3. We then discuss the Raman spectra in the ferroelectric phase
of LiNbO3 and we try to clarify some ambiguities in the assignation of the E-modes in
this compound.

4.5.1 Tetragonal PbTiO;

In the P4mm phase of PbTi0O3, the zone-center optical phonons can be classified into
3A, + By +4E.

All modes are Raman active. In addition, the A; and F modes are infrared active. At
the I'-point, they are split into transverse (TO) and longitudinal (LO) components.
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Table 4.9: Frequencies (cm~") of the transverse and longitudinal optical phonon modes
in the tetragonal phase of PbTiO3. Experimental data has been obtained by Raman
(Ra) spectroscopy.

Transverse modes Longitudinal modes
Present Ra [162] Ra [159] Present Ra [162] Ra [159]

A, TO1 151 148 149 LO1 189 194

TO2 357 362 359 LO2 442 465

TO3 653 650 647 LO3 791 795
E TO1 79 89 87 LO1 117 130 128

TO2 202 220 219 LO2 269 290 289

TO3 269 290 289 LO3 416 440 441

TO4 484 508 505 LO4 656 720 687
By 283 289

The theoretical frequencies of all zone-center phonon modes are reported in Table 4.9
where they are compared to the experiment.

As discussed in Sec. 3.3.2, the Raman scattering efficiencies can be computed from
the projection of the Raman susceptibility tensors, @™, on the polarization vectors of
the incoming and scattered photons (3.22). For a given crystal, the form of ™ depends
on the symmetry and the polarization of the phonon mode eigenvector [126,163]. For
the A; modes in PbTiOj3, polarized along z, we can write

Ai(z) = T (4.20)
)

The E modes in PbTiO3 are polarized in the plane perpendicular to z. In case the
eigenvectors are polarized along x or y, the Raman susceptibilities can be expressed as

T T I (4.21)

Finally, the Raman susceptibility of the B; modes can be written as®

c . .

The method presented in Sec. 3.3.2 gives no information about the shape or the
width of the Raman peaks. In order to draw a theoretical Raman spectrum, we use

5Since the B; modes are infrared inactive, it is not possible to define a polarization for these modes.
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the following convention: for each normal mode, we use a normalized Lorentzian cen-
tered around the theoretical phonon frequency with a half width at half maximum
of 5 cm™1.%5 These Lorentzians are then multiplied by the corresponding theoretical
scattering efficiencies computed from Eq. (3.22).

Figure 4.5 shows two theoretical (a) and the corresponding experimental [162] (b)
Raman spectra of PbTiO3. The bottom spectra have been obtained for a z(zz)y
scattering configuration in which the incoming photon has its wave vector, kg, along
z and its polarization, eg, along z while the scattered photon has its wave vector, kg,
along y and its polarization, eg, along z. Projecting the Raman susceptibilities given
in Egs. (4.20), (4.21) and (4.22) on eo and eg, we see that (i) only the 4; modes can
be detected in this configuration and (ii) the intensity of the Raman peaks depends
on the element b of their Raman susceptibility. Due to wave vector conservation, the
wave vector of the phonons created in a Stokes process, q, can be computed as the
difference

q = ko — ks. (4.23)

Tt follows that the wave vector of the phonons detected in a z(zz)y scattering configu-
ration is parallel to the (1,-1,0) direction”. Because the A; modes are polarized along
z, the modes in the bottom spectrum of Figure 4.5 (a) are purely transverse.

The spectra in the top of Figures 4.5 (a) and (b) have been obtained for a z(zx)y
configuration where the wave vector and polarization of the incoming photon (scattered
photon) are along = and 2z (y and z). Projecting the Raman susceptibilities in Egs.
(4.20), (4.21) and (4.22) on eg and eg, we see that only the E modes can be detected in
this configuration. Because the E-modes are polarized in the xy plane, both transverse
and longitudinal modes are visible in this configuration®.

The qualitative agreement between the theoretical and experimental spectra in
Figure 4.5 is very good. In case of the A; modes, the TO3 mode has the strongest
scattering efficiency while the TO2 mode has the weakest scattering efficiency. In case
of the F modes, the L.O4 mode at 656 cm ™! has the weakest scattering efficiency. Tt
does not even appear on the experimental spectrum although it is reported in Ref. [162]
to be around this frequency.

6This value was arbitrarily chosen.

"Here, we consider the limit q — 0 along this direction

8The expression of the Raman susceptibilities in Eq. (4.21) is only valid for modes strictly polarized
along x or y. In the z(zx)y configuration, the phonon wave vector is along (1,-1,0) and the trans-
verse and longitudinal modes are respectively polarized along (1,1,0) and (1,-1,0). The corresponding
susceptibility tensors can be expressed as linear combinations of the tensors in Eq. (4.21)

E(z,y) = (E(z) + E(y))

G- 6l

E(z,—y) = (E(z) — E(y)).
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Figure 4.5: Theoretical (a) and exp

erimental [162] (b) Raman spectra of PbTiO3. The
top spectra have been obtained for a xz(zz)y scattering configuration. They show the
transverse and longitudinal £ modes. The bottom spectra have been obtained for a

x(zz)y configuration. They show the transverse A; modes.
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Table 4.10: Frequencies (cm~') of the transverse and longitudinal A; modes in the
ferroelectric phase of LiNbO3. Experimental data has been obtained by Raman (Ra)
and Infrared (IR) spectroscopy.

Transverse modes Longitudinal modes

Present Ra [164] Ra [161] Present IR [161]
TO1 243 252 252 LO1 287 273
TO2 288 275 276 LO2 348 306
TO3 355 332 333 LO3 413 423
TO4 617 632 634 LO4 855 869

4.5.2 Ferroelectric LiNbO;

In the ferroelectric phase of LiNbOg, the zone-center phonon modes can be classified
into

4A; + 54, + 9E.

The A; and E modes are Raman and infrared active. The frequencies of the corre-
sponding transverse and longitudinal modes are reported in the Tables 4.10 and 4.11.
The As modes are neither Raman nor infrared active and will not be discussed here.
The Raman susceptibility of the A; modes is given in Eq. (4.20) while the Raman
susceptibilities of the E modes can be written as

Ey)=1| - —-c d |, E)y=| ¢ - - |. (4.24)

Figures 4.6 show the theoretical (a) and experimental [164,166] (b) Raman spectra
of LiNbOj3 obtained for a z(zz)y scattering configuration. As in case of PbTiO3,
only the transverse A; modes can be detected in this configuration. The qualitative
agreement between theory and experiment is very good. The TO1 and TO4 modes are
correctly predicted to have the strongest scattering efficiency. The TO2 peak appears
weaker on the theoretical spectrum than on the experimental spectrum. This effect
is not related to the intrinsic scattering efficiency of the TO2 mode. It is rather a
consequence of the fact that the TO1 peak in Figure 4.6 (b) is quite broad and that
it overlaps with the TO2 peak. This is not the case for the theoretical spectrum since
we use a constant width to represent the Raman peaks in Figure 4.6 (a). Finally
the scattering efficiency of the TO3 mode is weaker than that of the other modes in
agreement with the experiment, although the theoretical efficiency is so small that this
peak does not appear in Figure 4.6 (a).

The analysis of the £ modes in LiNbQOj is more difficult. In the literature, many
different frequencies have been reported, which were differently assigned (see f. ex.
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Figure 4.6: Theoretical (a) and experimental [164,166] (b) Raman spectrum of LiNbO3
for a z(zz)y scattering configuration. The spectra show the transverse A; modes.
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Table 4.11: Frequencies (cm™') of the transverse and longitudinal E modes in the
ferroelectric phase of LiNbO3. Experimental data has been obtained by Raman (Ra)
and Infrared (IR) spectroscopy. The values in brackets are not assumed to be related
to first-order phonons.

Transverse modes Longitudinal modes
Present Ra Ra Ra IR Present Ra Ra IR
[165,166] [167] [161] [161] [165]  [167] [161]
TO1 155 153 155 152 152 LO1 197 195 198 198
(177) (186)
TO2 218 238 238 238 236 LO2 224 240 243 238
TO3 264 264 265 264 265 LO3 298 299 295 296
TO4 330 322 325 321 322 LO4 349 345 342
TO5 372 363 LO5 384 371
TO6 384 369 371 367 LO6 423 424 428 418
TO7 428 432 431 434 431 LO7 452 456 454 450
TOS8 585 580 582 579 586 L.O8 675 668 660
(610) (625)
TO9 677 663 668 670 L.O9 863 878 880 878

Ref. [69] for a more complete discussion). This comes from the fact that the properties
of lithium niobate crystals strongly depend on the internal and external defects [168]. In
particular, Raman spectroscopy is very sensitive to small modifications in the structure
and to the stoichiometry of the samples [165, 169].

For the transverse optic phonons, most authors seem to agree on seven modes
around 152, 237, 265, 322, 368, 431 and 580 cm~'. For the two missing modes, different
frequencies have been suggested including those around 180 and 610 cm~! (values in
brackets in Table 4.11). Our calculation reproduces the seven modes mentioned above
but we do not find any phonon frequencies around 180 and 610 cm~!. For the two
remaining modes, we suggest instead that one of them has a frequency of about 670
cm ™! in agreement with Refs. [161,166,167]. Moreover, we suggest that the Raman and
infrared peaks around 370 cm™! do not correspond to one transverse optical phonon
but to two transverse optical phonons. One of them can only be detected by infrared
spectroscopy while the other one can only be detected by Raman spectroscopy.

In Figure 4.7, we compare a theoretical (a) and an experimental [165,166] (b)
Raman spectrum of LiNbOj3 obtained for a z(yz)y scattering configuration. In this
configuration, the transverse and longitudinal E modes can be detected. As in case of
the A; modes, the qualitative agreement between theory and experiment is very good.
In Table 4.12, we compare the theoretical and experimental infrared oscillator strengths
(computed from Eq. (3.38)) and Raman scattering efficiencies. Experimentally, it is
difficult to determine absolute Raman scattering efficiencies accurately. We therefore
report the intensities of the Raman peaks relative to the intensity of the TO1 peak.

The TO5 mode has an oscillator strength of 3.59 - 10~ *a.u., in good agreement
with the experiment, and a weak Raman scattering efficiency. Due to its significant
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Figure 4.7: Theoretical (a) and experimental [165,166] (b) Raman spectrum of LiNbOj3
for a z:(yz)y scattering configuration. The spectra show the transverse and longitudinal

F modes.
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Table 4.12: Infrared (IR) mode oscillator strengths (10~* a. u.) and reduced Raman
(Ra) scattering efficiencies of the transverse E modes in LiNbQOj.

Theory Experiment

Mode IR Ra IR [161] Ra [165,166]

Sm_ 1/Tron Sm /170,
TO1 5.85 1.00 6.02 1.00
TO2 0.55 091 0.53 0.83
TO3 438 0.15 4.58 0.39
TO4 2.71 0.38 2.70 0.55
TO5 3.59  0.04 3.59
TO6 0.15  0.32 0.68
TO7 0.31 0.17 0.40 0.22
TOS8 14.33  0.88 13.43 0.78
TO9 0.37  0.01 1.06 0.12

oscillator strength, this mode is easy to detect by infrared spectroscopy and it gives

Raman spectroscopy. The TO6 mode has a weak oscillator strength and a significant
Raman scattering efficiency. As can be seen in Figure 4.7 it gives rise to a well-defined
Raman peak. In contrast, due to its weak oscillator strength, this mode is difficult to
detect by infrared spectroscopy and it does not give rise to a sizeable LO-TO splitting
(see also Table 4.11).

The distinct characteristics of the TO5 and TO6 modes give a first argument in
favor of our assumption that there are two transverse optical modes around 370 cm ™.
A stronger argument comes from an experiment of Claus and co-workers [167]. The au-
thors of Ref. [167] used Raman spectroscopy to measure the dependence of the phonon
frequencies on the angle between the phonon wave vector, q, and the z-axis of LiNbOj5.
In case of the mode around 370 cm~! they observed no angular dependence of the
frequency, indicating that this mode has a negligible infrared oscillator strength. The
characteristics of the mode measured by Claus and co-workers are therefore compatible
with the characteristics of the TO6 mode. These observations cannot be explained if we
assume only one mode at this frequency because an oscillator strength of 3.59-10"*a.u.
is not compatible with the absence of angular dispersion of the phonon frequency.

To summarize, our study has shown that the theoretical calculation of Raman
efficiencies can help the interpretation of experimental Raman spectra. In particular,
we have shown that LiNbO3z has two E-modes around 370 cm~! whereas previous
studies suggest that it only has one E-mode around this frequency.

In the following section, we will study the EO tensor in BaTiOs, PbTiO3 and
LiNbOs3. The results of this section will help us to understand the unusual ionic
contribution to the EO coefficients of these materials.
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4.6 Electro-optic tensor in ferroelectric oxides

4.6.1 Ferroelectric LINbO;

The EO tensor in the ferroelectric phase of LiNbO3 has the four independent elements
(Voigt notations) ri3, r33, rao and rs;:

—T22 T3
22 13
: ' 33
r= . (4.25)
. T51 .
T51
—T22

As discussed in Sec. 4.5.2, the TO modes can be classified into 44; + 545 + 9E.
The A; and E modes are simultaneously Raman and IR active. Only the A; modes
couple to r13 and rzs, while the E modes are linked to roy and r5;. In Table 4.13, we
report the four clamped and unclamped coefficients, as well as the contribution of each
optical phonon and the piezoelectric contribution. For comparison, we also mention
the coefficients computed by Johnston [128] from measurements of IR and Raman
intensities (IR 4+ R) as well as the results of a bond-charge model (BCM) calculation
by Shih and Yariv [170]. The first-principles calculations correctly predict the sign
of the four EQ coefficients [70]. The absolute values are also well reproduced by our
method, especially if we take into account that NLO properties are generally difficult
to determine accurately. The experimental values are sensitive to external parameters
such as temperature changes [171] and the stoichiometry of the samples. For example,
using crystals of various compositions, Abdi and co-workers measured absolute values
between 1.5 pm/V and 9.9 pm/V for rg, [172]. These difficulties support the need for
sophisticated theoretical tools to predict NLO properties. In contrast to the models of
Refs. [128,170], our method is predictive and does not use any experimental parameters.
Moreover, it reproduces the clamped EO coefficients r{;, r7; and rJ, better than the
semiempirical models.

The EO coefficients of LiNbQ3 are significantly larger than the EO coefficients of the
semiconductors discussed in Sec. 4.3.3. This different behavior can be explained from
the decomposition of the EO coefficients into their electronic and ionic contributions.
In Sec. 4.3.3, we observed that these contributions are of the same order of magnitude
in semiconductors and that they are of opposite sign. As a consequence, they cancel
out, giving a small rl,. In contrast, the EO coefficients of LiNbO3 are dominated by
the ionic contribution of the A; TO1 and the E TO1 modes. In addition, the contri-
butions of these modes are much lager than the electronic and ionic contributions in
the semiconductors. This can be explained as follows. At the paraelectric-ferroelectric
phase transition, the unstable Ao, and E, modes of the paraelectric phase (see Sec.
1.2) transform to low-frequency and highly polar modes in the ferroelectric phase [69],
generating a large EO response if they exhibit, in addition, a large Raman susceptibil-
ity. The A; TO1 and E TO1 modes of the ferroelectric phase have a strong overlap
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of respectively 0.82 and 0.68 with the unstable A,, and E, modes of the paraelectric
phase and combine giant polarity [69] and large Raman susceptibility (see Figures 4.6
and 4.7 and Table 4.14).

As discussed in Sec. 3.3.4, the piezoelectric contribution to the EQ coefficients
is related to deformations of the cell shape due to the converse piezoelectric effect
and the changes in the indices of refraction induced by these deformations. Using
Eq. (3.39), this contribution can be computed as the product of the piezoelectric
strain coefficients, d,qs3, and the elasto-optic coefficients, m;jo3. The computation
of the piezoelectric strain coefficients is more difficult than the computation of the
piezoelectric stress coefficient, e,n,3. Both quantities are related through the linear
system of equations [173]

E€yaB = Z Ay pvCuvap (4.26)

uv

where c,,43 are the elastic constants. The values of 703, €403, Cuvas computed from
finite differences and d,3 computed by solving Eq. (4.26) are summarized in Table
4.15.

The unclamped EQ coefficients in LiNbQO3 are also reported in Table 4.13. As the
piezoelectric coefficients d3; and dsz are small compared to d;5 and dss, the piezoelec-
tric effect is important for rg, and rf, and negligible for r{; and r{;. The unclamped
EO coefficient 1, is nearly twice as large as the clamped one. Moreover, its theoret-
ical value is in better agreement with the experiment than that of the clamped one.
This suggests that the piezoelectric contribution was not entirely eliminated during
the measurement of r;; the correct value of the clamped coefficient might be closer to
the theoretical 14.9 pm/V.

4.6.2 Tetragonal BaTiO3; and PbTiO;

As discussed in Sec. 4.5.1, in the tetragonal phase of BaTiO3z and PbTiOs3, the TO
modes can be classified into 34; +4FE + B;. The EO tensor can be written as

13
T3

o R (4.27)

T42

It has only three independent elements: ri3, and r3s, coupling to the A; modes, and
r42, linked to the E modes. The Bi-mode is IR inactive and does not influence the EO
tensor. The values of the clamped EO coefficients of the two compounds computed
from the 2n + 1 theorem and the finite electric field (FEF) technique are reported
in Table 4.16. We also report the decomposition of the EQ coefficients into their
electronic and ionic contributions as obtained from the 2n + 1 theorem. As in case of
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Table 4.13: EO tensor (pm/V) in LiNbOj :

97

electronic, ionic and piezoelectric contri-

butions, and comparison with experiment, for the clamped and unclamped cases. The
ionic part is split into contributions from TO modes (w,, in cm~1).

A;-modes E-modes

Wm T13 r'33 Wm T22 I's51
Electronic 1.0 4.0 0.2 1.0
Ionic TO1 243 6.2 18.5 155 3.0 7.5
TO2 287 -0.2 -04 218 04 1.5
TO3 355 -0.1 0.0 264 0.6 1.3
TO4 617 2.8 4.8 330 -0.3 1.2
TO5 372 -0.2 0.4
TO6 384 -0.1 -0.2
TO7 428 0.2 0.2
TOS8 585 0.7 2.1
TO9 677 0.0 0.0
Sum of ionic 8.7 229 44 139
Strain 0.8 0.1 3.0 13.7
Clamped Present 9.7 269 46 149
Exp. [168] 8.6 30.8 3.4 28
IR+R [12§] 12 39 6 19
BCM [170] 25.9 20.5
Unclamped Present 10.5 27.0 7.5 28.6
Exp. [168] 10.0 32.2 6.8 32.6

Exp. [172] 9.9

Table 4.14: Raman susceptibilities and mode polarities (1072 a. u.) of the A; TO
modes in LiNbQO3, BaTiO3 and PbTiOs3.

LiNbO3 BaTiO; PbTiO;
Ps3 11 Q33 D3 11 Q33 Ps3 11 Q33
TO1 3.65 -0.70 -2.02 1.22 -0.16 -0.13 1.25 -0.67 -0.43
TO2 045 030 0.53 3.25 -1.18 -2.73 2.18 -0.75 -0.33
TO3 0.67 0.18 -0.05 1.74 -1.26 -2.55 2.68 -2.42 -2.28
TO4 3.82 -1.96 -3.23
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Table 4.15: Theoretical and experimental [168,174] values of the independent elastic
constants, piezoelectric stress coefficients, piezoelectric strain coefficients and elasto-
optic coefficients in LiNbQ3. Voigt notations are used for all coefficients.

Property Coefficient Theory Experiment
Elastic c11 1.96 2.03
(N/m2) C12 0.71 0.53
C13 0.70 0.75
C14 0.05 0.09
C33 2.58 2.45
C44 0.66 0.60
Cg6 0.63 0.75
Piezoelectric stress  eqs 3.44 3.7
(C/m?) €22 241 2.5
€31 0.15 0.2
Piezoelectric strain  di5 5.59 6.8
(10-"'C/N) doo 2.16 2.1
dsq -0.10 -0.1
dss3 0.60 0.6
Elasto-optic ™1 -0.0048 -0.026
ISP 0.0583 0.09
T4 -0.0778 -0.075
m33 0.0640 0.071
T4 -0.1444 -0.151

T4 0.1329 0.146




4.6. ELECTRO-OPTIC TENSOR IN FERROELECTRIC OXIDES 99

Table 4.16: Electronic and ionic contributions of individual TO modes (w,, in cm~1)
to the clamped EO coefficients (pm/V) in the P4mm phase of PbTiO3 and BaTiOs.
For comparison, we also report the value of r7, computed from the finite electric field
(FEF) technique.

A;-modes E-modes A;-modes

Wm Tl Tiy  Wm T Wm _ T{y T
Elec. 2.1 05 2.2 1.0 21
TO1 151 39 29 79 164 161 1.0 1.0
TO2 357 14 0.7 202 10.5 300 5.7 16.3
TO3 653 1.6 1.8 269 0.2 505 1.2 29
TO4 484 1.2
Tot 9.0 5.9 30.5 8.9 223
FEF 5.9 22.6
Exp. [176] 13.8 5.9
Exp. [177] 10.2  40.6
Exp. [87] 8 28

the semiconductors, there is a good agreement between the values computed from the
two techniques.

For PbTiO3, we found only measurements of rf; and rl,, which agree well with
our theoretical results. Moreover, our calculation predicts that PbTiO3 exhibits a
large rj,, in spite of its low ri,. Combined with other advantageous features, such as
small thermo-optic coefficients [175], this suggests that PbTiO3 might be an interesting
candidate for EO applications if properly oriented.

In BaTiOg3, the low temperature structure is rhombohedral. The P4mm phase
is unstable and exhibits, in the harmonic approximation, an unstable E-mode that
prevents the use of Eq. (3.36) to compute ri3". The theoretical estimates of r{y and ry,
are reasonably accurate and reproduce the correct trends, despite an underestimation
of the theoretical rl;. The origin of the error can be attributed to various sources.
First, the values computed for the P4Amm phase correspond to an extrapolation of the
EO tensor to 0 K, while experimental results are obtained at room temperature. Also,
linear and NLO susceptibilities can be relatively inaccurate within the LDA. In this
context, note the use of the LDA optical refractive indexes in Eqgs. (3.35) and (3.36),
overestimating the experimental values by about 10 %.

4.6.3 Discussion

We compare now the NLO response of the three compounds. r7, is similar for all of
them, while ri, is significantly smaller in PbTiO3 than in LiNbO3 and BaTiO3. In the
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Table 4.17: Decomposition of the Raman susceptibility of the A; TO2 mode in BaTiO3
and PbTiO3 into contributions from the individual atoms in the unit cell.

BaTiO3 PbTiOg
K \/Q_OBB):%{ u(k,3)  azs(k) \/Q_O%)é{ w(k,3)  aszz(k)
(a..) (1072 a.u.) (a..) (1072 a.u.)

Ba/Pb 0.45 -0.014 -0.01 -1.00  -0.006 0.01
Ti -6.46 0.257 -1.66 -2.64 0.216 -0.57
0, 5.15  -0.167 -0.86 3.69 0.059 0.22
02/03 0.43 -0.240 -0.10 -0.02 -0.316 0.01
Tot -2.73 -0.32

latter two compounds, the magnitude of rj, is dominated by one particular phonon
mode. In BaTiOjz, the TO2 mode at 300 cm™! has a similar strong overlap (92%)
with the unstable mode in the paraelectric phase than the TO1 modes in LiNbOs,
as previously discussed. In PbTiO3, all A; modes contribute almost equally to rl,.
The TO2 mode at 357 cm~! has the strongest overlap (73%) with the soft mode in
the cubic phase. Surprisingly, its contribution to ri; is 25.5 times smaller than the
contribution of the corresponding TO2 mode in BaTiOs.

To identify the origin of the distinctive behavior of PbTiO3, we report in Table
4.14 the mode polarities and Raman susceptibilities of the A; TO modes. In the
three compounds, @ has two independent elements a;; and a3z that determine the
amplitude of r{; and ri,. ass is large for the TO1 mode in LiNbO3 and the TO2
mode in BaTiO3. On the other hand, it is the smallest for the TO2 mode in PbTiOs3,
in agreement with experiments as discussed in Sec. 4.5.1. Combined with a higher
frequency (Whyrio, /Whario, = 1.41), a lower polarity (pBaTios /PPyTios = 1.49), and
a larger value of the refractive index (npypi0,/Mhario, = 1.35), this weak Raman
susceptibility (aperios /apyrios = 8.27) explains the weak contribution of the TO2
mode to rj; in PbTiO;.

The microscopic origin of the lower A; TO2 mode Raman susceptibility in PbTiOs3,
compared to BaTiOgs, is explained by the decomposition of as3 into contributions of
the individual atoms in the unit cell (see Table 4.17 and Table 1.1 for the labels of the
atoms). In both perovskites, the major contributions to the Raman susceptibility of
the A; TO2 modes are a33(7%) and as3(01); ass is mostly due to the displacements
of the atoms located on the Ti—O chains oriented along the polar direction. First,
the derivatives of X:(;;) versus atomic displacement are of opposite sign for Ti and O,
atoms, and significantly larger in BaTiO3 than in PbTiO3. Second, the opposing
displacements of Ti and O; atoms in the TO2 mode in BaTiO3 produce contributions
that add to yield a giant as3. On the other hand, the in-phase displacements of Ti
and Op in PbTiO3 produce contributions that cancel out, giving a small ass. This
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distinct behavior goes beyond a simple mass effect. Changing the mass of Pb to that
of Ba in the dynamical matrix of PbTiO3 has no significant effect on the relative Ti—O
displacement. Large atomic displacements of opposite direction along the Ti—O chains
are therefore needed to generate a large a3z and potentially a large r33.

4.7 Conclusions

In this Chapter, we studied nonlinear optical properties of selected semiconductors and
ferroelectrics. We applied both the 2n+1 theorem and the finite electric field technique.
From the results obtained in this study, we can draw the following conclusions:

First, as it has been illustrated on several examples, the formalism of the 2n + 1
theorem (PEAD and DAPE expressions) and the finite electric field technique can
equivalently be used to study nonlinear optical properties. However, the PEAD formula
converges faster with respect to the number on k-points than the DAPE formula or
the finite electric field technique.

Second, the Raman spectra computed from first-principles can be helpful to inter-
pret experimental Raman spectra. In particular, we were able to clarify some of the
problems in the assignation of the E-modes in the ferroelectric phase of LiNbO3. By
comparing the theoretical Raman scattering efficiencies and infrared mode oscillator
strengths to the corresponding experimental values, we showed that LiNbOg has two
E-modes around 370 cm~!.

Third, the difference between the EQ properties of ferroelectrics and semiconductors
can be explained from the ionic contribution to the EO coefficients. In the semiconduc-
tors, the ionic and electronic contributions are small and tend to cancel each other out.
In contrast, in the ferroelectric phase of LiNbO3 and BaTiOg, the large EO response
originates in the giant contribution of the successor of the soft mode, which combines
low frequency, high polarity and high Raman susceptibility.

In the next Chapter, we will take advantage of the dominant contribution of the suc-
cessor of the soft mode to build a model that allows us to study the finite temperature
dependence of the EO coefficients and refractive indices of BaTiO3.
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Chapter 5

Temperature dependence of
the electrooptic tensor and
refractive indices of BaTiOj

5.1 Introduction

In the previous Chapter, we studied the EO properties of LiNbO3, BaTiO3 and PbTiO3
for their quantum mechanical ground-state at 0 K. These calculations gave a qualitative
insight into the mechanisms responsible for the large EO responses of these materials.
However, we must be careful when we compare the computed values of the EQ coef-
ficients to experimental values measured at room temperature. It is well known that
physical properties of ferroelectrics strongly depend on temperature and that they can
present, a divergent behavior in the vicinity of a phase transition. In case of LiNbOj
and PbTiO3, we expect the values of the EO coefficients computed at 0 K to be a good
approximation of their room temperature values since the phase transition tempera-
tures are quite high: 1480 and 763 K. In contrast, in case of BaTiO3, the rhombohedral
phase is stable at 0 K whereas the tetragonal phase discussed in Sec. 4.6.2 is stable
at room temperature. The EO coefficients computed for this phase are therefore an
extrapolation from 0 K and their comparison to experiment, is questionable. Moreover,
we were not able to compute the value of r45 for this phase since the ionic contribution
to this coefficient is determined by an unstable E-mode.

In optical applications, it is mandatory to know precisely the dependence of the
relevant properties on temperature. For instance, the temperature dependence of the
EO coefficients and refractive indices often imposes serious limitations on modulators
and other devices. In order to work at low operating voltage, the EO coefficients of
a material should be as high as possible. Unfortunately, it has been observed that
the higher the EQ coefficients of a material, the stronger usually their temperature

103
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dependence [87].

Optical properties can also be used as an experimental probe. For example, it is
possible to determine the phase diagram [178] and polarization [179,180] of disordered
ferroelectrics from measurements of their birefringence as a function of temperature
and composition. Moreover, it is possible to study ferroelectricity in ferroelectric thin
films from measurements of their EO response [181].

In this Chapter, we introduce a method to compute the finite temperature de-
pendence of the EQ coefficients and refractive indices of ferroelectrics using a first-
principles effective Hamiltonian [17]. This method is well suited for compounds in
which the soft mode plays a dominant role and is applied to tetragonal BaTiOz. We
compare our approach with the model of DiDomenico and Wemple [182], a formalism
widely used to discuss the temperature dependence of the optical properties in ferro-
electrics [179,180,183]. In particular, we show why this model is valid although its

underlying hypothesis is not satisfied.

In Sec. 5.2, we report the parameters of the lattice Wannier function and the
effective Hamiltonian used in this study. In Sec. 5.3, this Hamiltonian is applied to
study the temperature dependence of the polarization, the structural parameters, the
dielectric tensor and the piezoelectric tensor of BaTiO3. In Sec. 5.4, we extend this
approach to study the temperature dependence of the EO coefficients and refractive
indices of this compound. In Sec. 5.5, we report the results obtained for the tetragonal
phase and in Sec. 5.6, we compare our approach with the Model of DiDomenico and
Wemple.

5.2 Effective Hamiltonian for BaTiO;

In this section, we describe the BaTiOj effective Hamiltonian of Ghosez and co-workers
[184] used in this study. In this model, the full lattice Hamiltonian is projected on the
subset of degrees of freedom defined by the unstable phonon branch of the cubic phase
and the macroscopic (homogeneous) strain. To each unit cell, i, we associate a localized
atomic displacement pattern that corresponds to the lattice Wannier function of the
unstable phonon branch, fz These Wannier functions define an orthonormal basis that
spans the effective Hamiltonian subspace. Within this basis, a given set of values of
the coordinates corresponds directly to a particular pattern of atomic displacement.
This approach is different from the approach of Zhong and co-workers [17,18] who only
used the soft mode at the I'-point to built the localized atomic displacement pattern.
Since the ferroelectric phase transition involves only small structural distortions, the
Hamiltonian is expressed as a low-order Taylor expansion around the high-symmetry
cubic structure. All the expansion parameters are determined from first-principles total
energy and linear response calculations. The temperature dependent properties of the
Hamiltonian are studied using classical Monte Carlo simulations on a big supercell
containing M unit cells with periodic boundary conditions.
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5.2.1 Lattice Wannier function of BaTiO;

The lattice Wannier function of BaTiO3 is constructed following the method described
in Ref. [185]. The discussion that follows is close to that of KNbOj3 in Ref. [22]. It
is also similar to the discussion of PbTiO3 in Ref. [21] with the only difference that
the lattice Wannier functions in BaTiO3 and KNbQO3 are build from the eigenvectors
of the dynamical matrix while the lattice Wannier function of PbTiQOj is build from
the eigenvectors of the force constant matrix. The choice of the dynamical matrix
has the advantage that the effective Hamiltonian can be used in molecular dynamics
simulations since the form of the kinetic energy is greatly simplified.

Following the discussion of Ref. [22], we can build a Ti-centered lattice Wannier
function from the eigenvectors of the dynamical matrix at the high symmetry g-points
I', X, M and R that correspond to the unstable phonon modes I'15, X5 and M} as
well as the Ti-dominated stable phonon modes Rj;, X1 and M} [65,74]. To obtain an
explicit form for the lattice Wannier function, we consider the symmetric coordination
shells surrounding a Ti-site and identify the independent displacement patterns of
each shell that transform according to the vector representation of the site symmetry
group Oyp. For a given shell there can be more than one pattern of displacements with
a given transformation property. To each such pattern corresponds an independent
amplitude parameter. By including the displacements of shells up to first neighbor
Ba and second neighbor Ti shells as well as selected displacements of O shells at first,
second and fourth neighbors, we obtain a total of 13 parameters. The first shell of Ba
atoms has 2 independent displacement patterns. There are 1, 2 and 2 parameters for
the zeroth, first and second shells of Ti atoms and 2, 3 and 1 parameters for the first,
second and fourth shells of oxygen atoms. These displacement patterns are shown in
Figure 5.1 for the z component of the lattice Wannier function.

To determine the numerical values of the parameters, we build the normalized
eigenvectors' of the dynamical matrix, vq(ka), for the phonon modes I'ts, X5, Mj,

55, X1 and M{ (the index & labels an atom and a a Cartesian direction) from the
parameterized lattice Wannier function using

vq(ka) = Z IR fj(na) (5.1)

J

where R; is a direct lattice vector and éj (ka) is a lattice Wannier function centered at
the Ti site in the jth unit cell. Eq. (5.1) specifies each component of the eigenvectors
as a linear combination of the parameters to be determined. The values determined
by solving the linear system of equations are reported in Table 5.1. As can be seen,
the magnitude of these values decays rapidly with shell-radius. As a consequence, the
lattice Wannier function is well localized around the Ti site. This justifies the fact that
we did not include more shells in the construction of the lattice Wannier function.

IThe eigenvectors of the dynamical matrix, v(ka), are related to the eigendisplacements defined
in Eq. (3.20) by v(ka) = vVM.U(ka), where M, is the mass of atom k.
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Figure 5.1: z component of the Ti-centered lattice Wannier function of BaTiO3. Ba,
Ti and O atoms are represented by open squares, solid squares and circles respectively.
Parameters labeling the displacement patterns correspond to the length of the dis-
placements (arrows) of the atoms. a denotes the lattice parameter of the cubic unit
cell.
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Table 5.1: Values of the lattice Wannier function parameters.

Ba-parameters by 0.0022330
by, -0.0213426
Ti-parameters dg 0.8013753
d;, -0.0408339
d;p  -0.0025517
doe,  -0.0029953
dap 0.0052709
O-parameters O1, -0.2082255
Oy -0.2653019
03, -0.0043680
0y, -0.0129174
O3,  0.0374073
Oy 0.0003538

5.2.2 Determination of the parameters of the effective Hamil-
tonian

Following the work of Waghmare and Rabe [21], the effective Hamiltonian is expressed
as the sum of five parts: a local mode self-energy, a short-range interaction between
local modes, a long-range dipole-dipole interaction, an elastic energy and an interaction
between local modes and macroscopic strains

Hepr({& ) An}) = Moy ({&r}) + Honore({€r})
+Hap({&r}) + Hetas({n}) + Hint (&}, {n})- (5.2)

&, is the amplitude of the displacement along the lattice Wannier function in cell r
and 7 the strain tensor.

The self-energy is the only part of the effective Hamiltonian that takes into account
anharmonic interactions. It includes isotropic terms up to eighth order in |&,| and
cubic anisotropy at fourth order:

Hself({gr}) = Z [A‘£T|2 + B|£r‘4 + O(f:m + fﬁy + f;«lz) + D|£r‘6 + E|£r|8] - (5.3)

T

To evaluate the short-range interaction between local modes, we consider quadratic
interactions up to third nearest neighbors with the most general form allowed by the
space group symmetry:

Honon({&:}) = D Y {a, ¢ - d) (d>-d>+aT[£r-£r<ci>—(ﬁr-dﬂ&r(ci)-ci)]}

T d=nnl
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30 2 {beler - D& () - d) +bra (e d)(Er(d) - d)

T d=nn2

+ bra(&r - d2) (6,(d) - d2) }

+> Y ek -deEd-d

T d=nn3

+ orlg - &:(d) - (& - D (D) - )]} (5.4)

The sums over d in Eq. (5.4) are taken over the first (nnl), second (nn2) and third
(nn3) nearest neighbors of site r that are located respectively in the (100), (110) and
(111) directions. &, (d) denotes the lattice Wannier function at a neighbor of site  in d
direction. The second neighbor sites are located along the diagonal of a square of side
a (a is the lattice constant of the cubic unit cell). The unit vector d; is in the plane
of the square perpendicular to this diagonal, while dy is perpendicular to the plane
of the square. To describe the long-range interactions, we use a dipole-dipole form

parameterized by the mode effective charge Z" and the electronic dielectric constant

€0

Hapn({&:) =D = i : (5.5)
T d o0
The sum over d in Eq. (5.5) is taken over all neighbors of site r.
The elastic energy is given by a second-order expansion of the energy with respect
to the homogeneous strain variables 1,

Hetas({n}) = N thun + gcn Yo+ %Clz D o + %044 > om
p=l p=1 w,v=1 w,v=1
p#v u#v
(5.6)
and the coupling between the strain and the local modes is given by the expression

Hine({&1:{n}) = 9o (Z ﬂuu> Z [k

r

3 3
+91 Z (nﬂﬂ Z £3N> + g2 Z Nuv Z frufru. (57)
p=1 T T

wyv=1
n<v

The parameters used in the effective Hamiltonian have been obtained from LDA
total energy and linear response calculations performed at the experimental lattice
constant of BaTiO3 as described in Ref. [21]. Their values are summarized in Table
5.2.
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Table 5.2: Parameters in the effective Hamiltonian (units eV per unit cell, except for
7" Jese which is dimensionless).

A 2.9080 ar,  0.3718 Ci,  123.0243
B 11.5242 ar  -0.4832 Cio  47.1910
C  23.2260 b,  0.2302 Cus  192.6313
D -53.1421 b 0.0354 9% -7.2916
E  169.9803 bra  -0.1047 g -51.8323
Z" 1.9220 e 0.2094 g -2.2036
Eoo 6.7467 er -0.0389 f 3.0611

5.3 Structural & dielectric properties

5.3.1 Technical details

We solve the Hamiltonian using Monte Carlo (MC) simulations on a 12 x 12 x 12
supercell (8640 atoms) with periodic boundary conditions. We typically do 15000
sweeps to equilibrate the system and 165000 additional sweeps to compute the average
values (£,) and (n,,) and the correlation functions [19,186] to get XS/; and d,,. At
each temperature, up to six calculations are carried out using different seeds to generate
the random numbers. The linear term, f, in Eq. (5.6) is set to zero in the simulations,

to compensate for the first-principles underestimate of the lattice constant.

5.3.2 Spontaneous polarization and spontaneous strain

Figure 5.2 shows the temperature dependence of the spontaneous polarization, P?,
and spontaneous strain, 17°, computed from the average normal mode coordinate and
strain

s Z*
P = Q—g(é) (5.8)
n® = (n). (5.9)

At high temperature, we find that P;, P, and P; are close to zero indicating that
the system is in the paraelectric phase. The tensile strains, 5§, 5 and 73, are equal 2
and the shear strains (Voigt notations), i, n{ and n§ are zero. Consequently, the high

2The elastic energy defined in Eq. 5.6 depends quadratically on the strain. We might therefore
expect that the tensile strains, n7, n5 and n3, vanish in the cubic phase. The non-zero values of n{,
n; and 13 in Figure 5.2, are due to the parameterization of the interaction between the strain and
the local modes defined in Eq. (5.7) that depends on the average value of the squared local mode
coordinates. These terms to not vanish in the cubic phase. Since H "t depends linearly on the tensile
strains (first and second term), 7, 5 and 73 are non-zero in the cubic phase.
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Table 5.3: Calculated phase transition temperatures, T., and saturated spontaneous
polarizations, P,, of BaTiO3. Our results are compared to the effective Hamiltonian
calculations of Ref. [17] and to the experimental values quoted in the same reference.

Phase Heff Heff [17] Exp [17]

T. (K) O-R 190 200 183
T-O 240 230 278

C-T 335 297 403

s(C/m?) R 045 0.43 0.33
O 037 0.35 0.36

T  0.30 0.28 0.27

temperature phase of BaTiOj is correctly predicted to be cubic. As the system is cooled
down past 330 K, P! increases and becomes significantly larger than P7 and Pj. This
indicates the transition to the tetragonal phase. The homogeneous strain varlableq
confirm that the shape of the unit cell becomes tetragonal at this temperature. Two
other phase transitions occur as the temperature is reduced further. The transition
from the tetragonal to the orthorhombic phase occurs at 240 K (sudden increase of P?)
and the transition from the orthorhombic to the rhombohedral phase occurs at 190 K
(sudden increase of P;).

The sequence of transitions exhibited by the simulation is the same as observed
experimentally. In Table 5.3, we compare the corresponding phase transition temper-
atures and spontaneous polarizations to the values of Zhong and co-workers [17, 18]
obtained from a different parameterization of the effective Hamiltonian and to the
experimental values. The theoretical results of the present study are close to the
theoretical results of Ref. [17]. The T.’s predicted from both effective Hamiltonians
deviate from the experimental T,’s. As discussed in Ref. [187], this discrepancy can be
attributed to an incorrect modeling of the thermal expansion in the effective Hamilto-
nian.

5.3.3 Dielectric and piezoelectric tensor

In this section we discuss the temperature dependence of the static dielectric tensor
and the piezoelectric tensor. We focus on the tetragonal phase, which is the most
important one for practical applications since it is stable at room temperature. In
the Monte Carlo simulations, the static dielectric susceptibilities and the piezoelectric
coefficients can be expressed as correlation functions. Following Ref. [186], we can
write

K = BZ* meme M(Ea)(Es) (5.10)
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111

Figure 5.2: Temperature dependence of the spontaneous polarization and the sponta-
neous strain in the cubic (C), tetragonal (T), orthorhombic (O) and rhombohedral (R)

phases of BaTiOs.
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Figure 5.3: Temperature dependence of the static dielectric constants in the cubic
(C) and tetragonal (T) phases of BaTiO3. Our results are compared to the results of
the effective Hamiltonian calculations of Garcia and Vanderbilt (GV) [20] and to the
experiment [177]. The bottom and top z-axes correspond respectively to the theoretical
and experimental temperatures (see text).
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In Figure 5.3, we show the temperature dependence of the static dielectric coef-
ficients €11 and e33. Our results are compared to the results of Garcia and Vander-
bilt [20] who used the effective Hamiltonian of Refs. [17,18] and to the experimental
results [177]. As discussed in Sec. 5.3.2, the theoretical phase transition tempera-
tures systematically underestimate the experiment. In order to provide a meaningful
comparison of our results to experiment, we rescaled the theoretical temperatures as
in Ref. [19]. The bottom z-axis in Figure 5.3 shows the temperatures used in the
Monte Carlo simulations while the top z-axis shows the corresponding experimental
temperatures after a linear adjustment of the scale in order to match the theoretical
and experimental phase transition temperatures. Our results are in good agreement
with the results of Garcia and Vanderbilt. Both models correctly predict a divergence
of the dielectric constants at the cubic to tetragonal phase transition. In the tetrag-
onal phase, £33 diverges at the transition to the cubic phase. At room temperature,
the theoretical value of 120 is in excellent agreement with the experimental value of
130. &11 is correctly predicted to diverge at the transition from the tetragonal to the
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Figure 5.4: Temperature dependence of the piezoelectric constants in the cubic (C)
and tetragonal (T) phases of BaTiO3.Our results are compared to the results of the
effective Hamiltonian calculations of Garcia and Vanderbilt (GV) [19] and to the ex-
periment [177]. The bottom and top z-axes correspond respectively to the theoretical
and experimental temperatures (see text).
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orthorhombic phase. The amplitude of the divergence is underestimated by the ef-
fective Hamiltonian of Ghosez and co-workers. We obtain a value of about 2200 that
underestimates the experimental value of 4400 by a factor of 2.

Figure 5.4 shows the temperature dependence of the piezoelectric coefficients dg;
and ds3. The temperatures on the top z-axis have been rescaled as described above.
Our simulations and those of Garcia and Vanderbilt [19] correctly predict ds; and dss
to diverge at the transition from the tetragonal to the cubic phase and to vanish in the
cubic phase. At room temperature, the theoretical d3; (-33 pC/N) and ds3 (105 pC/N)
are in good agreement with the experimental values of -33 and 90 pC/N [177]. In case
of the piezoelectric coefficient das4 (not shown in Figure 5.4), the agreement between
theory and experiment is less good. We obtain a value of 42 pC/N that strongly
underestimates the experimental value of 564 pC/N.
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5.4 EO coefficients & refractive indices

5.4.1 Formalism

The principal refractive indices, n;, can be computed as the square root of the eigen-
values of the optical dielectric tensor. At finite temperature, T, we can write

(€3 (€, m)) = 0ij + 4m(x\)) (€, m)). (5.12)

Let us write &, and 1 as

57‘ = <£>+6£r
n = (n)+dn (5.13)

where €., 01 denote the deviations from the average values. If we develop (XSJI) &, m))
as a Taylor expansion about the paraelectric structure, we can separate the terms de-
pending on (£) and (n) only from those involving also 6, and d7. At finite tempera-
ture, the dielectric susceptibility can therefore be expressed as

Oy (6rem)) = X (€, () + Ol (©), (m). 0€r, o). (5.14)
The first term of the right hand side of Eq. (5.14) describes the variations of XE;) due to
the average crystal lattice distortions. It is responsible for the discontinuity of n; at the

phase transition in ferroelectrics such as BaTiO3 (see Ref. [188]). Following Ref. [188],
we consider terms up to the second order in the Taylor expansion of X(l.) ((€),(n))

ij
(1)

ox,:
o m = 00435 Xw €+ | ()
0,0 O g
1 82X
50 rar | (a)és)
2475 0808 |
1 ;)
P32 D G| )
(1)
2.2 Be i;; <€a)<mw)- (5.15)
a pv @ nv

In Eq. (5.15), the first-order derivative of X(']') with respect to £, and the mixed

ij
second-order derivatives of ngl') with respect to &, and 7, are zero by symmetry 3

(1)
X
3The soft mode in the paraelectric phase is polar (infrared active). The quantities 65” and
32)(5?
9&a Onpuy
configurations of BaTiO3. They are zero by symmetry because in a centrosymmetric crystal, a phonon
mode cannot be simultaneously Raman and infrared active.

are related to the Raman susceptibilities of the soft mode in different centrosymmetric
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The second term in the right hand side of Eq. (5.14) represents the variations of XE;)

due to thermal fluctuations and to their correlations [189]. It determines the variations
of n; in the paraelectric phase. This term is difficult to compute in practice. However,
in usual ferroelectrics such as BaTiOg, the variations of n; in the paraelectric phase are
small compared to their variation at the phase transition. Following Ref. [188], we will
neglect the second term of the right hand side of Eq. (5.14) since we are interested in the
variation of n; below the phase transition temperature (T.) where we expect the first
term to dominate. We note that this approximation is not always valid. In disordered
ferroelectrics such as Ph(Mg;/3Nby/3)O03 (PMN) or Ph(Zn; /3Nby/3)03 (PZN), large
anomalies of n; have been observed above T, where (€) and (n) are zero [180,190].
Consequently, the first term of Eq. (5.14) is constant and these anomalies are related
to the second term.

The linear EQ effect is related to the first-order change of the optical dielectric ten-
sor induced by a static or low frequency electric field, £. Using an approach similar to
the one presented in Sec. 3.3.4, the unclamped EO coefficient, r7;. , can be decomposed
into three terms:

PO 2 (Y
jy iy 12,2 aE, OE
ming i3 % L %
3 (1)
4T aXij )
e : (5.16)
e R I

The first term is a bare electronic part. Its value is assumed independent of temperature

in the ferroelectric phase and equal to that reported in Table 4.16. It vanishes in the

cubic phase. The last two terms correspond to the ionic and strain contributions 4.

They depend on (i) the variation of (£¢) and (n) in the field and (ii) the variation of XE;')
with atomic displacements and strains. The relaxations of the atomic positions and
macroscopic strains within the field are related to the static dielectric susceptibility

tensor szg and the piezoelectric tensor d.,,:

) - e o1
v

6<Thw) _

9E, = dyuw- (5.18)

They can be computed from Egs. (5.10) and (5.11). The dependence of ngl-) on (£)
and (n) can be estimated through Eq. (5.15):

5)((-;) 3 82)((';)
= Y = 5.19)
T AR (
g a5 %%l

4This decomposition is different from the one of Sec. 3.3.4. As it is discussed in Appendix B, the
derivative 252 involves a coupling with the strain that is not included in the ionic contribution of Sec.

9E,,
3.3.4.
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5.4.2 Determination of parameters

In Sec. 5.4.1, we used a second-order Taylor expansion to describe the dependence of
ngl.) on atomic positions and strains. In case of the strain, i, this quadratic approxi-
mation is reasonable since the unit cell deformations at the phase transition are rather
small in most ferroelectrics. In contrast, the internal distortions are larger and the
purely quadratic dependence of Xz(';) on (&) is questionable. To check this hypothesis,
we computed the optical dielectric constants of BaTiO3 as a function of atomic dis-
placements along the soft-mode eigenvector polarized along z while keeping constant
the cubic lattice parameters. Figure 5.5 shows the dependence of €,, and ., on the
polarization associated with these distortions. We also show the corresponding double-
well potential. The variation of € appears highly anharmonic. We had to use an 8th
order polynome to fit the data in Figure 5.5 (a) [solid line] and the curvature of e(P,)
decreases as P, increases. Consequently, a second-order expansion around the cubic
phase will lead to a strong overestimate of the value of €., in the tetragonal phase of
BaTiOs3.

In spite of that, the use of a quadratic approximation may be justified in a different
way. As discussed in Sec. 5.3.2, (€¢) and (n) are discontinuous at the phase transition
of BaTiO3 and their temperature dependence in the tetragonal phase is small. In

practice, we can use the formula

2. (1)
azxij
08085

L1 ox;’
0,0 §rs Oa

, (5.21)
Er.n=0

where & denotes the position of the minimum of the double well potential in the
positive z-direction, as an approximation of the coefficients of the quadratic terms in
the second-order Taylor expansion of XEP(({), (n)). The variation of €;, and €., that
corresponds to this quadratic approximation is shown by the dotted lines in Figure 5.5
(a).

For the r{,, Eq. (5.21) is accurate around the tetragonal phase® since the tangents
to the solid curve and the corresponding dotted curve in Figure 5.5 (a) have the same
slope at the minima of the double well potential. Indeed, Eq. (5.21) is equivalent to a

linear approximation of 8)(5?/8@ around these minima

ox.) o1 oyl

9. = & o
Sa l gy o1 SF8 98

(€s)- (5.22)

Er,n=0

5For the other phases, it might be necessary to go beyond the second-order Taylor expansion of
(1)

xs)((ﬁ), (m)) and to compute the exact values of the derivatives of x;,”.
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Figure 5.5: Dependence of the optical dielectric constants (a) and energy (b) on the
polarization in BaTiO3. The points correspond to the values computed for various
internal distortions. The solid lines correspond to a polynomial fit and the dotted lines
to the quadratic approximation explained in the text.
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For n; and ng, Eq. (5.21) reproduces the correct behavior but leads to an overes-
timate of n3 as can be seen in Figure 5.5 (a).

The derivatives of X(]-) appearing in Eq. (5.15) are computed within the LDA. The

ij

second order derivative of XE;): as defined in Eq. 5.21, are computed on a 10 x 10 x
10 grid of special k-points. We use the 2n + 1 theorem to compute the first-order
derivatives of ngl-) in a structure where the soft-mode eigenvector was frozen with an
amplitude corresponding to the double-well potential minimum, while keeping constant
the experimental cubic lattice. To take into account the variations of the soft mode
eigenvector at the phase transition, these first-order derivatives were projected on the
eigenvectors of the soft E and A; modes in the tetragonal phase. The strain derivatives

in Eq. (5.15) are computed from finite differences on a 6 x 6 x 6 grid of special k-points.
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Table 5.4: First- and second-order derivatives of XE;)-

with respect to € are reported in 107° bohr~2. The strain derivatives are dimensionless.
They are reported in Voigt notations.

The second-order derivatives

oV /om -0.0657804
aX§2 /Om 0.2680479
o'y Jom 0.1026835

)
)

1)

o'y jomom  0.7692116
Oy [Omdn  0.2204320
ax\y jomon,  1.3173122
Oy Jomom,  0.2063500
oSy Jomoms  -0.1142776
3xn) Jomons  0.2633623
ox\Y Jomaoms  0.6583961
oxSy JOmadns  3.2084150
Ox\y) /Onadms  -0.1149256
X\ /0€;0€; 34355776
Ox\y /0308 -1.1950726
ox\y) 106308, -0.9530569

The values of all independent coefficients appearing in Eq. (5.15) are summarized in
Table 5.4.

5.5 Results

Figure 5.6 shows the principal refractive indices (a) and the stress-free EO coefficients
(b) in the cubic and tetragonal phases of BaTiOs. As discussed in Sec. 5.3, the
predicted T.’s do not perfectly match the experimental values. In order to obtain
calculated values comparable with experimental values, we rescale the temperatures as
in Sec. 5.3.3. The bottom z-axis shows the temperatures used in the MC simulations
while the top z-axis shows the corresponding experimental temperatures after a linear
adjustment of the scale in order to match the theoretical and experimental T.’s.

The LDA value of the refractive index in the cubic phase (n. = 2.59) is about 7 %
larger than the experimental value [191] (2.4). In order to compare the theoretical and
experimental values of n; and nj in the tetragonal phase, we report in Figure 5.6 (a)
the difference between the refractive indices of the cubic and tetragonal phases. The
internal distortions related to the spontaneous polarization mainly determine the vari-
ation of n; and ng while the spontaneous strain only plays a minor role. In particular,
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Figure 5.6: Temperature dependence of the refractive indices (a) and EO coefficients
(b) in the cubic (C) and tetragonal (T) phases of BaTiO5. The open (solid) symbols
correspond to the theoretical (experimental [177,191]) values. The bottom and top
x-axes correspond respectively to the theoretical and experimental temperatures (see
text).
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the discontinuous evolution of n; and n3 at the phase transition is due to the discon-
tinuous evolution of the spontaneous polarization and the spontaneous strain discussed
in Sec. 5.3.2. The values of 9%\ /0¢2 and 92x\Y) /9€2 [see Table 5.4] are negative.
Consequently, n; and n3 are smaller in the tetragonal phase than in the cubic phase
and they decrease as the temperature decreases. Because the first coefficient is about
two times more negative than the second the variation of n3 is more pronounced than
that of ny. At room temperature, the effective Hamiltonian predicts a large negative
birefringence in agreement with the experiment although the theoretical value (-0.095)
is somewhat more negative than the experimental value (-0.056 [191]).

The model Hamiltonian properly reproduces the finite temperature dependence
of the EO tensor. The three coefficients vanish in the cubic phase as requested by
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symmetry. Also, r{; and r{; diverge at the cubic — tetragonal transition while r{,
diverges at the tetragonal — orthorhombic transition. According to Eqs. (5.16), (5.17)
and (5.18), these divergences have the same origin as those of the static dielectric and
piezoelectric tensors. At room temperature, the theoretical r{; (25 pm/V) and r3,
(122 pm/V) are in reasonable agreement with the experimental values [177] of 8 and
105 pm/V. g, is correctly predicted to be about one order of magnitude larger than
r7; and r§; even if our result (622 pm/V) underestimates the experimental value of
1300 pm/V (not shown in Figure 5.6 (b)). Part of this discrepancy comes from the
theoretical value of the static dielectric constant €17 (2600) that underestimates the
experimental value (4400) [177] as discussed in Sec. 5.3.3.

5.6 Model of DiDomenico and Wemple

We can now compare our approach with the model of DiDomenico and Wemple [182]
conventionally used to explain the temperature dependence of optical properties in
ferroelectrics. In this latter model, the linear EQ effect is described as a quadratic
effect biased by the spontaneous polarization. In the paraelectric phase, the linear EO
tensor is zero by symmetry and the lowest-order EO effect is quadratic. Using the
polarization P, as the basic variable, we can write

3
-1
Ae™); = Y giasPaPs (5.23)
a,B=1
where g;;q3 is the quadratic polarization-optic tensor. In the ferroelectric phase, P,
can be expressed as the sum of a spontaneous and an induced part,

3
Pa =P+ > x\0Es. (5.24)
B=1

With the hypothesis that (i) the g-coefficients remain constant at the phase transition
and (ii) the dependence of the optical dielectric tensor on P is purely quadratic, we
obtain the following expressions in the ferroelectric phase

3
s (1
Tijy = 2 Z gz’jaﬁﬂxgﬁ (5.25)
a,B=1
3
Ez'j(gp,’l]p) = sz-j(0,0)—n?nj Z gijagpipé. (526)
a,B=1

As demonstrated above, in the case of BaTiOs, the dependence of €;; on the polar-
ization is highly anharmonic and a similar behavior in other ferroelectrics may be
expected. Consequently, the use of Egs. (5.25) and (5.26) is questionable. If we com-
pute the g-coefficients from a similar approximation as in Eq. (5.21), we can justify
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Table 5.5: Second-order clamped polarization optic coefficients gijns (1072 m* C~2)
of cubic BaTiO3.

(i,j,@,8) Present Exp.[183] Exp. [87]
(3.333) 178 15+3 10
(2233) 50  38+06 3
(32,32) 45 7415 9

the use of Egs. (5.25) and (5.26). However, the so computed g-coefficients can no more
be identified to the quadratic polarization-optic coefficients of the paraelectric phase:
according to Eq. (5.22), they define the slope of €;;(P) in the ferroelectric phase.
With the approximation that the ferroelectric distortion is restricted to the soft
mode eigenvector, the g-coefficients can be related to the second-order derivatives of

Xz(';) as given by Eq. (5.21)

—4r Q3 82X£‘;)
W a(Z') 960

Gijag = (5.27)

The theoretical values of the clamped g;jng reported in Table 5.5 are close to the
experimental values. On the one hand, this agreement gives a further justification of the
approximations used in our approach and validates the use of an effective Hamiltonian
to predict optical properties. On the other hand, Eq. (5.27) may be used to compute
the g;;op coefficients in situations, where no experimental data are available.

5.7 Conclusions

In this Chapter, we have presented an efficient method to compute the temperature
dependence of the EO coefficients and the refractive indices of ferroelectrics from a
first-principles effective Hamiltonian. We have successfully applied this formalism to
BaTiO3 in its tetragonal phase.

We first described the BaTiOjs effective Hamiltonian used in this study. We re-
ported the parameters of the lattice Wannier function and of the energy expansion and
we showed that this effective Hamiltonian correctly predicts the finite temperature de-
pendence of the spontaneous polarization, the spontaneous strain, the static dielectric
tensor and the piezoelectric tensor.

We then proposed an extension of the effective Hamiltonian to study the tempera-
ture dependence of the EO coefficients and indexes of refraction of ferroelectrics. We
showed that the dependence of the optical dielectric tensor on the structural parame-
ters is highly anharmonic. This result a priori invalidates the usual hypothesis, which
assumes a quadratic dependence of the optical dielectric constants on these parameters.
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Nevertheless, we showed that it is possible to justify the use of a quadratic approxi-
mation by using a modified expression of the second-order terms, which includes most
of the anharmonic dependence.

We applied this formalism to BaTiOgz in its tetragonal phase. The discontinuous
evolution of the refractive indexes at the transition from the cubic to the tetragonal
phase and the negative birefringence at room temperature can be explained from the
internal distortions related to the spontaneous polarization and the negative values
of the parameters 82)(2(-;)/65&655. Our model correctly predicts the EO coefficients
to vanish in the cubic phase and to diverge at the phase transitions. These diver-
gences have the same origin as the divergences of the static dielectric and piezoelectric
coefficients.

We compared our formalism to the model of DiDomenico and Wemple, which de-
scribes the linear EO effect in ferroelectrics as a quadratic effect biased by the sponta-
neous polarization. Although we showed that the dependence of the optical dielectric
constants on the polarization is highly anharmonic, this model can be justified if we
modify the definition of the quadratic polarization optic coefficients to take into ac-
count higher-order effects.

It is interesting to note that models similar to the model of DiDomenico and Wem-
ple are used to describe the piezoelectric effect in ferroelectrics as a quadratic effect
biased by the spontaneous polarization. These models assume that the strain in the
paraelectric phase depends quadratically on the polarization [4] (electrostrictive effect).
The results presented in this Chapter call into question the hypothesis of a quadratic
dependence. We must therefore be careful when we apply such models in practical
situations such as the study of fatigue in ferroelectrics [192].
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Conclusions and Perspectives

First-principles calculations performed within density functional theory are a powerful
tool to study the ground-state and linear response properties of materials. In this work,
we extended this formalism to study the electron localization tensor and the nonlin-
ear response to electric fields of ferroelectrics and other insulators. The techniques
we developed are based on recent theoretical advances such as the modern theory of
polarization, the theory of Wannier functions, the effective Hamiltonian approach and
the density functional perturbation theory. Our work can be summarized as follows.

As a first step, we studied the electron localization tensor. This formalism makes it
possible to quantify the degree of electron localization in materials. We set up a band-
by-band decomposition of the localization tensor that allows to study the localization of
electrons occupying individual groups of bands in a solid and to overcome the problems
in the definition of the localization tensor in pseudopotential calculations. In contrast
to the polarization or the Born effective charges, which are, in the parallel gauge, equal
to the sum of the contributions of the individual bands, we had to distinguish between
the variance and the covariance in the band-by-band decomposition of the localization
tensor. We applied this formalism to several oxides and we showed that the band-
by-band decompositions of the Born effective charges and the localization tensor are
sensitive probes to study the electronic structure of materials. In addition, we observed
only small variations of electron localization during the phase transitions of BaTiOj
and LiNbOjs. This surprising result was explained in terms of the electronic structure
of these compounds as interpreted in the Harrison model.

As a second step, we presented two methods to study the nonlinear responses of
insulators to electric fields. The first method considers the response to infinitesimal
fields. It allows a systematic study of nonlinear response properties from density func-
tional perturbation theory. However, in order to use this technique, each response
property and approximation of the exchange-correlation energy has to be implemented
explicitly. We reported the LDA expressions of the nonlinear optical susceptibilities,
the electro-optic coefficients and the Raman scattering efficiencies of transverse and
longitudinal optical phonons. The second method considers the response to finite elec-
tric fields. It consists in the iterative minimization of an electric field dependent energy
functional. Various linear and nonlinear response properties can be computed from fi-
nite differences and do not require any additional implementations. Moreover, most

125
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approximations of the exchange-correlation energy available for ground-state calcula-
tions at zero electric field can also be used in finite electric field calculations.

As a third step, we applied both methods to various ferroelectrics and semicon-
ductors. The main results of this study can be summarized as follows. First, the
two methods can equivalently be used to study the nonlinear response of insulators
to electric fields. However, the perturbative approach within the PEAD formulation
converges faster with respect to the k-point sampling than the DAPE formulation or
the finite electric field technique. Second, by comparing theoretical infrared oscillator
strengths and Raman scattering efficiencies to the experiment, we were able to clarify
some of the ambiguities in the assignation of the E-modes of LiNbQOjs. This shows
that the theoretical computation of Raman spectra is a powerful tool to interpret ex-
perimental Raman spectra. Third, the amplitude of the electro-optic coefficients in
BaTiO3 and LiNbQOj3 is mainly determined by the ionic contribution of the successor of
the soft mode in the ferroelectric phase that combines a high polarity, a high Raman
susceptibility and a low frequency. In contrast, the contribution of a similar mode in
PbTiO3 is much weaker because of its low Raman susceptibility. This result underlines
the important contribution of the soft mode to the electro-optic coefficients of BaTiO3
and LiNbOj3 in line with its well-known contributions to the dielectric constants and
with its dominant role in the ferroelectric phase transition of these materials. It also
points out the distinct behavior of PbTiQs3, in spite of its perovskite structure similar
to BaTiOs3.

As a fourth step, using the fact that the electro-optic coefficients in BaTiO3 and
LiNbOj3 are dominated by the successor of the soft mode in the ferroelectric phase,
we developed in Chapter 5 a model to study the finite temperature dependence of
optical properties of ferroelectrics. This model consists in an extension of the standard
effective Hamiltonian to take into account the dependence of the optical dielectric
constants on atomic positions and strains. We applied the model to BaTiO3 in its
tetragonal phase and we showed that it correctly predicts the temperature dependence
of the electro-optic coefficients and the refractive indexes. In addition, we were able
to give a microscopic interpretation of the model of DiDomenico and Wemple and to
explain why this model is successful in many situations although the dependence of the
optical dielectric constants on the polarization is not quadratic as erroneously assumed.

The theoretical advances presented in Chapter 2 and 3 have been implemented in
the ABINIT code. They are therefore freely accessible for future investigations and open
new perspectives.

A first potential application is the systematic computation of Raman scattering
efficiencies. Together with the infrared oscillator strengths, the theoretical Raman
scattering efficiencies can help to study the lattice dynamics of complex materials from
experimental infrared and Raman spectroscopy.

A second application is the systematic computation of electro-optic coefficients
of complex materials in order to find better materials for optical applications. We
can suggest two fields that might be interesting to investigate in the future. First,
disordered ferroelectrics such as PZN-PT are known to exhibit excellent piezoelectric
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properties. It has been shown recently that these materials also have unusual electro-
optic properties [193] that might be interesting to study from first-principles. Second,
the structure and polarization of thin ferroelectric films can be tuned by epitaxial strain
induced by the lattice mismatch between the ferroelectric film and the substrate. Tt
has been suggested recently that this strain engineering can also be used to tune the
electro-optic properties of such films [47].

Concerning the potential theoretical developments, we mentioned above that the
finite electric field technique allows the use of most approximations of the exchange-
correlation energy that are available for zero-field ground-state calculations. This tech-
nique therefore makes it possible to study the effect of these approximations on the
linear and nonlinear optical susceptibilities in a systematic way.

Finally, our work can also serve as a basis for further implementations in the ABINIT
code in order to compute anharmonic force constants [58], the tunability of the dielec-
tric constant [140], or the magnetoelectric coupling coefficients of multiferroics [51]. In
addition, the localization tensor in connection with the finite electric field technique
might be used to study the dielectric breakdown in solids [116].
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Appendix A

Relation between the
localization tensor and the
optical conductivity

The optical conductivity (imaginary part of the optical dielectric tensor) of a given
material is related to its absorption coefficient, the probability of the valence electrons
to perform optical transitions to the unoccupied conduction bands under the influence of
an electromagnetic field. If we consider only ”vertical” band-to-band transitions (thus
neglecting elementary excitations like the electron-hole interaction or the electron-
phonon coupling) this quantity writes in the dipolar approximation [101]

) = AT S 5 | Getin 0 ()3 (0 =) (A1)

m w2f7
n=1m=N+1

where m, is the electron mass, p,,,,, (k) = —ih(¢, 1|V, 1) and hwn(k) =€, 1 —€, k-
The matrix elements of the momentum operator can equivalently be expressed as

P (K) = =mewnm (k) (u,, 1|0 u,,10)- (A.2)

It has been shown by Souza, Wilkens and Martin [13] that & is related to the
localization tensor by the relation

> 8m2e?N
n
- - ) A.
/0 Eap(w) dw o (rams), (A.3)

In order to see the effect of the band by band decomposition, we will write & as

‘S’r;ﬂ(w) = Z w gl + ZE w; g1 g] (A4)

i=1 VE
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where
i) — Z Z / i (99 (98 (1) — ) (4.9
. megg;
G0 G) = e >y | 09920, 008 (1) ). (A0

The first sum of Eq. (A.5) has to be taken over the bands of group G; while the
second sum extends over all bands (unoccupied or not) except those of group G;. In
Eq. (A.6), the two sums extend over the bands of group G; and G;. It is easy to show
that €] 5(w; G;) and €], 5(w; Gi, G;) are related to the variances and covariances by the
relations

° 8w2e?n;

7 - G:)d — — (ry : A7

/0 enp(w; Gi)dw e (rars). (Gi) (A.7)

[ etswigigds - ST ), (6.G)). (A8)
Jo 0

Thanks to these definitions, the physical meaning of the covariance becomes now ob-
vious: If the total localization tensor was simply the sum of the variances (rorg), (G:),
the expression of the dielectric tensor (A.1) would not only contain transitions between
occupied and unoccupied states, but also transitions between occupied states them-
selves. It is by adding the covariances (rors), (G, G;j) that one compensates the effect
of these forbidden transitions in order to get a physically correct quantity.



Appendix B

Expressions of the clamped
and unclamped EO tensors

B.1 Macroscopic approach

As discussed in Sec. 3.3.4, the optical properties of a compound are modified by
an electric field £, or a mechanical constraint (a stress o, or a homogeneous strain
Nuv)- At linear order, the variations of z—:;jl can be described using either the variables
(€5sMuv) or (Ey,0u0) [173,183]

3 3

Ay = Zr?jyg”r*' Z TijuvMuv s (B.1)
y=1 w,v=1
3 3

A(‘Sil)ij = ngqu'y“‘ Z Qijurv Tuv, (BQ)
y=1 p,v=1

where r?jv and rf;, are respectively the clamped (strain-free) and unclamped (stress-
free) EO coefficients, m;;,, are the elasto-optic (strain-optic) coefficients and ;.
are the piezo-optical (stress-optical) coefficients. In order to relate Eqs. (B.1) and
(B.2), we can express the strain as beeing induced by the stress or by the electric field
(converse piezoelectric effect)

3 3
Nuv = Z Spvp'v' Oprvr + Z Ay &y, (B.3)
r=1

w'v'=1

where S, are the elastic compliances and d,,, the piezoelectric strain coefficients.

If we assume, for example, that the unit cell is free to relax within the electric field
(stress-free mechanical boundary conditions) we can either use Eq. (B.2) (in which
case the second term of the right-hand side is zero) or Eq. (B.1) to compute A(g™");;.
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In the latter case, the strain induced by the electric field can be obtained from the
second term of the right-hand side of Eq. (B.3)

3
Ale™),; = Zr;;.ﬁ7

Il
M.n

~+ Z Zﬂ'muu ’y;w (B4)

y=1 pv=1~vy=1

Using this identity, we obtain the following relation between the unclamped and the
clamped EO coefficients

zry =Ty T Z Tijpw Ay (B.5)

wv=1

B.2 Microscopic approach

In order to derive the expressions of the clamped and unclamped EO tensor of Sec.
3.3.4, we use a Taylor expansion of the electric enthalpy [194] F. Similar developments
have already been applied to determine the lattice contribution of the static dielectric
tensor and of the piezoelectric tensor [195,196]. They are based on an expansion of
F up to the second order in the atomic coordinates R,,, the homogeneous strain 7,
and the macroscopic electric field £,. In this section, we extend these developments to
the third order.

The electric enthalpy of a solid in an electric field is obtained by the minimization

F(€) :rﬁinF(R,mS). (B.6)

We denote R(E), n(€) the atomic positions and the strain that minimize F' at constant
& and Ry, 1o (= 0) their values at £ = 0. For small fields, we can expand the function
F (R,n, &) in powers of £ around € = 0:

3 3
Q
F (R, T},E) = F (R,’I}, O) —Qq E Pi (R, T}) Ei— 8_7(: E Eij (R, T}) 515‘]
i=1 i,j=1
3

Z ”k R,7) EE;EL + - (B.7)

k=1

where Qg is the volume of the primitive unit cell in real space and P (R,n), €;; (R, )
and XE?I)G (R, n) are the macroscopic polarization, electronic dielectric tensor and non-
linear optical coefficients at zero macroscopic electric field and for a given configuration

(R, n). At non-zero field, these quantities are defined as partial derivatives of F' with
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respect to €. For example, the electric field dependent electronic dielectric tensor can
be computed from the expression

4r O*F
gij (R(E),n(€),E) = — 5577 : (B.8)
! Qo 0E;0E; Ry ne).e
Let 7.a = Ryia — Roka be the displacement of atom « along direction o and

A

oo (np,) the first-order modification of the atomic position (strain) induced by a

perturbation A
7_)\ _ 8TN0¢ n)\ — 877;“/
ra oX |y M o\

(B.9)

A=0
In the discussion that follows, we will study the effect of an electric field perturbation
and a strain perturbation on the electric enthalpy F' in order to obtain the formulas
to compute the elasto-optic coefficients as well as the clamped and the unclamped EO
tensors.

B.2.1 Elasto-optic coefficients (€ = 0)

The elasto-optic tensor can be computed from the total derivative of the dielectric
tensor with respect to 1, at zero electric field

(1)
deij (R, n,0) _ 0eij (R, 1) + A Z Ix;;" (R,n)
dn”" Ro.m0 61}‘“’ Ro .m0 Kka Iya

Rq,no

The derivative in the first term of the right-hand side is computed considering the
ionic cores as artificially clamped at their equilibrium positions. The remaining terms
represent the ionic contribution to the elasto-optic tensor. They involve derivatives of
the linear dielectric susceptibility XE;)
be multiplied by the first-order strain induced atomic displacements 7./4" [Eq. (B.9)].
To compute these quantities we use the fact that F' is minimum at the equilibrium for

an imposed strain 7. This condition implies

with respect to the atomic positions that have to

B = 0. (B.11)

oF (R,n)

Since we are interested in first-order atomic displacements we can write 7.(n) =
ZZ 1 Tha Ny + O(n?). Solving the extremum equation (B.11) to the linear order in

1, we obtain
Z 87’,{0(87,i o

The second derivatives on the left side of Eq. (B.12) define the matrix of interatomic
force constants at zero macroscopic electric field which enables the computation of the

we _ OF(Ryn)

. (B.l?)
Ro.m0 an“”aTKO‘ Ro.mo
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transverse phonon frequencies w,, and eigendisplacements U,,(ka). By decomposing

724 in the basis of the zone-center phonon-mode eigendisplacements

e = Uy (ko) (B.13)

m

and using Egs. (3.20), (3.21) we derive the following expression for the first-order
strain induced atomic displacements

-1 9?F (R
S —— O°F (R,n) , (B.14)
w2 0N OT, Ro.m0
where
9°F (R,n) _ -~ PFR.n) Uy (501). (B.15)
8”“”87—m Ro.n0 K, an‘“’aﬂw‘ Ro.n0

If we introduce Eqs. (B.13) and (B.14) into Eq. (B.10) and use the definition of the
Raman susceptibility Eq. (3.24) and the transformation Eq. (3.33), we finally obtain
the formula to compute the elasto-optic tensor

Tijuv = 2
2 Ro,mno

47 ?71 0’F (R, n)

—_ Z _ (B.16)

w2, 0N OTm,

Ro,ﬂo

To simplify, we write Eq. (B.16) in the principal axes of the crystal under investigation.
A more general expression can be obtained from Eq. (3.33).

Eq. (B.16) is different from the approach used previously by Detraux and Gonze
to study the elasto-optic tensor in a-quartz [86]. The authors of Ref. [86] used finite
differences with respect to strains to compute the the total derivative of ;;. In their
approach, the atoms where relaxed to their equilibrium positions in the strained con-
figurations. In case of Eq. (B.16), the first term of the right-hand side is computed at
clamped atomic positions while the effect of the strain-induced atomic relaxations is
taken into account by the second term.

B.2.2 Clamped EO coefficients (1 = 0)

The clamped EO tensor can be computed from the total derivative of the electric field
dependent dielectric tensor Eq. (B.8) with respect to £

d@ij (R, 7)0,8) _ 667;j (Rg,ng,g) n An Z 8)(” R 7’}0) £,

dgV 85V £=0 87_”& R Tha-

(B.17)
Ro,EZO
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The derivative in the first term is computed considering the ionic cores as artificially
clamped at their equilibrium positions. This term represents the bare electronic contri-
bution to the EO tensor that can be computed from the nonlinear optical coefficients

Oeij (Ro,no, &) (2)
_— = 87X ‘ B.18
8& £—0 nxl]k k=~ ( )
related to a third-order partial derivative of F'
(2) _ () _ —1 0°F (Ro,m, €)

. (B.19)
£=0

Xiji = Xijr (Ro,70) = 20 9E0E;08,

The remaining terms in Eq. (B.17) represent the ionic contribution to the EO tensor.

They involve derivatives of the linear dielectric susceptibility X(';')

.+, With respect to the
atomic positions that have to be multiplied by the first-order electric field induced
atomic displacements T,f; [Eq. (B.9)]. To obtain these quantities, we proceed the same

way as in case of the elasto-optic tensor. Using the equilibrium condition

OF OF (R, 70,0 L oP; (R
5 -0 = (6,7707 ) _QOZ 7318( ) &
Tra Tka R(E) i—1 Tra R(E)
3
Q() 667;j (R T}(])
Zey A 0) E&it - B.20
87 — OTra it ( )
w= R(€)
and expanding 7, to the first-order in the electric field, we obtain
Z O°F (R, 1m0, 0) 5 = QOM . (B.21)
o 8rman 'o! Ro ra aTKﬂ Ro

This expression is similar to Eq. (B.12). The second-order derivatives of F' on the left
side are the interatomic force constants and the derivative of the zero field polarization

with respect to Tm on the right side is the Born effective charge tensor Z; _ , of atom .
Decomposing Tm in the basis of the zone-center phonon-mode eigendisplacements [Eq.
(B.13)] and using the orthononormality constraint Eq. (3.21) we derive the following

expression for the first-order electric field induced atomic displacements

= _Z N’YO{ ) (B22)

mK(I

If we introduce Eqs. (B.18) and (B.22) into Eq. (B.17) we finally obtain the formula
to compute the total derivative of the dielectric tensor
dEij (R, E)
ae,

2
= 87?)(2(-_7,1 .

Ry,E=0
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d
+4n Z (Z Xame (K‘,Oz))
Z Zh o gUnm(K'B) | - (B.23)

Using the definition of the Raman susceptibility [Eq. (3.24)], the mode polarity [Eq.
(3.37)] and the transformation [Eq. (3.33)] we obtain the expression of the clamped
EQ tensor

87T (2) Upmw
Ty = nZn2 Xiil 2\/— Z (B.24)
ity I=

As in case of the elasto-optic tensor [Eq. (B.16)], we have written Eq. (B.24) in the
principal axes of the crystal under investigation.

B.2.3 Unclamped EO tensor (0 =0)

In order to compute the unclamped EQO tensor, we have to take into account both the

electric field induced atomic displacements T,f,} and the electric field induced strain nﬁ,’,
when computing the total derivative of €;;

deij (R,n, €) _ Oeij (Ro, 1m0, €) 4 odn Z 6Xz] (R, 10) €
dS»Y Ro.10,E=0 657 £—0 6TK(1 . Ko
3
0 (R
+ar Y o)’ (Bo. ) . (B.25)
w,v=1 87]‘“,
s Mo

The electronic contribution [first term of Eq. (B.25)] is the same as for the clamped
EO tensor. It can be computed from the nonlinear optical coefficients [Eq. (B.18)]. To

compute T,f& and nﬁ,’,, we can use an equilibrium condition similar to Eq. (B.20) where
we require that the first-order derivatives of F' with respect to 7., and 7,, vanish.
Expanding 7., and n,, to the first-order in the electric field, we obtain the system of
coupled equations [see also Ref. [140]]

2
or (Ra 7, 0) L+ Z 1777 57/ — ap’Y ( ) (BZG)
ot aTmaaTn,’a’ RO 0 T'a aTﬁaanMV RO 0 aTK()/ RO 70
Z 8 F(Rﬂ?, i Z 82F(R,7], TSA, _ 8P (R, 17) B 27
w' ! 8"“'/817“1"1 Roﬂ)o “ aTnlalan‘“’ Roﬂ)o o 677,“, Ro 70

Because of the coupling between T,f,} and nﬁ,’,, defined by the mixed second-order

derivatives 5= o2 F , the second term of the right-hand side of Eq. (B.25) is different

from that of Eq (B 17). That means that the sum of the first and second term of Eq.
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(B.25) is not identical to the clamped EO coefficients r; . Moreover, the third term
of Eq. (B.25) is different from the piezoelectric contribution of Sec. B.1.
In order to obtain the decomposition of 77, into electronic, ionic and piezoelectric

contributions defined previously, we can solve Eq. (B.26) for Tm In the basis of the
zone-center phonon mode eigendisplacements we can write

&y _ pn’y Z O’F R s 1 )

£
-y nt. (B.28)
aTnanu,, ‘Ro,no

T o

n

If we insert this relation into Eq. (B.25) and use the transformation Eq. (3.33) we
obtain the following expression of the unclamped EO tensor in the principal axes

—8r (2) z7pm’y
r?. = —5X
e 77271? ijl . 2\/_2
2[8X17 7”) 8)
v Ry, m0,£=0

1 afj O*F (R 1, 0)

2 T M (B.29)
Win TmOMNuv  |Rg,n0,£=0
The sum of the first and second term of the right-hand side of Eq. (B.29) is equal
to the clamped EO coefficient TZM. The product of the conversion factor times the
bracket in the third term of Eq. (B.29) is equal to the elasto-optic coefficient 7;;,,

[Eq. (B.16)]. Finally, by definition of the converse piezoelectric effect, nﬁ,’, is equal
to the piezoelectric strain coefficient d,,,. We obtain thus the following expression of
the unclamped EO coefficients that is equal to the one derived in Sec. B.1 from pure
macroscopic arguments

3
Py = Tijy + Z Tijuw Ay - (B.30)
p,v=1

It is worth noting that the so-called piezoelectric contribution not only takes into ac-
count the change of the linear optical susceptibility with strain (third term of the
right-hand side of Eq. (B.25)) but also includes the modification of the ionic contri-
bution, with respect to the clamped case, that is associated to the modification of the
ionic relaxation induced by the strain.
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Glossary

Abbreviations
BZ Brillouin zone
DAPE Discretization after perturbation expansion
DFT Density functional theory
DFPT Density functional perturbation theory
EO Electro-optic
FEF Finite electric fields
GGA Generalized gradiend approximation
LDA Local density approximation
PEAD Perturbation expansion after discretization

Notation for crystals

a; basis vector of the real space crystal lattice
G; basis vector of the reciprocal lattice

Qo volume of the primitif unit cell

L size of the Born- von Karman supercell

Notation for electronic properties

k wavevector of the Bloch functions

Gi group of bands

¥, (r) electronic Bloch function

u, 1 (T) periodic part of the Bloch function

Wp(r —R) electronic Wannier function

|IRn Dirac notation of the electronic Wannier function W,(r — R)
e charge of the proton

Me mass of an electron

E Kohn-Sham energy at zero electric field
F electric field dependent energy functional
E, electronic band gap at zero electric field
Q spread of Wannier functions: Q@ = Q; + 0
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Q

Q
<7"rxrl3>c

GLOSSARY

gauge invariant part of
gauge dependent part of 2
element of the localization tensor

Notation for dynamic properties

Tra
CK‘,(I,K‘,'(!'
Un(ka)
Pma

&

Z*

1%

displacement of atom x along the Cartesian direction «

interatomic force constants

normalized phonon mode eigendisplacements

mode polarities

amplitude of the displacement along the lattice Wannier function in cell i
mode effective charge of the soft mode in the cubic phase of BaTiOg
angle of collection in a Raman scattering experiment

General physical quantities

T.

£
P
PS

fra
U

Cuyulyl
Aoy v
Cyuv

€ij
Xij
€ap

Xag

Xt
ijy
ijy
Tijuv
§ijuv

phase transition temperature of a ferroelectric

macroscopic electric field
macroscopic polarization
spontaneous polarization of a ferroelectric

force on atom k along the Cartesian direction «
elements of the stress tensor
elements of the (homogeneous) strain tensor

elastic constants
piezoelectric strain coefficients
piezoelectric stress coefficients

elements of the optical dielectric tensor

elements of the optical dielectric susceptibility tensor
elements of the static dielectric tensor

elements of the static dielectric susceptibility tensor

elements of the nonlinear optical susceptibility tensor
elements of the stress-free (unclamped) EO tensor
elements of the strain-free (clamped) EO tensor
elasto-optic (strain-optic) coefficients

piezo-optic (stress-optic) coefficients
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