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Introdu
tionSin
e their dis
overy in 1920, ferroele
tri
s have attra
ted joined s
ienti�
 and indus-trial interest. Within this 
lass of materials, the ABO3 
ompounds are probably themost intensively studied. Their simple stru
ture 
ombined with their wide range ofappli
ability in te
hnologi
al devi
es, make them attra
tive to both theoreti
al andexperimental studies [1{4℄.During the last de
ade, several theoreti
al advan
es 
ombined with a giganti
 jumpof 
omputational power lead to an intensive study of ferroele
tri
 oxides from �rst-prin
iples density fun
tional theory (DFT) [5,6℄ and greatly improved our understand-ing of these materials. These te
hniques have been applied su

essfully to a largenumber of systems and provided insightful information on their ele
troni
 and stru
-tural properties as well as on their responses to perturbations su
h as ele
tri
 �elds,atomi
 displa
ements and strains.A �rst 
ru
ial advan
e 
on
erns the emergen
e of the modern theory of polarization[7{9℄. Until the early 1990s, the formulation of a proper quantum me
hani
al approa
hfor the 
al
ulation of the ele
troni
 polarization in periodi
 solids had remained a tri
kyand 
hallenging problem. The modern theory of polarization o�ered an elegant solutionto this problem by asso
iating the polarization of 
ontinuous periodi
 
harge densitiesto a Berry phase of the Blo
h fun
tions. The modern theory of polarization was alsoat the origin of the theory of ele
tron lo
alization [10{14℄ and of the re
ently proposed�nite ele
tri
 �eld te
hniques [15, 16℄.A se
ond advan
e is the �rst-prin
iples e�e
tive Hamiltonian approa
h [17, 18℄ forferroele
tri
s. This formalism makes it possible to study the stru
tural phase transi-tions of ferroele
tri
s and the temperature dependen
e of their diele
tri
 and piezo-ele
tri
 properties [19,20℄ that are ina

essible from standard DFT te
hniques. In thisformalism, the soft mode is 
onsidered as the driving me
hanism of the phase transi-tion. The Hamiltonian is 
onstru
ted from a Taylor expansion of the energy aroundthe paraele
tri
 phase. All parameters that appear in this expansion are determinedfrom DFT total energy and linear response 
al
ulations. Sin
e its development in1994, this formalism has been applied su

essfully to numerous ABO3 ferroele
tri
sand ferroele
tri
 alloys [21{27℄.A third advan
e is the development of a te
hnique to 
ompute maximally lo
alizedWannier fun
tions [28{31℄. These Wannier fun
tions provide an insightful pi
ture ofthe nature of the 
hemi
al bonds in solids that is missing in the Blo
h pi
ture of ex-7



8 INTRODUCTIONtended orbitals. Moreover, maximally lo
alized Wannier fun
tions provide a physi
allyappealing interpretation of the modern theory of polarization and of the theory of ele
-tron lo
alization. They 
an also be used as basis fun
tions in order-N methods [32℄ orfor the 
onstru
tion of model Hamiltonians allowing to study the transport propertiesof nanostru
tures [33℄.Finally, the development of density fun
tional perturbation theory [34{38℄ madea

essible from �rst-prin
iples an in
reasing number of important physi
al propertiessu
h as phonon frequen
ies, infrared intensities, diele
tri
, piezoele
tri
 and elasti

onstants ....Nowadays, the in
reasing 
apabilities of �rst-prin
iples te
hniques to predi
t witha good a

ura
y properties of 
omplex materials meet the requirements of experimen-talists for helpful theoreti
al data. These te
hniques 
an guide the experimental workand help to interpret the experimental results sin
e they allow to relate the measuredproperties to the mi
ros
opi
 stru
ture of the materials. In the re
ent studies on fer-roele
tri
s, we have to distinguish whether the experiments are performed on bulk
rystals or on nanostru
tures in whi
h 
ase �nite size e�e
ts in
uen
e the propertiesof the materials.During the last de
ade, bulk ferroele
tri
 oxides have been intensively studied be-
ause of their unusual diele
tri
 and piezoele
tri
 responses. For example, solid so-lutions of PbTiO3 and PbZrO3 (PZT) are widely used in piezoele
tri
 appli
ationsbe
ause of their ex
ellent ele
trome
hani
al properties [2℄. In addition, a new genera-tion of mixed relaxor and ferroele
tri
 ABO3-type 
rystals su
h as Pb(Mg1=3Nb2=3)O3-PbTiO3 (PMN-PT) or Pb(Zn1=3Nb2=3)O3-PbTiO3 (PZN-PT) have been found to ex-hibit ultrahigh piezoele
tri
 
oeÆ
ients that may revolutionize appli
ations in medi
alimaging, tele
ommuni
ations and ultrasoni
 devi
es. Theoreti
al studies showed thatthe large piezoele
tri
 responses of these materials are driven by polarization rotationindu
ed by an external ele
tri
 �eld [39℄. Moreover, they emphasized that atomi
 orderstrongly a�e
ts the properties of these materials so that properly oriented 
ompounds
an be used to tune their ele
trome
hani
al responses [25, 40℄.More re
ently, nano-sized ferroele
tri
s have attra
ted a lot of interest. Espe
iallythe properties of thin ferroele
tri
 �lms and their 
ompatibility with 
urrent sili
on-based te
hnologies have been intensively studied by both theorists and experimentalists[41{44℄. In addition, there is presently an in
reasing interest in other ferroele
tri
nanostru
tures su
h as nanowires and nanoparti
les [45, 46℄. In these stru
tures, theproperties of the materials are modi�ed by e�e
ts that are usually negligible at the bulklevel. For example, in 
ase of epitaxial �lms, the latti
e mismat
h between the substrateand the ferroele
tri
 may a�e
t the stru
ture and other properties of the materials sothat strain engineering o�ers new possibilities to tune the properties of nanos
aledferroele
tri
s [47, 48℄. Moreover, ferroele
tri
ity is a 
olle
tive phenomenon driven bylong-range ele
trostati
 intera
tions. It is therefore believed that ferroele
tri
ity isaltered in nanos
aled stru
tures. Re
ent theoreti
al studies revealed the existen
e ofa 
riti
al thi
kness for ferroele
tri
i
ty in thin ferroele
tri
 �lms between 
ondu
tingele
trodes due to the imperfe
t s
reening of the depolarizing �eld [49℄. It has also



INTRODUCTION 9be
ome possible to make heterostru
tures in whi
h single 
rystalline perovskite-oxide�lms of thi
knesses down to 1 to 2 latti
e 
onstants 
an be epitaxially mat
hed atatomi
ally sharp interfa
es [41, 50℄. The properties of these stru
tures 
an be tunedby varying the superlatti
e period and the 
onstituents. Moreover, it is possible to
ombine ferroele
tri
s with other fun
tional materials su
h as ferromagneti
 materialsor super
ondu
tors to obtain materials with new multifun
tional properties.Multiferroi
s [51℄ form another 
lass of multifun
tional materials. These 
ompoundshave 
oupled ele
tri
, magneti
 and stru
tural order parameters that result in simulta-neous ferroele
tri
ity, ferromagnetism and ferroelasti
ity. They present opportunitiesfor potential appli
ations in information storage or the emerging �eld of spintroni
s.There has been re
ent resear
h interest in a number of prototypi
al magneti
 ferro-ele
tri
s, in
luding YMnO3 [52℄, TbMn2O5 [53℄ and BiFeO3 [54℄.In spite of the large a
tivity in the �eld of ferroele
tri
 oxides and of the ex
eptionalopti
al properties of these 
ompounds, only few �rst-prin
iples studies of their non-linear opti
al properties have been performed [15, 55, 56℄. The purpose of the presentwork was to develop theoreti
al methods to study the nonlinear responses of insulatorsto ele
tri
 �elds in order to determine nonlinear opti
al properties of ferroele
tri
s. Inthis manus
ript, we will fo
us on bulk 
rystals and study both the amplitude of theseproperties at 0 K as obtained from standard �rst-prin
iples te
hniques and on theirtemperature dependen
e in the framework of an e�e
tive Hamiltonian approa
h. Wewill pay a parti
ular attention to the 
ontribution of the soft mode to nonlinear opti
alproperties su
h as the ele
tro-opti
 
oeÆ
ients.The nonlinear response of insulators to ele
tri
 �elds is interesting for both funda-mental and pra
ti
al reasons. On the one hand, the response of insulators to ele
tri
�elds is a diÆ
ult problem that has only be
ome tra
table re
ently. On the otherhand, these nonlinearities determine many interesting properties su
h as the nonlinearopti
al sus
eptibilities or the ele
tro-opti
 
oeÆ
ients that are 
urrently used in vari-ous devi
e appli
ations. In 
ontrast to the linear response formalism that is nowadaysroutinely applied to various systems (see for example Ref. [34℄), the appli
ations ofthe nonlinear response formalism in 
ondensed matter physi
s have fo
used on rathersimple 
ases [56{63℄.Our work has been done in the framework of the abinit proje
t [64℄. abinit is aplane wave, pseudopotential density fun
tional theory 
ode. It has been developed asan international 
ollaboration between several universities in Europe, North Ameri
aand Asia. We implemented the formalism developed in this work in the abinit 
ode sothat it is freely a

essible and 
an now systemati
ally be applied to study the nonlinearresponses of insulators to ele
tri
 �elds.This thesis is organized as follows. Chapter 1 serves as a general introdu
tion inwhi
h we summarize the physi
al and theoreti
al ba
kground of our work. We �rstdis
uss the basi
 aspe
ts of three ferroele
tri
 oxides and of the nonlinear responseproperties that will be studied in the following Chapters. We then reintrodu
e sev-eral theoreti
al 
on
epts su
h as density fun
tional theory and the modern theory ofpolarization.



10 INTRODUCTIONIn Chapter 2, we introdu
e a physi
al quantity that makes it possible to quantifythe degree of ele
tron lo
alization in insulating 
rystals and we show, how this quantity
an be de
omposed into 
ontributions of individual groups of bands. We then applythis formalism to sele
ted oxides and we study the 
hange of ele
tron lo
alization atthe phase transitions of BaTiO3 and LiNbO3.In Chapter 3, we develop a formalism to study the nonlinear responses of insulatorsto ele
tri
 �elds. This formalism uses either density fun
tional perturbation theory or�nite ele
tri
 �eld te
hniques. In parti
ular, we dis
uss the 
omputation of nonlinearopti
al sus
eptibilities, Raman s
attering eÆ
ien
ies and the ele
tro-opti
 
oeÆ
ients.In Chapter 4, we apply the te
hniques developed in Chapter 3 to sele
ted ferro-ele
tri
s and semi
ondu
tors. We �rst 
ompare the performan
e of density fun
tionalperturbation theory to the performan
e of the �nite ele
tri
 �eld te
hnique. We thendis
uss the Raman spe
trum and ele
tro-opti
 
oeÆ
ients of various ferroele
tri
s.In Chapter 5, we develop an e�e
tive Hamiltonian approa
h to study the tempera-ture dependen
e of the ele
tro-opti
 
oeÆ
ients and refra
tive indexes of ferroele
tri
sand we apply it to BaTiO3 in its tetragonal phase.Finally, we provide a summary of our main results and some perspe
tives.



Chapter 1Ba
kground
1.1 Introdu
tionThe physi
al properties of ma
ros
opi
 solids 
an nowadays be predi
ted a

uratelyfrom �rst-prin
iples density fun
tional theory (DFT). This method makes it possible tostudy the ground-state of 
omplex systems su
h as ferroele
tri
 oxides as well as theirlinear and nonlinear responses to external perturbations. The aim of this work is todevelop several methods to determine the nonlinear responses of insulators to ele
tri
�elds in order to study nonlinear opti
al properties of ferroele
tri
s. This introdu
toryChapter is intended to prepare the ground for this work.Ferroele
tri
 oxides are an important 
lass of multifun
tional materials 
hara
ter-ized by unusual diele
tri
, piezoele
tri
 and opti
al properties. In Se
. 1.2, we des
ribethe basi
 aspe
ts of these materials and we 
hara
terize the stru
ture and phase tran-sitions of three 
ompounds: barium titanate (BaTiO3), lead titanate (PbTiO3) andlithium niobate (LiNbO3).In Se
. 1.3, we introdu
e several nonlinear opti
al properties. We reinvestigatethe de�nition of the nonlinear opti
al sus
eptibilities, the ele
tro-opti
 
oeÆ
ients andthe elasto-opti
 
oeÆ
ients and we summarize some appli
ations of these propertiesin te
hnologi
al devi
es. We also dis
uss the physi
al me
hanisms that determine theamplitude and frequen
y dependen
e of the nonlinear 
oupling 
oeÆ
ients.The rest of this Chapter is devoted to the des
ription of the theoreti
al frameworkof this work. We summarize the basi
 formalism of density fun
tional theory (Se
.1.4.1), density fun
tional perturbation theory (DFPT) (Se
. 1.4.2), the modern theoryof polarization (Se
. 1.4.3) and Wannier fun
tions (Se
. 1.4.4). In Se
. 1.4.5, weintrodu
e the ele
tri
 �eld perturbation in extended solids and in Se
. 1.4.6, we show,how the response properties of insulators are related to derivatives of their energy.11



12 CHAPTER 1. BACKGROUND1.2 Ferroele
tri
 oxides: an important 
lass of mul-tifun
tional materialsA 
rystal is said to be ferroele
tri
 when (i) it has two or more orientational statesin the absen
e of an ele
tri
 �eld and (ii) it 
an be shifted from one to another stateby an ele
tri
 �eld [1℄. Ea
h of these orientational states is 
hara
terized by a zero-�eld spontaneous polarization, Ps, and two states only di�er in the dire
tion (andamplitude) of Ps. The dependen
e of the polarization on the ele
tri
 �eld 
an berepresented by an hysteresis loop su
h as the one shown in Figure 1.1.Figure 1.1: Hysteresis loop of a ferroele
tri
.
ε

P

A ferroele
tri
 may have several phases: in most 
ases a prototype paraele
tri
phase stable at high temperature and one or more ferroele
tri
 phases stable at lowertemperature. The paraele
tri
 phase is 
hara
terized by a high degree of symmetryand a vanishing spontaneous polarization. As the temperature is lowered below a
riti
al temperature, T
, the 
rystal undergoes a transition to a ferroele
tri
 phase
hara
terized by a polar distortion of the unit 
ell and the appearan
e of a spontaneouspolarization.Ferroele
tri
ity was dis
overed in 1920 by Valasek who observed that the polariza-tion of Ro
helle Salt 
an be reversed by the appli
ation of an external ele
tri
 �eld.Sin
e then, ferroele
tri
ity has been observed in many di�erent systems [1, 2℄ su
h ashydrogen bonded 
rystals (f.ex. KH2PO4 (KDP)), narrow gap semi
ondu
tors (f. ex.GeTe) or polymers. In this se
tion, we fo
us on (partially) ioni
 
rystals with the gen-eral formula ABO3. We 
onsider two stru
tures: the perovskite stru
ture of BaTiO3and PbTiO3 and the trigonal stru
ture of LiNbO3.1.2.1 Crystal stru
tureThe ABO3 
ompounds 
an 
rystallize in various stru
tures. The simplest is the per-ovskite stru
ture of barium titanate (BaTiO3) or lead titanate (PbTiO3) shown in



1.2. FERROELECTRIC OXIDES 13Figure 1.2. Above T
, the symmetry of these materials is 
ubi
 (Pm3m) with 5 atomsper unit 
ell. As the temperature is lowered, BaTiO3 undergoes a sequen
e of threeferroele
tri
 phase transitions. Around 403 K, it transforms to a tetragonal stru
ture(P4mm) with a spontaneous polarization along the h100i dire
tion [Figure 1.2 (b)℄.This phase is stable until about 278 K where there is a transformation to a phase oforthorhombi
 symmetry (Pmm2) with Ps along the 
ubi
 h110i dire
tion. The lastphase transition arises around 183 K. The low temperature stru
ture of BaTiO3 isrhombohedral (P3m1) and the polarization of this phase is aligned along the 
ubi
h111i dire
tion. In 
ontrast to BaTiO3, PbTiO3 undergoes a single phase transitionaround 763 K to a tetragonal P4mm phase as shown in Figure 1.2 (b).Figure 1.2: Primitive unit 
ell of BaTiO3 and PbTiO3 in the paraele
tri
 phase (a)and atomi
 displa
ements at the transition to the tetragonal phase (b).

In Chapter 4, we study the nonlinear opti
al properties of the tetragonal phaseof BaTiO3 and PbTiO3. Following Ref. [65℄, these 
al
ulations have been performedat the experimental latti
e parameters. In 
ontrast, the atomi
 positions have beenrelaxed until the residual for
es on the atoms are smaller than 10�5 hartree/bohr. Theatomi
 positions in redu
ed 
oordinates are reported in Table 1.1 and the results ofthe optimizations are reported in Table 1.2.Another stru
ture adopted by ABO3 
ompounds is the trigonal stru
ture of LiNbO3 1shown in Figure 1.3. Above T
, LiNbO3 is in a 
entrosymmetri
 R3
 phase with 10atoms per 
ell (Figure 1.3 (a)). Around 1480 K, it undergoes a ferroele
tri
 phasetransition to a stru
ture of R3
 symmetry as shown in Figure 1.3 (b). The 
al
ulationsof the nonlinear opti
al properties of the ferroele
tri
 phase of LiNbO3 presented inChapter 4 have been performed at the theoreti
al latti
e 
onstants and atomi
 po-sitions. In Table 1.3, we de�ne the parameters that determine the atomi
 positionsin the ferroele
tri
 phase by reporting the hexagonal 
oordinates of �ve atoms of the1See Ref. [68℄ for a more detailed dis
ussion of the stru
ture of LiNbO3.
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Table 1.1: Atomi
 positions (in redu
e 
oordinates) in the tetragonal phase of BaTiO3and PbTiO3. Atom PositionBa/Pb (0; 0; 0)Ti ( 12 ; 12 ; 12 + ÆTi)O1 ( 12 ; 12 ; 0 + ÆO1)O2 ( 12 ; 0; 12 + ÆO2)O3 (0; 12 ; 12 + ÆO2)

Table 1.2: Latti
e 
onstants and atomi
 position parameters (see notations of Table1.1) in the tetragonal phase of BaTiO3 and PbTiO3.BaTiO3 PbTiO3Present Exp. [66℄ Present Exp. [67℄a (�A) 3.994 3.904
 (�A) 4.036 4.152ÆTi 0.0136 0.0215 -0.0478 -0.040ÆO1 -0.0273 -0.0233 -0.1205 -0.112ÆO2 -0.0167 -0.0100 -0.1278 -0.112



1.2. FERROELECTRIC OXIDES 15Figure 1.3: Primitive unit 
ell of LiNbO3 in the paraele
tri
 phase (a) and atomi
displa
ements during the phase transition (b).

rhombohedral unit 
ell. The 
oordinates of the other atoms 
an easily be obtained byusing the symmetry operations of the spa
e groups R3
. The results of the stru
turaloptimizations are summarized in Table 1.4 (see also Ref. [69℄).To dis
uss the ele
tro-opti
 (EO) tensor of LiNbO3 in Chapter 4, we have to de�nea set of mutually orthogonal x, y and z axes. In this work, we follow the I. R. E.Piezoele
tri
 standards [70℄. The x axis is taken orthogonal to a mirror plane of the
rystal, and the z axis parallel to the threefold symmetry 
 axis. The positive end ofthe y axis is the end that be
omes ele
tri
ally negative, due to the piezoele
tri
 e�e
t,when the 
rystal is 
ompressed along the y axis. Similarly, the positive end of the zaxis be
omes negatively 
harged under 
ompression along z.1.2.2 Ferroele
tri
 instabilitiesThe ferroele
tri
 phase transition in BaTiO3, PbTiO3 and LiNbO3 
an be asso
iatedto an unstable zone-
enter phonon mode in the paraele
tri
 phase. If the atoms aredispla
ed from their high symmetry positions of Figures 1.2 (a) or 1.3 (a) along theeigenve
tor of a stable phonon mode the energy in
reases and the atoms feel a for
ethat tends to bring them ba
k to their equilibrium positions. In 
ontrast, if the atomsare displa
ed along the eigenve
tor of an unstable mode, the energy de
reases. Thepotential energy proje
ted along the soft-mode eigenve
tor has the shape of a double



16 CHAPTER 1. BACKGROUNDTable 1.3: Atomi
 positions (in hexagonal 
oordinates) in the ferroele
tri
 phase ofLiNbO3. Atom PositionNb1 (0; 0; 0)Li1 (0; 0; 14 + z)O1 (� 13 � u;� 13 + v; 712 � w)O2 ( 13 � v;�u� v; 712 � w)O3 (u+ v; 13 + u; 712 � w)Table 1.4: Latti
e 
onstants and atomi
 position parameters (see notations of Table1.3) in the ferroele
tri
 phase of LiNbO3.a (�A) 
 (�A) z u v wExp. [71℄ 5.151 13.876 0.0329 0.00947 0.0383 0.0192Present 5.067 13.721 0.0337 0.01250 0.0302 0.0183well with a negative 
urvature at the origin 2. In the harmoni
 approximation, thisnegative 
urvature 
orresponds to an imaginary phonon frequen
y.The origin of the instabilities in BaTiO3 and LiNbO3 has been explained from amodel based on a seminal idea of Co
hran [72℄. The interatomi
 for
es in a 
rystal
an be de
omposed into short-range for
es (
ovalent intera
tions and repulsions be-tween ioni
 
ores) and long-range Coulomb (dipole-dipole) intera
tions. A stru
turalinstability 
an appear from the 
an
ellation of both 
ontributions. As dis
ussed inRefs. [65,69℄, the 
ovalent intera
tions between O 2p and Ti/Nb d atomi
 orbitals areresponsible for the giant Born e�e
tive 
harges in BaTiO3 and LiNbO3. These e�e
tive
harges 
ouple together for the spe
i�
 displa
ement pattern asso
iated with the softmode, in order to generate a giant dipolar intera
tion that leads to the ferroele
tri
instability.As an illustration, we show in Figure 1.4 the phonon dispersion 
urves of LiNbO3
omputed for a stru
ture in whi
h all atoms o

upy the high symmetry positions ofFigure 1.3 (a) (see also Ref. [73℄). The 
orresponding dispersion 
urves of BaTiO3and PbTiO3 
an be found in Ref. [74℄. At the �-point, LiNbO3 has three unstable2Stri
tly speaking, the number of equivalent minima of the multi-well potential depends on thenumber of equivalent dire
tions for the spontaneous polarization. For example, there are only twoequivalent minima in 
ase of LiNbO3 where the polarization 
an only have two dire
tions. In 
ontrast,in BaTiO3, there are 6, 12 and 8 equivalent minima that 
orrespond respe
tively to the equivalentdire
tions of the polarization in the tetragonal, orthorhombi
 and rhombohedral phases.



1.2. FERROELECTRIC OXIDES 17Figure 1.4: Phonon band stru
ture in the paraele
tri
 phase of LiNbO3.

200i

0

200

400

600

800

1000

F
re

qu
en

cy
 (

cm
−

1 )

X ZΓ
A2u

T

A2u
L

A2g
T

E u
 T

modes. The eigenve
tor of the transverse A2u mode has an overlap of 0.99 with theve
tor representing the atomi
 displa
ements at the phase transition shown in Figure1.3 (b) [69℄.The soft mode is not only responsible for the phase transition of ferroele
tri
s. Itis also the origin of their unusual diele
tri
 properties. This 
an be understood asfollows: as mentioned above, the soft mode in the paraele
tri
 phase is highly polar 3.In the ferroele
tri
 phase it transforms into a highly polar (usually stable) mode of lowfrequen
y that 
an strongly intera
t with an ele
tri
 �eld and generate a huge diele
tri
response.In Chapter 4, we study the EO 
oeÆ
ients of the three materials dis
ussed abovein order to elu
idate the 
ontribution of the soft mode to these quantities.1.2.3 Multifun
tional materialsFerroele
tri
 oxides 
ombine many interesting properties su
h as high diele
tri
, piezo-ele
tri
 and pyroele
tri
 
onstants and nonlinear opti
al 
oeÆ
ients (see f. ex. Refs.3Roughly speaking, we 
an say that the polarity or mode e�e
tive 
harge of the soft mode is atthe origin of the spontaneous polarization in the ferroele
tri
 phase.



18 CHAPTER 1. BACKGROUND[1, 75, 76℄). Some examples of their appli
ability in te
hnologi
al devi
es are sum-marized in Figure 1.5. Their high diele
tri
 
onstants make ferroele
tri
s attra
tivefor 
apa
itors as they 
an be used in dynami
 random a

ess memories (DRAMs) oras gate oxides for metal-oxide-sili
on �eld-e�e
t transistors (MOSFETs). Their highpiezoele
tri
 
oeÆ
ients are exploited in appli
ations where me
hani
al energy has tobe 
onverted into ele
tri
al energy (transdu
ers) and vi
e versa (a
tuators). Su
h de-vi
es are 
urrently used in medi
al imaging, for the generation of sonar or ultrasoni
waves or to displa
e the tips of atomi
 for
e mi
ros
opes and s
anning tunneling mi
ro-s
opes. The temperature dependen
e of the spontaneous polarization of ferroele
tri
sis used to build pyroele
tri
 dete
tors of infrared radiation and the possibility to swit
hthe polarization by an ele
tri
 �eld is potentially interesting to build nonvolatile fer-roele
tri
 random a

ess memories. Finally, ferroele
tri
 oxides have good nonlinearopti
al properties as will be dis
ussed in Se
. 1.3.Figure 1.5: Summary of the most important properties of ferroele
tri
 oxides and theirappli
ations in te
hnologi
al devi
es.
Transducers,
Actuators

High dielectric
constants

Nonlinear optical
properties

Nonvolatile
RAMs

EO modulators,
frequency doubling

Ferroelectric oxides

Polarizability

Pyroelectricity

Piezoelectricity

IR detectors

DRAMs,
gate dielectrics for MOSFETs

1.3 Nonlinear opti
al propertiesIn this Se
tion, we present di�erent nonlinear opti
al properties and we dis
uss thephysi
al me
hanisms, whi
h are at their origin. To simplify, we only dis
uss the basi
aspe
ts of the nonlinear response properties. In parti
ular, we negle
t any anisotropyin the response of the 
rystals and we suppose that the relation between the responseand the applied perturbation is given by a s
alar equation.



1.3. NONLINEAR OPTICAL PROPERTIES 191.3.1 Nonlinear opti
al sus
eptibilitiesThe diele
tri
 polarization, P , indu
ed by a ma
ros
opi
 ele
tri
 �eld, E , is given bythe relation P = �(E)E ; (1.1)where �(E) is the diele
tri
 sus
eptibility. For weak ele
tri
 �elds, the ele
tri
 �elddependen
e of �(E) 
an be negle
ted to a good approximation and the relation betweenP and E is linear. For strong ele
tri
 �elds, this linear relation is no more valid andwe 
an write P as a power series of the ele
tri
 �eldP = �(1)E + �(2)EE + �(3)EEE + :::; (1.2)where �(1), �(2) and �(3) are respe
tively the linear opti
al sus
eptibility and these
ond- and third-order nonlinear opti
al sus
eptibilities.In the present work, we are mainly interested in the se
ond-order nonlinear opti
alsus
eptibilities. These quantities vanish in systems with a 
enter of inversion su
h asthe ferroele
tri
 oxides dis
ussed in Se
. 1.2 in their paraele
tri
 phase. In order toillustrate how �(2) a�e
ts the opti
al properties of a 
rystal, let us 
onsider an ele
tri
�eld of frequen
y !: E = E0 
os(!t): (1.3)The se
ond-order nonlinear polarization, PNL, indu
ed by this �eld has a frequen
ydependen
e of 2!: PNL = �(2)E20 
os2(!t) = 12�(2)E20 [1 + 
os(2!t)℄: (1.4)PNL 
an a
t as a sour
e of radiation and generate an ele
tromagneti
 wave of frequen
y2!. This phenomenon is 
alled se
ond-harmoni
 generation. It is notably applied forthe frequen
y doubling of laser [77℄.Another se
ond-order nonlinear phenomenon is the opti
al parametri
 pro
ess [78℄.It des
ribes the breakdown of a pump photon into a signal and an idler photon. Energy
onservation requires that the sum of the frequen
ies of the signal and idler photonequals the frequen
y of the pump photon. This phenomenon is notably used in para-metri
 os
illators, whi
h are sour
es of 
oherent radiation that are 
ontinuously tunableover a wide range of frequen
ies.Ferroele
tri
 oxides are parti
ularly interesting for this kind of appli
ations. Onthe one hand, their nonlinear opti
al sus
eptibilities are unusually high. On the otherhand, they 
an be quasi phase mat
hed by periodi
ally inverting their spontaneouspolarization, whi
h allows to obtain high 
onversion eÆ
ien
ies in the se
ond-harmoni
generation pro
ess [79℄.1.3.2 Ele
tro-opti
 
oeÆ
ientsThe opti
al properties of a 
rystal 
an be des
ribed by its index ellipsoid. Applyingan ele
tri
 �eld, this index ellipsoid 
an be distorted, whi
h allows to in
uen
e the



20 CHAPTER 1. BACKGROUNDFigure 1.6: EO modulator build from an epitaxial �lm of BaTiO3 (BTO) grown on aMgO substrate. From Petraru et al. [84℄.

propagation of a light wave inside the 
rystal. In non
entrosymmetri
 systems, this
hange is given by a linear relation �� 1n2� = rE ; (1.5)where r is the linear ele
tro-opti
 (EO) 
oeÆ
ient.This e�e
t is important for several te
hnologi
al appli
ations. For example, pho-torefra
tive materials used for holographi
 appli
ations [80,81℄ are required to exhibitlarge EO 
oeÆ
ients in addition to other properties su
h as good photo
ondu
tivityand low dark 
ondu
tivity [78℄. This e�e
t is also exploited to build EO modula-tors [78, 82, 83℄ that are used in integrated opti
s and �ber-opti
 
ommuni
ations sys-tems to modulate the amplitude of a light wave in a wave guide. Re
ently, there hasbeen an in
reasing interest to build EO modulators from thin ferroele
tri
 �lms. Figure1.6 shows an intensity modulator build from a thin �lm of BaTiO3 epitaxially grownon a MgO substrate [84℄. This devi
e uses a Ma
h-Zehnder interferometer to modulatethe intensity of a light wave in a wave guide. By varying the potential applied to the
entral ele
trode while keeping 
onstant the potential of the two outer ele
trodes, itis possible to indu
e a phase shift between the light waves in the two bran
hes and tomodulate the output of the interferometer.1.3.3 Elasto-opti
 
oeÆ
ientsThe elasto-opti
 e�e
t des
ribes 
hanges in the refra
tive index of a 
ompound indu
edby a strain, �. It is de�ned by a similar relation as the EO e�e
t�� 1n2� = ��; (1.6)



1.3. NONLINEAR OPTICAL PROPERTIES 21where � is the elasto-opti
 
oeÆ
ient of the medium. In 
ontrast to the EO 
oeÆ
ientsand nonlinear opti
al sus
eptibilities, whi
h vanish in 
entrosymmetri
 
rystals, theelasto-opti
 
oeÆ
ients are nonzero in all 
rystals as well as amorphous solids.This e�e
t is interesting for several reasons. First, as we will see in Se
. 3.3.4, itdetermines the piezoele
tri
 
ontribution to the EO 
oeÆ
ients. Se
ond, this e�e
t isused for appli
ations su
h as a
ousto-opti
 modulators or de
e
tors where an a
ousti
wave intera
ts with an ele
tromagneti
 wave to 
hange its dire
tion or intensity [78℄.Third, in mi
roele
troni
s, there is an in
reasing use of UV laser sour
es in pre
isionopti
al appli
ations su
h as lithography. These energeti
 beams indu
e a lo
al densi�-
ation of the SiO2 opti
al lenses, whi
h 
auses an in
rease of the absolute value of therefra
tive index and a loss of resolution due to birefringen
e [85, 86℄.1.3.4 Frequen
y dependen
eThe amplitude of the nonlinear 
oeÆ
ients dis
ussed above depends on several physi
alme
hanisms. Ea
h me
hanism has a 
hara
teristi
 response time and its 
ontributionto these 
oeÆ
ients depends on the frequen
ies of the ele
tri
 �elds involved in thepro
ess. In this work, we distinguish between (i) pure ele
troni
 
ontributions, (ii)ioni
 
ontributions due to ele
tri
 �eld indu
ed atomi
 displa
ements and (iii) piezo-ele
tri
 
ontributions due to homogeneous deformations of the 
rystal4. Moreover, forspe
i�
 frequen
ies, the nonlinear 
oupling 
oeÆ
ients 
an present a resonan
e, dueto ele
troni
 ex
itations, ex
itations of phonon modes or me
hani
al resonan
es of thewhole 
rystal5.In the dis
ussion that follows, we suppose that the frequen
ies of the ele
tri
 �eldsare always far away from any resonan
e. In this 
ase, we 
an distinguish three 
hara
-teristi
 regions6:� Opti
al frequen
ies, i.e. frequen
ies higher than the frequen
ies of the opti
alphonons but lower than the fundamental absorption gap. In this 
ase, only theele
trons 
ontribute to the linear and nonlinear sus
eptibilities while the atomi
positions and the unit 
ell shape are 
lamped to their equilibrium values.� Frequen
ies higher than the highest me
hani
al resonan
e of the 
rystal but lowerthan the frequen
ies of the opti
al phonons (typi
ally between 102 and 106 MHz).In this 
ase, the atoms in the unit 
ell are able to respond to the ele
tri
 �eldwhile the shape of the 
ell remains �xed. The linear and nonlinear sus
eptibilitiesare the sum of the ele
troni
 and ioni
 
ontributions.� Frequen
ies lower than the frequen
y of the �rst me
hani
al resonan
e of the4In this work, we 
onsider only intrinsi
 
ontributions to the nonlinear 
oeÆ
ients. We do not takeinto a

ount extrinsi
 e�e
ts that may eventually in
uen
e the nonlinear response of ferroele
tri
s toele
tri
 �elds su
h as the reorientation of ferroele
tri
 domains.5These me
hani
al resonan
es usually depend on the shape and dimension of the 
rystal.6In addition, the linear and nonlinear sus
eptibilities present a frequen
y dependen
e inside ea
hregion. This dependen
e is usually quite weak and will be negle
ted in this work.



22 CHAPTER 1. BACKGROUNDFigure 1.7: S
hemati
 illustration of the dependen
e of the EO 
oeÆ
ients on thefrequen
y of the modulating ele
tri
 �eld. From Wemple et al. [87℄.
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sample (for example stati
 ele
tri
 �elds). In this 
ase, the ele
trons, the ionsand the strain 
ontribute to the linear and nonlinear sus
eptibilities.The dis
ussion presented above is general an applies to most phenomena related tothe response of insulators to ele
tri
 �elds. We now parti
ularize it to the spe
i�
 
aseof the EO 
oeÆ
ients. Figure 1.7 shows the typi
al dependen
e of the EO 
oeÆ
ientson the frequen
y of the modulating �eld. For high-frequen
y �elds, the ions 
an be
onsidered to be 
lamped to their equilibrium positions. As a 
onsequen
e, the EO
oeÆ
ients are determined by pure ele
troni
 pro
esses. For frequen
ies higher thanthe me
hani
al resonan
e frequen
ies but lower than the frequen
ies of the opti
alphonons, the ions are able to respond to the ele
tri
 �eld. This is the region of the so-
alled 
lamped (strain-free) EO 
oeÆ
ients that are the sum of the ele
troni
 and ioni

ontributions. Finally, for low frequen
ies, the shape of the unit 
ell is modi�ed by theele
tri
 �eld. This is the region of the so-
alled un
lamped (stress-free) EO 
oeÆ
ientsthat are the sum of the ele
troni
, ioni
 and piezoele
tri
 
ontributions. In Se
. 3.3.4,we will give expli
it expressions of the three 
ontributions to the EO 
oeÆ
ients.1.4 Theoreti
al Ba
kgroundIn this se
tion, we summarize the formalisms that are the basis of the theoreti
aldevelopments and 
al
ulations of this work. We �rst reinvestigate the basi
 aspe
ts
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tional theory and density fun
tional perturbation theory that make itpossible to 
ompute most of the ground-state and response properties of solids andmole
ules with an a

ura
y of a few per
ent. We then summarize the formalism ofthe modern theory of polarization, the theory of Wannier fun
tions and the ele
tri
�eld perturbation in extended systems. Finally, we show how the response properties ofsolids are related to derivatives of their energy. We fo
us on periodi
 systems des
ribedwithin Born- von Karman boundary 
onditions.1.4.1 Density fun
tional theoryFrom a quantum me
hani
al point of view, a solid (or a mole
ule) 
an be des
ribedas a system of ele
trons and nu
lei in intera
tion. The ground-state of this system
an, in prin
iple, be determined by solving the 
orresponding many-body S
hr�odingerequation. Unfortunately, the dire
t solution of this equation is not possible ex
eptfor a few simple systems. In order to study the properties of 
omplex systems from�rst-prin
iples we have to make some approximations and simpli�
ations.A �rst simpli�
ation is obtained from the Born and Oppenheimer approximationthat allows to de
ouple the dynami
s of ele
trons and nu
lei and to study properties ofthe ele
trons in some frozen in 
on�guration of the nu
lei. To determine the ele
troni
ground-state we use the Kohn-Sham density fun
tional theory (DFT) [5, 6, 32, 88, 89℄.This te
hnique allows one, in prin
iple, to map exa
tly the problem of a stronglyintera
ting ele
tron gas onto that of independent parti
les moving in an e�e
tive po-tential v(r). The ground-state energy of this system 
an be derived by minimizing thefollowing expression with respe
t to the (single-parti
le) Kohn-Sham orbitals  �(r)E[ �℄ = o

X� h �jT + vextj �i+EHx
[n℄: (1.7)The sum in Eq. (1.7) runs over all o

upied states. T is the kineti
 energy operator,vext(r) the (nu
lear) potential external to the ele
troni
 system, EHx
[n℄ the sum ofthe Hartree (EH [n℄) and ex
hange-
orrelation (Ex
[n℄) energy fun
tionals and n(r) theground-state density n(r) = o

X� j �(r)j2: (1.8)The o

upied Kohn-Sham orbitals are subje
t to the orthonormalization 
onstraintsh �j �i = Æ�� : (1.9)The minimization of Eq. (1.7) under the 
onstraints (1.9) 
an be a
hieved usingthe Lagrange multiplier method. The problem turns into the minimization ofF [ �℄ = E[ �℄� o

X�;� ���(h �j �i � Æ��); (1.10)



24 CHAPTER 1. BACKGROUNDwhere ��� are the Lagrange multipliers. The 
orresponding Euler-Lagrange equationis H j �i =X� ���j �i; (1.11)where the Hamiltonian H = T + v = T + vext + vHx
 (1.12)has to be determined self-
onsistently sin
e it depends on the Hartree and ex
hange-
orrelation potential vHx
(r) that is a fun
tional of the ground-state densityvHx
(r) = ÆEHx
[n℄Æn(r) : (1.13)The Lagrange multipliers ��� are the matrix elements of the Hamiltonian between the
orresponding wave fun
tions ��� = h � jH j �i: (1.14)The solution of Eq. (1.11) is not unique. In fa
t, we 
an always apply a unitarytransformation U to the wave fun
tions of the o

upied statesj �i �! o

X� U��j �i (1.15)without a�e
ting the energy or the density. Su
h a transformation is 
alled a gaugetransformation. Sin
e the Hamiltonian is a hermitian operator, it is possible to workin the so-
alled diagonal gauge where the Lagrange multiplier matrix (1.14) is diagonalh � jH j �i = "�Æ��: (1.16)In this work, we 
onsider periodi
 
rystals where the wave fun
tions  �(r) are Blo
hfun
tions 
hara
terized by their wave ve
tor k and a band-index n nk(r) = eik�runk(r) (1.17)with unk(r) a periodi
 fun
tion that has the same periodi
ity as the 
rystal latti
e.The self-
onsistent solution of Eq. (1.11) allows to determine the exa
t ground-stateenergy and 
harge density. Unfortunately, the expression of the ex
hange-
orrelationenergy fun
tional is not known and we have to use an approximation for this term. Inthis work, we 
onsider two kinds of approximations: the lo
al density approximation(LDA) and the generalized gradient approximation (GGA).1.4.2 Density fun
tional perturbation theoryHaving de�ned the DFT equations in Se
. 1.4.1, we investigate in the present se
-tion the response of a quantum me
hani
al system to a perturbation of the external



1.4. THEORETICAL BACKGROUND 25potential. As will be shown in Se
. 1.4.6, many interesting properties of a solid 
anbe 
hara
terized by the derivatives of its energy or thermodynami
 potentials. In thisse
tion, we fo
us to the response to in�nitesimal perturbations. In this 
ontext, theenergy derivatives are obtained from perturbation theory.Let us expand all perturbed quantities, X , in terms of a small parameter, �, aroundtheir unperturbed values, X(0):X(�) = X(0) +X(1)�+X(2)�2 +X(3)�3:::; (1.18)where X(n) = 1n! dnXd�n �����=0 : (1.19)X 
an be one of the quantities E,  �(r), n(r), H , ���, vHx
(r) or vext(r). Be
ause Esatis�es a variational prin
iple, it is possible to derive two major theorems [35,36℄:1. A variational prin
iple 
an be established for the even order perturbations. Itstates that E(2n) = min (n)� (E(�) " nXi=0 �i (i)� #)(2n) : (1.20)This theorem establishes that the nth-order derivatives of the wave fun
tions 
anbe obtained by minimizing the fun
tional expression of E(2n) with respe
t to (n)� . For example, in this work we deal with the �rst-order derivatives of thewave fun
tions that are 
omputed by minimizing the variational expression ofthe se
ond-order energy derivatives E(2).2. A 2n+ 1 theorem 
an be demonstrated for the odd order perturbations:E(2n+1) = (E(�) " nXi=0 �i (i)� #)(2n+1) : (1.21)It states that the derivatives of the energy up to the order 2n+1 
an be 
omputedfrom the derivatives of the wave fun
tions up to the order n. For example, inthis work, we fo
us on third-order energy derivatives that are 
omputed from theground-state and �rst-order derivatives of the wave fun
tions.More expli
it expressions of even and odd order energy derivatives 
an be found inRefs. [35, 36℄. In Chapter 3, we parti
ularize Eq. (1.21) to the 
ase of third-orderenergy derivatives with respe
t to at least two ele
tri
 �elds.1.4.3 The modern theory of polarizationIn Se
. 1.2, we de�ned a ferroele
tri
 as a material whi
h exhibits a spontaneouspolarization, Ps, that 
an be swit
hed by an ele
tri
 �eld. In this se
tion, we give arigorous de�nition of Ps and we show how this quantity 
an be 
omputed in pra
ti
e.



26 CHAPTER 1. BACKGROUNDLet us 
onsider �rst a �nite pie
e of matter of volume V . The polarization of thissystem 
an be 
omputed as the dipole moment per unit volumeP = 1V "eX� Z�R� � e ZV dr rn(r)# ; (1.22)where Z� and R� are the atomi
 number and position, e the absolute value of theele
troni
 
harge and n(r) the ele
troni
 
harge density de�ned in Eq. (1.8). Althoughsu
h a dipole moment is in prin
iple well de�ned, it is not a bulk property sin
e itdepends upon trun
ation and shape of the sample. In 
ontrast, the variations of Pare measured as bulk properties in several 
ir
umstan
es. In fa
t, most ma
ros
opi
properties su
h as the diele
tri
 tensor, the piezoele
tri
 tensor or the nonlinear opti
alsus
eptibilities are just derivatives of P with respe
t to suitably 
hosen perturbations.Moreover, the spontaneous polarization of a ferroele
tri
 { measured via hysteresis
y
les (see Figure 1.1) { is usually obtained as the di�eren
e, �P , between two statesof the 
rystal.In in�nite solids, des
ribed in the framework of periodi
 Born- von Karman bound-ary 
onditions, Eq. (1.22) 
an no more be used to 
ompute the polarization as a dipolemoment per unit volume. In fa
t, the position operator, r, is not 
ompatible withBorn- von Karman boundary 
onditions. Consider a super
ell of size Li = Miai (i =1, 2, 3) where ai is a latti
e ve
tor. The Hilbert spa
e of a single-parti
le wave fun
tion (r) is de�ned by the 
ondition  (r) =  (r+Miai). An operator maps a fun
tion ofthis Hilbert spa
e into a fun
tion belonging to the same spa
e. The position operator ris therefore not a legitimate operator when periodi
 boundary 
onditions are adoptedsin
e r (r) is not a periodi
 fun
tion when  (r) is su
h.For 
rystalline diele
tri
s, the problem of the polarization was solved by King-Smith, Vanderbilt and Resta in Refs. [7{9℄: P is a manifestation of a Berry phase [90℄,i.e. it is an observable whi
h 
annot be 
ast as the expe
tation value of any operator,being instead a gauge invariant phase of the wave fun
tions.In the dis
ussions that follow, we 
onsider an insulating 
rystal with N doublyo

upied bands separated from the uno

upied bands by a �nite gap Eg . Let us
onsider a 
ontinuous adiabati
 transformation of the 
rystalline potential 
onne
tingtwo states of the 
rystal. We parameterize this transformation by a variable � and wenote �1 and �2 its values in the initial and �nal states. The 
hange in polarizationindu
ed by this transformation 
an be expressed as�P = Z �2�1 d��P�� = P(�2)�P(�1): (1.23)The polarization P(�) 
an be de
omposed as the sum of a bare ioni
 and an ele
troni
polarization P(�) = P ion(�) +Pel(�): (1.24)The ioni
 polarization 
an be 
omputed through an expression similar to the �rst term



1.4. THEORETICAL BACKGROUND 27of the right hand side of Eq. (1.22)P ion(�) = e
0 
ellX� Z�R� (1.25)where the sum runs over all atoms in the unit 
ell. The ele
troni
 polarization 
an be
omputed as a Berry phase of the o

upied bands [7℄Pel(�) = � 2ie(2�)3 NXn=1 ZBZ dkhunkjrkjunki (1.26)where BZ is the Brillouin zone, unk(r) is the periodi
 part of the Blo
h fun
tions andthe fa
tor of 2 a

ounts for spin degenera
y. The Blo
h fun
tions are 
hosen to satisfythe periodi
 gauge 
ondition eiG�runk+G(r) = unk(r) (1.27)where G is a re
ipro
al latti
e ve
tor. With this 
hoi
e of gauge, the polarization
hanges given by Eq. (1.23) are given to within a fa
tor (e=
0)R where R is a latti
eve
tor. Using Eq. (1.23), the spontaneous polarization of a ferroele
tri
, Ps, 
an bede�ned as the 
hange in polarization, �P , when the 
rystal is transformed from thehigh-symmetri
 paraele
tri
 stru
ture to a ferroele
tri
 one.In order to use Eq. (1.26) in pra
ti
al 
al
ulations, the integration over the BZ, aswell as the di�erentiation with respe
t to k, have to be performed on a dis
rete mesh ofMk =M1 �M2 �M3 k-points. The standard approa
h is to build strings of k-pointsparallel to a ve
tor of the re
ipro
al spa
eGi. The proje
tion of the polarization alongthat dire
tion 
an then be 
omputed as the sum of the string-averaged ele
troni
 Berryphase, 'el, and the ioni
 phase, 'ion,P(�) �Gi = e
0 ('(i)el + '(i)ion) (1.28)with '(i)el = 2M (i)? M(i)?Xl=1 = lnMi�1Yj=0 det[S(k(i)j ;k(i)j+1)℄ (1.29)'(i)ion = 2� 
ellX� Z�R�i (1.30)In these expressions,M (1)? =M2�M3 is the number of strings along G1, ea
h 
ontain-ing M1 points7 k(1)j = k(l)? + jG1=M1, S the overlap matrix between Blo
h fun
tionsSn;m(k;k0) = hunkjumk0i: (1.31)and R�i the redu
ed 
oordinates of atom � in the unit 
ell.7M(2)? and M(3)? are given by similar expressions.
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tionsWannier fun
tionsWn(r�R) (=hrjRni) are orthonormal fun
tions that span the samespa
e as the Blo
h fun
tions  nk(r) of a band or group of bands [91, 92℄. They are
hara
terized by two quantum numbers: a band index, n, and a latti
e ve
tor, R.Wannier fun
tions are an interesting tool in the study of the ele
troni
 stru
ture anddiele
tri
 properties of materials. They are the solid state equivalent of "lo
alizedmole
ular orbitals" [10, 12, 93℄ and thus provide an insightful pi
ture of the nature ofthe 
hemi
al bonding, otherwise missing from the Blo
h pi
ture of extended orbitals.Moreover, Wannier fun
tions are used as a very a

urate minimal basis in "order-N"methods [32℄, the 
onstru
tion of e�e
tive Hamiltonians for the study of transportproperties of nanostru
tures [33℄, strongly 
orrelated ele
trons [94℄ and other systems.Wannier fun
tions are Fourier transforms of the Blo
h eigenstatesWn(r�R) = 
0(2�)3 ZBZ dkeik�(r�R)unk(r): (1.32)They allow an interesting interpretation of the Berry phase formalism presented in Se
.1.4.3. Inserting Eq. (1.32) into Eq. (1.26), we obtainPel(�) = �2e
0 NXn=1 Z dr r jWn(r)j2: (1.33)Physi
ally, Eqs.(1.23) and (1.33) state that the 
hange in polarization of the solid isproportional to the displa
ement of the 
enter of 
harge of the Wannier fun
tions ofthe o

upied bands indu
ed by the adiabati
 
hange in the Hamiltonian.One of the most serious drawba
ks of the Wannier representation is that the fun
-tions are not uniquely de�ned but that they 
an vary strongly in shape and range.This is a 
onsequen
e of the phase indetermina
y of the Blo
h orbitals at every waveve
tor k. In addition, Blo
h orbitals belonging to an isolated group of bands, Gi, (i.e.,a set of bands that are 
onne
ted between themselves by degenera
ies, but separatedfrom others by energy gaps) 
an undergo arbitrary unitary (gauge) transformationsbetween themselves at every kunk(r)! Xm2GiU (k)mn umk(r): (1.34)Marzari and Vanderbilt developed a method to 
onstru
t Wannier fun
tions thatare maximally lo
alized around their 
enters [28, 30, 31℄. For ea
h group of bands, Gi,they proposed to minimize the spread fun
tional
 = Xn2Gi �h0njr2j0ni � h0njrj0ni2� = Xn2Gi �hr2in � hri2n� (1.35)with respe
t to the unitary transformations U (k)mn . Eq. (1.35) 
an be de
omposed intotwo terms, 
 = 
I + e
 (1.36)
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I = Xn2Gi 24hr2in � Xm2GiXR jhRmjrj0nij235 (1.37)and e
 = Xn2Gi Xm2GiXR 0 jhRmjrj0nij2 : (1.38)The prime in Eq. (1.38) indi
ates that the terms Rm = 0n have to be omitted. It 
anbe shown that 
I and e
 are positive de�nite. Moreover, 
I is also gauge-invariant,i.e. it is invariant under any unitary transformation (1.34) among the Blo
h orbitals.The minimization of Eq. (1.35) therefore 
orresponds to the minimization of e
 and
I 
orresponds to a lower bound of the spread fun
tional 
.In a one-dimensional 
rystal this lower bound 
an be realized by 
hoosing an ad-equate phase fa
tor for the Blo
h fun
tions. In fa
t, the Wannier fun
tions 
an be
hosen to be eigenfun
tions of the position operator proje
ted onto the group of bandsunder 
onsideration, PxP . In this 
ase, it is straightforward to show that e
 vanishesso that 
 = 
I [28℄. In a three-dimensional 
rystal, it is no more possible to diagonal-ize PxP , PyP and PzP simultaneously. As a 
onsequen
e, e
 > 0 and 
 will alwaysbe larger than 
I . The problem is therefore to �nd a set of Wannier fun
tions thatmakes the best possible 
ompromise in the attempt to diagonalize all three operatorssimultaneously 8.1.4.5 The ele
tri
 �eld perturbation in extended systemsIn this se
tion, we dis
uss the main diÆ
ulties related to the ele
tri
 �eld perturbationin extended systems and show, how they 
an be over
ome in pra
ti
e. In the s
alar-potential gauge, the intera
tion between the ele
trons and a homogeneous ele
tri
�eld, E , is des
ribed by the potential V (r) = eE � r, where e is the absolute value ofthe ele
troni
 
harge. Although this potential is widely used to study the responseof 
on�ned systems su
h as mole
ules to ele
tri
 �elds, its appli
ation to extendedsystems su
h as solids is not straightforward. The main diÆ
ulty is the nature of thes
alar potential whi
h, is non-periodi
 and unbound from below.The non-periodi
ity of V (r) is related to the position operator r. As it is dis
ussedin Se
. 1.4.3 this operator is not 
ompatible with periodi
 boundary 
onditions so thatit 
annot be applied in a straightforward way in extended solids.The unboundness of the s
alar potential 
an be explained as follows. Figure 1.8shows the ele
troni
 bands of an insulating 
rystal in the presen
e of an ele
tri
 �eld.As 
an be seen, the �eld "bends" the energy bands so that the potential energy of theele
trons is lower on the right side of the �gure than on the left side. It is therefore8Another approa
h 
onsists in the minimization of the spread of the Wannier fun
tions in one givendire
tion as realized for the so-
alled hermaphrodite orbitals introdu
ed in Ref. [12℄: these parti
ularfun
tions are lo
alized (Wannier-like) in a given dire
tion and delo
alized (Blo
h-like) in the twoothers.



30 CHAPTER 1. BACKGROUNDFigure 1.8: Potential energy of an ele
tron, e�, in an ele
tri
 �eld, E . Eg is the energyof the band gap at zero ele
tri
 �eld.
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possible to lower the energy of the system by transferring 
harge from the valen
ebands (Ev) in one region to the 
ondu
tion bands (E
) in a distant region. Be
auseof this interband (Zener) tunneling, an in�nite 
rystal in an ele
tri
 �eld has no trueground-state.However, for suÆ
iently small �elds, the tunneling 
urrent through the band gap
an be negle
ted and the system is well des
ribed by a set of ele
tri
 �eld dependentWannier fun
tions. As shown by Nunes and Vanderbilt [95℄, these Wannier fun
tionsminimize the energy fun
tionalF [Wn;E ℄ = E [Wn℄�
0E �P (1.39)where E is the Kohn-Sham energy under zero �eld and P the ma
ros
opi
 polarizationthat 
an be 
omputed from the Wannier fun
tion 
enters (Eq. (1.33), see also Ref. [96℄).It is important to note that these Wannier fun
tions do not 
orrespond to the trueground-state of the system but rather to a long lived metastable state.In pra
ti
al appli
ations, it is not mandatory to evaluate the fun
tional Eq. (1.39)in a Wannier basis. It 
an equivalently be expressed using Blo
h fun
tions unk(r)related to Wn(r) by Eq. (1.32). In this 
ase, the polarization 
an be 
omputed as aBerry phase of the o

upied bands using Eq. (1.28). This approa
h is dis
ussed morein detail in Chapter 4.1.4.6 Energy derivatives and multifun
tional propertiesThe linear and nonlinear responses of insulators to sele
ted perturbations 
an be 
har-a
terized by the derivatives of its energy and other thermodynami
 potentials. In this
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al quantities related (within a fa
tor of normalization) to �rst- andse
ond-order derivatives of F .F 1st-order derivatives 2nd-order derivatives��� ��� ��E��� f C 
 Z���� � 
 
0 e0��E Ps Z� e0 "work, we 
onsider three kinds of perturbations: atomi
 displa
ements, ��� (the index� labels an atom and � a Cartesian dire
tion), ma
ros
opi
 strains, ��� , and homo-geneous ele
tri
 �elds, E . The 
orresponding thermodynami
 potential is the energyfun
tional, F , de�ned in Eq. (1.39). To simplify the notations, we represent the threeperturbations by a single parameter, �, de�ned as� = (� ;�;E): (1.40)The fun
tional, F , 
an be expressed as a Taylor series around the zero-�eld equi-librium stru
tureF(�) = F(0) +Xi �F��i ����0 �i + 12Xi;j �2F��i��j ����0 �i�j + 16Xi;j;k �3F��i��j��k ����0 �i�j�k + ::::(1.41)The derivatives of F in Eq. (1.41) have a well de�ned physi
al meaning. As 
an be seenin Table 1.5, the �rst-order derivatives are related to the for
es on the atoms, f , thestress-tensor, � and the spontaneous polarization, Ps. The se
ond-order derivatives
hara
terize the linear response of the solid. They are related to the interatomi
 for
e
onstants, C, the opti
al diele
tri
 
onstants, ", the rigid-atom elasti
 
onstants, 
0, theBorn e�e
tive 
harges, Z�, the rigid-atom piezoele
tri
 
onstants, e0 and the internalstrain 
oupling parameters, 
. Finally, the third-order derivatives of F 
hara
terizethe nonlinear response of the solid. In this work, we do not 
onsider the whole set ofthird-order derivatives. We will fo
us on third-order derivatives of F with respe
t tothree ele
tri
 �elds and third-order derivatives of F with respe
t to two ele
tri
 �eldsand one atomi
 displa
ement that are related to the nonlinear opti
al sus
eptibilities,�(2) and the �rst-order derivatives of the linear opti
al sus
eptibilities with respe
t toatomi
 displa
ements, ��(1)�� .1.5 Con
lusionsIn this Chapter, we �rst dis
ussed the stru
ture and phase transitions of three ferro-ele
tri
 oxides: BaTiO3, PbTiO3 and LiNbO3. We then de�ned the nonlinear opti
al
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eptibilities, the EO 
oeÆ
ients and the elasto-opti
 
oeÆ
ients of insulators and weshowed that we 
an distinguish three 
ontributions to the EO 
oeÆ
ients: an ele
troni

ontribution, an ioni
 
ontribution and a piezoele
tri
 
ontribution.To de�ne the theoreti
al framework of this work, we summarized the main aspe
tsof density fun
tional theory, density fun
tional perturbation theory, the modern theoryof polarization, Wannier fun
tions, the ele
tri
 �eld perturbation in extended systemsand we showed, how linear and nonlinear response properties of insulators are relatedto their energy derivatives.1.6 Referen
esIn addition to the referen
es expli
itly mentioned in the text, this Chapter was essen-tially drawn from the following reviews:� M. E. Lines and A. M. Glass, Prin
iples and Appli
ations of Ferroele
tri
s andRelated Materials, (Oxford Classi
s Series, 2001).� M. Veithen and Ph. Ghosez, First-Prin
iples study of the diele
tri
 and dynam-i
al properties of lithium niobate, Phys. Rev. B 65, 214302 (2002).� M. Veithen, First-Prin
iples study of lithium niobate, Physi
alia Magazine 24,161 (2002).� Ph. Ghosez, First-prin
iples study of the diele
tri
 and dynami
al properties ofbarium titanate, PhD thesis, Universit�e Catholique de Louvain, 1997.� M. Bass, ed., Handbook of Opti
s, vol. II (M
Graw-Hill, 1995).� R. Resta, Ma
ros
opi
 polarization in 
rystalline diele
tri
: the geometri
 phaseapproa
h, Rev. Mod. Phys. 66, 899 (1994).� N. Marzari and D. Vanderbilt,Maximally lo
alized generalized Wannier fun
tionsfor 
omposite energy bands, Phys. Rev. B 56, 12847 (1997).



Chapter 2The ele
tron lo
alizationtensor2.1 Introdu
tionOur qualitative understanding of ele
tron lo
alization in solids is often based on ap-proximate pi
tures. The 
ore ele
trons are tightly bound and lo
alized around thenu
lei. In insulators, the valen
e ele
trons are 
on�ned to the 
hemi
al bonds (
ova-lent 
rystals) or to parti
ular atomi
 sites (ioni
 
rystals) while they are "free to move"and delo
alized in metals. In order to quantify the degree of ele
tron lo
alization, thissimple des
ription is no more suÆ
ient and we have to adopt a rigorous formalismbased on quantum me
hani
s. However, in this 
ontext, even a qualitative des
riptionof ele
tron lo
alization is not 
lear. In periodi
 solids, des
ribed within Born- von Kar-man periodi
 boundary 
onditions, the ele
troni
 wave fun
tions are Blo
h fun
tions.As a 
onsequen
e, 
ore and valen
e ele
trons appear as delo
alized over the whole
rystal sin
e the Blo
h fun
tions are periodi
 over the Born- von Karman super
ell.Alternatively, we 
an 
hoose a Wannier representation of the ele
troni
 ground-state. Wannier fun
tions are lo
alized orbitals that 
an be 
omputed from a unitarytransformation of the Blo
h fun
tions. But even in the Wannier representation, arigorous quanti�
ation of ele
tron lo
alization is not straightforward. As dis
ussed inSe
. 1.4.4, the Wannier fun
tions are not unique so that their spatial extension 
annotdire
tly be used to quantify the degree of ele
tron lo
alization.The basi
s of a quantitative 
hara
terization of ele
tron lo
alization were formu-lated by Kohn in 1964 [97℄. Re
ently, this problemati
 was renewed thanks to thedevelopment of the modern theory of polarization [7{9℄. Polarization and lo
alizationare manifestations of the same phenomenon and they 
an be studied from essentiallythe same formalism. Following Resta and Sorella, we de�ne in Se
. 2.2 a 
hara
teristi
ele
tron lo
alization length that is �nite in insulators and diverges in metals. In or-der to des
ribe anisotropi
 media, this 
on
ept is further generalized to a lo
alization33



34 CHAPTER 2. THE ELECTRON LOCALIZATION TENSORtensor. We also dis
uss the physi
al meaning and drawba
ks of the de�nition of theele
tron lo
alization tensor. In Se
. 2.3, we propose a de
omposition of the lo
aliza-tion tensor into 
ontributions originating from isolated sets of bands 
omposing theenergy spe
trum of a solid. Using a simple model, we then illustrate the role of the
ovalent intera
tions on the di�erent terms of the de
omposition. We also make a 
on-ne
tion between the lo
alization tensor and the Born e�e
tive 
harges and we dis
ussthe relation between pseudopotential and all-ele
tron 
al
ulations. In Se
. 2.4, we givethe te
hni
al details underlying our �rst-prin
iples 
al
ulations. In Se
s. 2.5 and 2.6,we present the results obtained on three ferroele
tri
 oxides (BaTiO3, PbTiO3 andLiNbO3) as well as on two binary oxides (BaO and �-PbO). We investigate the varia-tions of ele
tron lo
alization during the phase transitions of BaTiO3 and LiNbO3 andshow that the evolution is 
ompatible with the ele
troni
 stru
ture of these 
ompounds.2.2 The ele
tron lo
alization tensor2.2.1 De�nitionLet us 
onsider �rst a one-dimensional system of side a and a large Born- von Karman
ell of side L = Ma. The lo
alization length is de�ned through the expe
tation valueof the many-body phase operator [98, 99℄z = �	 ����e(2i�=L)PNei=1 xi����	� (2.1)where Ne is the number of ele
trons and 	 the many-body wave fun
tion de�ned asa Slater determinant of the one-parti
le orbitals. The phase of z 
orresponds to theground-state expe
tation value of the position operator, intrinsi
ally 
onne
ted to thema
ros
opi
 polarization, while its modulus provides an unambiguous de�nition of alo
alization length hx2i
 = � 1Ne � L2��2 ln jzj2: (2.2)If the system is insulating with N (= Ne=2M) doubly o

upied bands, z 
an be 
om-puted from the overlap matri
es between Blo
h fun
tions de�ned in Eq. (1.31)pz = M�1Yj=0 detS(kj ; kj+1): (2.3)In the limit M !1, Eq. (2.2) 
an be expressed as an integral over the BZhx2i
 = aN2� ZBZ dk NXn=1(��unk�k ���� �unk�k �� NXn0=1 ��unk�k ����un0k��un0k �����unk�k �) :(2.4)



2.2. THE ELECTRON LOCALIZATION TENSOR 35Eq. (2.4) 
an be generalized to three-dimensional 
rystals [12℄ where the lo
alizationlength takes the form of a se
ond-order tensor, the so-
alled lo
alization tensorhr�r�i
 = 
0N(2�)3 ZBZ dk NXn=1���� �unk�k� ���� �unk�k� �� NXn0=1��unk�k� ����un0k+�un0k �����unk�k� ����: (2.5)2.2.2 Physi
al interpretationsThe lo
alization tensor in Eq. (2.5) may look like an abstra
t mathemati
al 
on
ept.In this se
tion, we see that it has a well-de�ned physi
al meaning and that it 
an berelated to various physi
al quantities.Maximally lo
alized Wannier fun
tionsFirst, the diagonal elements of the lo
alization tensor give a lower bound of the averagespread of the Wannier fun
tions build from the Blo
h orbitals of all o

upied bands.Indeed, it is straightforward to show [12, 13, 28℄ that these elements are related to 
Ide�ned in Eq. (1.37) by 
I = N 3X�=1hr�r�i
: (2.6)Geometri
 quantum distan
e and quantum metri
Se
ond, let us 
onsider a general quantum me
hani
al Hamiltonian that has a para-metri
 dependen
e H(�)j (�)i = E(�)j (�)i: For example, H(�) 
ould be identi�edto the ele
troni
 Hamiltonian of a mole
ule or a solid in the Born and Oppenheimerapproximation and � to the nu
lear 
oordinates or j (�)i 
ould be identi�ed to the
ell-periodi
 part of the Blo
h fun
tions and � to their wave ve
tor. The geometri
distan
e D12 between two eigenstates j (�1)i and j (�2)i 
an be de�ned as [10℄D212 = 1� jh (�1)j (�2)ij2: (2.7)For an in�nitesimal separation d� between the two states, we 
an writeD2�;�+d� = 1� jh (�)j (� + d�)ij2 =X�;� g��(�)d��d�� (2.8)where g��(�) is the metri
 tensorg��(�) = <� � (�)��� ���� � (�)��� ��� � (�)��� ���� (�)�� (�) ����� (�)��� � : (2.9)



36 CHAPTER 2. THE ELECTRON LOCALIZATION TENSORThe form of the metri
 tensor is similar to the argument of the integral in Eq. (2.5).If we identify  to the 
ell periodi
 part of the Blo
h fun
tions and � to their waveve
tor, k, we 
an de�ne a metri
 to determine the \quantum distan
e" along a givenpath in k-spa
e. Generalizing Eq. (2.9) to a system 
omposed of N doubly o

upiedbands, we obtain [28℄g��(k) = NXn=1(� �unk�k� ���� �unk�k� �� NXn0=1 ��unk�k� ����un0k��un0k �����unk�k� �) : (2.10)The elements of the lo
alization tensor are the BZ average of the metri
 tensor g��[13, 28℄ hr�r�i
 = 
0N(2�)3 ZBZ dkg��(k): (2.11)Flu
tuations of the polarization and opti
al 
ondu
tivityFinally, let us 
onsider an extended solid subje
ted to periodi
 boundary 
onditionsover a large super
ell 
ontainingM unit 
ells. The Cartesian 
omponents of the polar-ization undergo quantum 
u
tuations related to the elements of the lo
alization tensor.In the thermodynami
 limit we 
an write [13℄hr�r�i
 = limM!1 
20Me2 h�Pel� �Pel� i: (2.12)This equation is parti
ularly interesting sin
e it shows that the lo
alization tensor ismore than a mathemati
al 
on
ept. It is a measurable quantity. Using the 
u
tuation-dissipation theorem [100℄ we obtain the following relation between the lo
alizationtensor and the opti
al 
ondu
tivity (imaginary part of the ele
troni
 diele
tri
 tensor)Z 10 "00��(!) d! = 8�2e2N�h
0 hr�r�i
 : (2.13)Relation to the opti
al gapIn a 
ubi
 
rystal, we 
an use the sum rule for os
illator strengths [101℄ together withEq. (2.13) to obtain the following relation between the lo
alization tensor and theband gap Eg hr2�i
 � �h22meEg ; (2.14)where me is the ele
troni
 mass. This inequality shows that the polarization 
u
tu-ations are 
ontrolled by the opti
al gap, lending support to the intuitive notion thatthe larger the gap, the more lo
alized the ele
trons.



2.3. BAND-BY-BAND DECOMPOSITION 372.2.3 Drawba
ksThe lo
alization tensor as it is de�ned in Eq. (2.5) is a global quantity that 
har-a
terizes the o

upied Kohn-Sham manifold as a whole (all k-points and all bands).This statement 
alls for two 
omments. First, appli
ations of DFT to solids oftenmake use of the frozen-
ore and pseudopotential approximations, while Eq.(2.5) re-quires an all-ele
tron 
al
ulation. Se
ond, the behavior of 
ore and valen
e ele
trons istreated globally while both kinds of ele
trons are expe
ted to exhibit strongly di�erentlo
alization properties interesting to identify independently.As it has been dis
ussed in the pre
eding se
tions, the lo
alization tensor gives alower bound for the spread of maximally lo
alized Wannier fun
tions as de�ned byMarzari and Vanderbilt. In order to get some insight into the physi
s of the 
hemi
albonds in mole
ules and solids, su
hWannier fun
tions are usually 
onstru
ted 
onsider-ing only a restri
ted number of ele
troni
 bands 
lose to the Fermi level. The spread ofthe resulting Wannier fun
tions is strongly dependent on the ele
troni
 states in
ludedin the minimization pro
ess. In this 
ontext, it seems interesting to try to identify theintrinsi
 lo
alization of the ele
trons in a spe
i�
 set of bands and to understand howthis quantity is a�e
ted when in
luding other bands. This would allow to solve theproblem asso
iated to the use of pseudopotentials and to 
hara
terize separately thebehavior of 
ore and valen
e ele
trons.2.3 Band-by-band de
omposition of the lo
alizationtensor2.3.1 FormalismContrary to the polarization and the Born e�e
tive 
harges, for whi
h band-by-bandde
ompositions have been previously reported [102{105℄, the lo
alization tensor [Eq.(2.5)℄ involves s
alar produ
ts between Blo
h fun
tions of di�erent bands, making theidenti�
ation of the 
ontribution of isolated sets of bands less straightforward. Inorder to explain this fa
t, we have to remember that the lo
alization tensor is relatedto the se
ond moment of Wannier fun
tions while the Born e�e
tive 
harges and thespontaneous polarization are linked to their �rst moment. From standard statisti
s, it iswell known that �rst and se
ond moments do not add the same way: when 
onsideringtwo random variables x1 and x2, the mean value of the sum x1+ x2 is simply the sumof the mean values while the varian
e of the sum is the sum of the varian
es plus anadditional term, the 
ovarian
e.These 
onsiderations 
an be transposed in the simple 
ontext of a 
on�ned modelsystem made of two orthonormalized states  1(x) and  2(x). The total many-bodywave fun
tion 	(x1; x2) is a Slater determinant 
onstru
ted on the one-parti
le or-bitals. The 
enter of mass is given by the expe
tation value of the position operator



38 CHAPTER 2. THE ELECTRON LOCALIZATION TENSORX = Pi=1;2 xi X = h	jX j	i = Xi=1;2h ijxj ii (2.15)while the total spread (two times the lo
alization tensor) is related to X2,�2 = h	jX2j	i � h	jX j	i2= Xi=1;2[h ijx2j ii � h ijxj ii2℄� 2h 1jxj 2ih 2jxj 1i: (2.16)We see that the �rst moments of the one-parti
le orbitals add to form the total dipoleof the many-body wave fun
tion. In 
ontrast, the total spread is not equal to the sumof the individual spreads of  1 and  2 but involves also matrix elements of the one-parti
le position operator x between  1 and  2. The additional term would be absentif the many-body wave fun
tion was a simple produ
t of the one-parti
le orbitals. Itarises from the anti-symmetry requirement. In analogy with the language of statisti
s,we will name it the 
ovarian
e.Based on the previous arguments, we 
an now de�ne a band-by-band de
ompositionof Eq. (2.5). Suppose that the band stru
ture is formed of Ng groups labeled Gi, ea
hof them 
omposed of ni bands (i = 1; :::; Ng). The varian
e of a parti
ular group Gi isde�ned as hr�r�i
(Gi) = 
0ni(2�)3 ZBZ dk(Xn2Gi��unk�k� ���� �unk�k� �� Xn;n02Gi ��unk�k� ����un0k��un0k �����unk�k� �9=; (2.17)where the sums have to be taken over the bands of group Gi. The 
ovarian
e of twogroups Gi and Gj (i 6= j) is given by the following relationship:hr�r�i
(Gi;Gj) = �
0ninj(2�)3 ZBZ dk Xn2Gi Xn02Gj ��unk�k� ����un0k��un0k �����unk�k� � :(2.18)Using these de�nitions, the total tensor, asso
iated to the whole set of o

upied bands,
an be written ashr�r�i
 = 1N NgXi=1 ni8<:hr�r�i
(Gi) + NgXj 6=i njhr�r�i
(Gi;Gj)9=; : (2.19)The varian
e hr�r�i
(Gi) is intrinsi
 to an isolated set of bands. As dis
ussed inse
tion 2.2.2, it is related to the quantity 
I introdu
ed by Marzari and Vanderbiltthrough Eq. (2.6). hr�r�i
(Gi) is thus the lower bound of the average spread [Eq.



2.3. BAND-BY-BAND DECOMPOSITION 39(1.35)℄ 1ni Pn2Gi [hr2�in�hr�i2n℄ where the sum is taken over all Wannier-like fun
tions inthe unit 
ell belonging to group Gi. This lower bound is rea
hed for Wannier fun
tionsthat are maximally lo
alized in dire
tion �. The varian
e therefore gives some insighton the lo
alization of the ele
trons within a spe
i�
 set of bands taken independently.This lo
alization is a�e
ted by the hybridizations between atomi
 orbitals giving rise tothe formation of the 
onsidered ele
troni
 bands within the solid so that the varian
e
an a
t as a probe to 
hara
terize these hybridizations.The 
ovarian
e is no more related to an isolated set of bands. It tea
hes us how the
onstru
tion of Wannier fun
tions in
luding other bands 
an improve the lo
alization.As dis
ussed in Ref. [28℄, the de�nition of groups of bands in a solid is not unique andsometimes there is a doubt about whi
h bands have to be 
onsidered together. If we
onsider two sets of bands Gi and Gj as one single group, its total varian
e is the sumof the individual varian
es and 
ovarian
es, that have to be res
aled by the number ofbands in ea
h grouphr�r�i
 = 1ni + nj fni [hr�r�i
(Gi) + njhr�r�i
(Gi;Gj)℄+ nj [hr�r�i
(Gj) + nihr�r�i
(Gj ;Gi)℄g : (2.20)Until now, we 
onsidered separately the two Cartesian dire
tions � and �. Strongerresults 
an be obtained when diagonal elements of the lo
alization tensor are 
onsid-ered, or when this lo
alization tensor is diagonalized, and the eigenvalues are 
onsid-ered. Di�erent inequalities 
an be derived. In parti
ular, from Eq. (2.18), it appearsthat the 
ovarian
es for � = � are always negative. This means that the diagonalelements of the full tensor are always smaller than those obtained by the sum of thediagonal varian
es. In other words, it is always possible to obtain more strongly lo-
alized orbitals by 
onstru
ting Wannier fun
tions 
onsidering more than one group ofbands. As a 
onsequen
e the 
ovarian
e appears as a tool to identify whi
h bands haveto be 
onsidered together in the 
onstru
tion of Wannier fun
tions in order to improvetheir lo
alization.In appendix A, we give an interpretation of the varian
e and 
ovarian
e in termsof the opti
al 
ondu
tivity. It illustrates from a di�erent viewpoint the in
uen
e ofthe fermioni
 nature of the ele
trons on the lo
alization tensor: the appearan
e of the
ovarian
e in Eq. (2.19) is a dire
t 
onsequen
e of the Pauli prin
iple.2.3.2 Simple modelIn this se
tion we will investigate a one-dimensional model system. This will help usto understand the role of the 
ovalent intera
tions on the ele
tron lo
alization lengthand related quantities su
h as the Born e�e
tive 
harges. We will deal with a 
on�nedsystem for whi
h the lo
alization tensor 
an be 
omputed from matrix elements of theposition operator and its square as des
ribed in Refs. [10, 12℄.Let us 
onsider a diatomi
 mole
ule XY. In order to des
ribe the 
hemi
al bondsof this model system we adopt a tight-binding s
heme [106℄ de�ned by the hopping



40 CHAPTER 2. THE ELECTRON LOCALIZATION TENSORintegral, t, and the on-site terms � and ��. We will 
all a the interatomi
 distan
e and X ,  Y the s-like atomi
 orbitals that are used as basis fun
tions. The Hamiltonian 
anbe res
aled by � (A=t/�) in order to be
ome a one parameter Hamiltonian de�nedby H = � �1 AA 1 � : (2.21)We further assume that  X is 
entered at the origin,  Y in a and that these twofun
tions do not overlap at any x X(x) Y (x� a) = 0: (2.22)The eigenfun
tions of the Hamiltonian 
orrespond to�1;2(x) = u1;2 X (x) + v1;2 Y (x� a) (2.23)where the 
oeÆ
ients u1;2 and v1;2 
an be expressed in terms of the bond polarity [106℄�p (�p = 1p1+A2 ): u1 =q 1+�p2 ; v1 =q 1��p2u2 =q 1��p2 ; v2 = �q 1+�p2 : (2.24)In order to see the meaning of the di�erent terms appearing in the band-by-bandde
omposition of the lo
alization tensor and the Born e�e
tive 
harges let us �rst
onsider the mole
ular orbitals independently.The varian
e of state �1 
an be 
omputed from the 
oeÆ
ients u1 and v1. It writeshx2i
(1) = �2X 1 + �p2 + �2Y 1� �p2 + a2A24(1 +A2) (2.25)where �2X and �2Y are the se
ond 
entral moments of  X and  Y . The varian
e of�2 is given by a similar expression. This quantity is 
omposed of three positive termsthat summarize the me
hanisms that are able to delo
alize the ele
trons with respe
tto the atomi
 orbitals. On one hand, the ele
troni
 
loud on a parti
ular atom is nota delta-Dira
 fun
tion but presents a degree of delo
alization related to �2X and �2Y(�rst and se
ond term). When the state �1 is made entirely of  X , that is, when �pequals one, the lo
alization length is 
orre
tly equal to �2X (�rst term). In
orporatingmore  Y 
hanges the lo
alization length in proportion of �p (the balan
e between �rstand se
ond terms). On the other hand, the ele
trons 
an o

upy two sites X and Ythat are separated by a distan
e a (third term). This term s
ales as a2. Even a small
ovalent intera
tion is thus able to indu
e an important delo
alization if it a
ts on asuÆ
iently large distan
e.The Born e�e
tive 
harge of atom X is de�ned as the derivative of the dipolemoment p with respe
t to a. This dipole moment is the sum of the nu
lear and stati
ele
troni
 
harges multiplied by the interatomi
 distan
e. The 
ontribution 
omingfrom the ele
trons o

upying state �1 is equal top1 = �2eu21a = �e(1 + �p)a (2.26)
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troni
 
harge. The derivative of Eq. (2.26) withrespe
t to a gives the 
ontribution of these ele
trons to the total e�e
tive 
hargeZ�X;1 = �p1�a = �e(1 + �p) + ea A(1 +A2)3=2 �A�a : (2.27)The �rst term is the (stati
) e�e
tive atomi
 
harge [106℄ of atom X while the se
ondterm represents an additional dynami
al 
ontribution due to a transfer on ele
tronsbetween X and Y during a relative atomi
 displa
ement. The 
ontribution of theele
trons o

upying state �2 is given by a similar expressionZ�X;2 = �p2�a = �e(1� �p)� ea A(1 +A2)3=2 �A�a : (2.28)This simple model illustrates how both the varian
e of the lo
alization tensor andthe Born e�e
tive 
harges depend on the 
ovalent intera
tions de�ned by the parameterA. The varian
e is a stati
 quantity depending on the amplitude of the 
ovalentintera
tions only while the Born e�e
tive 
harges are dynami
al quantities that alsodepend on the variations of these intera
tions during a relative atomi
 displa
ement.If we now 
onsider the states �1 and �2 as a single group we have to add theirvarian
es and 
ovarian
es to get the whole lo
alization tensor. The 
ovarian
e redu
esto hx2i
(1; 2) = �a2A24(1 +A2) : (2.29)By adding this 
ovarian
e to the varian
e in Eq. (2.25), we remove in some sensethe delo
alization indu
ed by the 
ovalent intera
tions. The total lo
alization tensorbe
omes independent of the hopping A and the interatomi
 distan
e a. It redu
es tothe mean spread of the atomi
 orbitals  X and  Y :hx2i
 = �2X + �2Y2 : (2.30)Eq. (2.30) de�nes the mean spread of the Wannier fun
tion 
onstru
ted as linear
ombinations of �1 and �2 that minimize the spread fun
tional 
 (see Eq. (1.35)). Asshown in Ref. [28℄ (see also Se
. 1.4.4), these orbitals diagonalize the position operatorx̂ proje
ted on the subspa
e of o

upied states. They are thus equal to the atomi
orbitals sin
e the hypothesis of zero overlap (Eq. (2.22)) implies h X jx̂j Y i = 0.The total Born e�e
tive 
harge of atom X 
an be obtained by adding the nu
lear
harge Z�
ore = 2e to the terms (2.27) and (2.28). It is easy to 
he
k that for thismodel Z�X is equal to zero. This result 
an be interpreted in two ways. The pointof view usually adopted is to say that the two mole
ular orbitals are of the oppositepolarity so that the total dipole of the mole
ule vanishes. Based on the results ofthe pre
eding paragraph, we 
an also aÆrm that ea
h maximally lo
alized Wannierfun
tion is 
on�ned on a single atom so that no interatomi
 
harge transfer 
an takepla
e.



42 CHAPTER 2. THE ELECTRON LOCALIZATION TENSORThis result suggests that the varian
e gives more information about the lo
alizationof ele
trons of parti
ular 
hemi
al bonds than the total lo
alization tensor. It alsoillustrates the observation of Ghosez et al. [102, 103℄ that anomalous e�e
tive 
hargesmainly 
ome from hybridizations between o

upied and uno

upied states. In fa
t,the di�erent 
hemi
al bonds generate opposite e�e
ts so that a net 
harge transfer ispossible only if some of them are uno

upied.In summary, we have illustrated the me
hanisms that govern the varian
e of thelo
alization tensor and the Born e�e
tive 
harges in the parti
ular 
ase of a one di-mensional model system. The observations made in this se
tion give us an intuitiveunderstanding of how delo
alized ele
trons 
an generate anomalous e�e
tive 
harges.Hybridizations between o

upied states generate opposite e�e
ts that tend to 
an
elout when they are summed. Be
ause of the simpli
ity of the above adopted pi
ture,we have however to be 
areful when we apply this model to real materials. First, we
onsidered only hybridizations between two types of atomi
 orbitals, while the 
hem-i
al bonds in real systems generally result from more 
ompli
ated intera
tions. Inparti
ular, we negle
ted on-site hybridizations that are also able to generate anoma-lous e�e
tive 
harges but that indu
e a stronger lo
alization on the ele
troni
 
loud.Se
ond, the hypothesis of zero overlap (2.22) is not always ful�lled so that maximallylo
alized Wannier fun
tions 
onstru
ted on the whole set of o

upied states generallynot redu
e to the atomi
 orbitals. Nevertheless, this simple model will allow us tointerpret some results in Se
s. 2.5 and 2.6.2.3.3 PseudopotentialsAs mentioned in Se
. 2.2.3, there is a fundamental problem in the 
omputation of thetotal lo
alization tensor when pseudopotentials are used. This is due to the fa
t thatthe lo
alization tensor is related to the bands of the system as a whole : �rst, there is no
an
ellation between the 
ore ele
trons and the nu
lear 
harge, as it is the 
ase in the
omputation of the total polarization; se
ond, the lo
alization tensor is a kind of meanover all bands, that 
ombines strongly lo
alized (
ore) states, and weakly lo
alized(valen
e) states. This is 
learly seen in Eq.(2.5), where the number of bands expli
itlyappears both in the denominator of the prefa
tor and in the two summations. Theband-by-band de
omposition allows us to over
ome this problem partly, by fo
usingonly on the varian
es of isolated groups of bands. Thanks to Eq. (2.20) it is alsopossible to get some insight into the physi
s of the all-ele
tron lo
alization tensorwhen pseudopotentials are used. In this se
tion, we fo
us on the diagonal elements ofthe ele
tron lo
alization tensor � = � (of 
ourse, any dire
tion 
an be 
hosen as �).In an all-ele
tron 
al
ulation, let us 
onsider separately two sets of bands: 
orebands (labeled as '
o'), and valen
e bands (labeled as 'va'). The total lo
alizationtensor 
an be obtained from the lo
alization tensors of ea
h group of bands, 
ombinedwith the 
ovarian
e between the two groups of bands:hr�r�i
 = 1n
o + nva fn
ohr�r�i
(
o) + nvahr�r�i
(va) + 2n
onvahr�r�i
(
o; va)g :(2.31)
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es hr�r�i
(
o) and hr�r�i
(va) are positive quantities. The 
ovarian
etimes the produ
t of the number of bands n
onvahr�r�i
(
o; va), a negative quantity,must always be smaller in magnitude than ea
h of the related varian
es multipliedby the 
orresponding number of bands. This translates to bounds on the diagonalelements of the total lo
alization tensor:jnvahr�r�i
(va)� n
ohr�r�i
(
o)jn
o + nva � hr�r�i
 � nvahr�r�i
(va) + n
ohr�r�i
(
o)n
o + nva :(2.32)In the frozen-
ore approximation, hr�r�i
(
o) 
an be obtained from separate all-ele
tron 
al
ulations for ea
h atom of the system. The lo
alization tensor of the va-len
e bands is (likely) 
omputed a

urately in the pseudopotential approximation : thespread of the Wannier fun
tions should be quite similar if estimated from all-ele
tronvalen
e wave fun
tions or from pseudo-wave fun
tions.2.4 Method and implementationIn the remaining part of this Chapter, we apply the previous formalism to variousoxides. The ele
troni
 wave fun
tions are obtained within DFT [5, 6℄ and the lo
aldensity approximation (LDA) thanks to the abinit [64℄ pa
kage. At varian
e witha previous work on semi
ondu
tors [12℄, the �rst derivatives of the wave fun
tionswith respe
t to their wave ve
tor are not 
omputed from �nite di�eren
es but from alinear-response approa
h [37℄ within the parallel-transport gauge. The wave fun
tionsare further transformed to the diagonal gauge [105℄. In all 
ompounds, the ground-state and �rst-order wave fun
tions are expanded in plane waves up to a kineti
-energy
uto� of 45 Hartree. We use a 8�8�8 mesh of spe
ial k-points [107℄ for BaO, �-PbO,BaTiO3 and PbTiO3 and a 6� 6� 6 mesh of spe
ial k-points for LiNbO3. With theseparameters, the 
onvergen
e of the lo
alization tensor for the investigated 
ompounds isbetter than 10�3 Bohr2. In BaO, �-PbO, BaTiO3 and PbTiO3, the ioni
-
ore ele
tronpotentials of the atoms are repla
ed by ab initio, separable, extended norm-
onservingpseudopotentials, as proposed by M. Teter [108℄. Ba 5s, 5p and 6s ele
trons, Pb 6s,5d and 6p ele
trons, Ti 3s, 3p and 3d ele
trons, O 2s and 2p ele
trons are 
onsideredas valen
e states. In LiNbO3, we use the same norm-
onserving pseudopotentials asin Ref. [69℄. Nb 4s, 4p, 4d and 5s ele
trons, Li 1s and 2s ele
trons as well as O 2sand 2p ele
trons are 
onsidered as valen
e states. Besides 
al
ulating the lo
alizationtensor on bulk-materials, we also 
omputed it on the isolated atomi
 systems Ba2+,Pb2+, Li+, Nb5+ and O by pla
ing ea
h atom at the origin of a periodi
 super
ell of20 Bohrs.As shown by Sgiarovello et al. [12℄, the lo
alization tensor and thus the varian
esand 
ovarian
es, are real. Moreover, they are obviously symmetri
 in � and �. Con-sequently there exists a set of Cartesian axes where they are diagonal and their eigen-values are also real numbers. In the dis
ussion of our results we will always work inthis parti
ular frame so that we do not need to 
onsider the o�-diagonal elements ofthe lo
alization tensor.



44 CHAPTER 2. THE ELECTRON LOCALIZATION TENSOR2.5 Results2.5.1 Stru
tural and ele
troni
 propertiesWe will 
onsider the two binary oxides BaO and �-PbO, the ferroele
tri
 perovskitesBaTiO3 and PbTiO3 as well as the trigonal ferroele
tri
 LiNbO3. BaO has a ro
ksaltstru
ture while the tetragonal � phase of lead oxide is formed of parallel layers of Pband O atoms. As dis
ussed in Se
. 1.2, BaTiO3 and PbTiO3 have a high-temperature
ubi
 perovskite stru
ture with �ve atoms per unit 
ell. As the temperature is lowered,the former 
ompound undergoes a sequen
e of three ferroele
tri
 phase transitionstransforming to tetragonal, orthorhombi
 and rhombohedral stru
tures while the latter
ompound undergoes one single transition from the 
ubi
 to the tetragonal phase.Finally, LiNbO3 has a trigonal symmetry with 10 atoms per unit 
ell. It undergoesa single transition from a 
entrosymmetri
 paraele
tri
 R3
 phase to a ferroele
tri
R3
 ground state. We will 
onsider expli
itly the 
ubi
, tetragonal and rhombohedralphases of BaTiO3, the 
ubi
 phase of PbTiO3 as well as the two phases of LiNbO3.The ele
troni
 stru
tures of these 
ompounds have been previously studied [69,104,109{111℄ and are illustrated in Figs. 2.1 and 2.2. They are formed of well-separatedgroups of bands. Ea
h of them has a marked dominant orbital 
hara
ter and 
anbe labeled by the name of the atomi
 orbital that mainly 
omposes the energy statein the solid. In all 
ompounds, the bands at the Fermi level are mainly 
omposedof O 2p states that show signi�
ant intera
tions with other atomi
 orbitals su
h asthe well known O 2p-Ti 3d hybridization in BaTiO3 and PbTiO3 or the O 2p-Nb 5dhybridization in LiNbO3. The band stru
tures in the ferroele
tri
 phases of BaTiO3and LiNbO3 are similar to those in their paraele
tri
 phases. The phase transitionsprin
ipally a�e
t the band gap and the spread of the O 2p bands while the positionsof the deeper lying bands remain quite 
onstant. The main di�eren
e in the ele
troni
stru
tures of BaO and BaTiO3 on one hand and PbO and PbTiO3 on the other hand
omes from the presen
e or absen
e of Pb 6s ele
trons (that form the so 
alled lone-pair in PbO). These ele
trons show a strong hybridization with the O 2p states. Asa 
onsequen
e, the O 2p and Pb 6s bands are degenerate at the R point in PbTiO3and around the Z point in PbO. Consequently, we have to 
onsider them as one singlegroup of bands in the de
omposition of the lo
alization tensor.2.5.2 Lo
alization tensor and Born e�e
tive 
hargesAs the total lo
alization tensor is meaningless in pseudopotential 
al
ulations that donot in
lude 
ovarian
es with the 
ore states, we fo
us on the varian
es of the di�erentgroups of bands. The values 
an be found in the Tables 2.1, 2.2 and 2.3 where theyare 
ompared to the varian
es of the dominant atomi
 orbitals. We do not report anyvalues asso
iated to the deepest lying Ti 3s and Ti 3p bands although they have beenin
luded in our pseudopotential 
al
ulation. Their varian
es are in fa
t 
lose to theatomi
 ones and they do not show any sizeable 
ovarian
e with other bands in BaTiO3and PbTiO3.
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Figure 2.1: Band stru
tures of BaO, 
ubi
 BaTiO3, 
ubi
 PbTiO3 and �-PbO.
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Figure 2.2: Band stru
ture in the paraele
tri
 phase of LiNbO3.
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46 CHAPTER 2. THE ELECTRON LOCALIZATION TENSORTable 2.1: Varian
es (Bohr2) of the Ba 5s, O 2s, Ba 5p and O 2p bands for the isolatedatomi
 systems Ba2+ and O, BaO and the 
ubi
 (C), tetragonal (T) and rhombohedral(R) phases of BaTiO3.System Str. Element BandBa 5s O 2s Ba 5p O 2pAtom � hr2i
 1.011 0.929 1.370 �BaO � hr2i
 1.065 1.552 2.023 2.199BaTiO3 C hr2i
 1.091 0.950 2.189 1.875T hr2?i
 1.091 0.945 2.180 1.852hr2ki
 1.088 0.965 2.175 1.842R hr2?i
 1.092 0.963 2.196 1.862hr2ki
 1.092 0.949 2.189 1.804Table 2.2: Varian
es (Bohr2) of the O 2s, Pb 5d and Pb 6s +O 2p bands in PbTiO3,�-PbO and for the isolated atomi
 systems Pb2+ and O.System Element BandO 2s Pb 5d Pb 6s + O 2pAtom hr2i
 0.929 0.657 �PbTiO3 hr2i
 1.874 1.490 1.749PbO hr2?i
 2.234 1.142 2.178hr2ki
 1.724 0.990 1.968In the 
ubi
 
rystals BaO, BaTiO3 and PbTiO3 as well as in the atomi
 systems, thereported tensors are isotropi
 so that we only mention their prin
ipal values hr2i
. Thisis no more true in the ferroele
tri
 phases of BaTiO3 and the two phases of LiNbO3where a weak anisotropy 
an be observed. The tensors have an uniaxial 
hara
ter asthe 
orresponding diele
tri
 ones: they are diagonal when expressed in the prin
ipalaxes and the elements hr2?i
 and hr2ki
 refer to Cartesian dire
tions perpendi
ular andparallel to the opti
al axis (that has the dire
tion of the spontaneous polarization).A mu
h stronger anisotropy is observed in �-PbO where the lo
alization tensor hasthe same symmetry as in the ferroele
tri
 phases of BaTiO3. Due to its parti
ularstru
ture formed of atomi
 Pb-O planes the ele
trons of ea
h group of bands are moredelo
alized in a dire
tion parallel (hr2?i
) to the atomi
 planes1 than perpendi
ular(hr2ki
) to them. This observation agrees with our intuitive pi
ture that the 
ovalentintera
tions between atoms inside a layer are stronger than between atoms of di�erent1In �-PbO, the opti
al axis is perpendi
ular to the atomi
 layers.



2.5. RESULTS 47Table 2.3: Varian
es (Bohr2) in the two phases of LiNbO3 and for the inner orbitalsof Nb5+, Li+ and O.Band Atom Paraele
tri
 phase Ferroele
tri
 phasehr2i
 hr2?i
 hr2ki
 hr2?i
 hr2ki
Nb 4s 0.479 0.514 0.514 0.516 0.514Li 1s 0.158 0.167 0.164 0.166 0.165Nb 4p 0.576 0.721 0.719 0.728 0.714O 2s 0.892 0.879 0.870 0.893 0.848O 2p 1.488 1.515 1.483 1.418Tot. varian
e 1.110 1.123 1.111 1.066Tot. 
ovarian
e -0.388 -0.384 -0.395 -0.377Tot. tensor 0.722 0.738 0.716 0.689layers.Examining the varian
es of the di�erent groups of bands we see that the Ba 5sele
trons show a similar degree of lo
alization both in BaO and BaTiO3 also equivalentto that of the 
orresponding atomi
 orbital. In 
ontrast, the O 2s ele
trons behavedi�erently in the materials under investigation: in BaTiO3 and LiNbO3, their varian
eis 
lose to the atomi
 one while they show a signi�
ant larger delo
alization in thethree other 
ompounds. It is in fa
t surprising to see the degree of delo
alization ofthe inner bands su
h as the O 2s, Ba 5p, Nb 4p or Pb 5d bands. In some 
ases su
has BaTiO3, the ele
trons of these bands are even more strongly delo
alized than thoseof the bands at the Fermi level. These results suggest that the 
orresponding atomi
orbitals are 
hemi
ally not inert but present non-negligible 
ovalent intera
tions. Aninteresting observation 
an be made for the O 2s and Pb 5d bands in PbTiO3 and�-PbO. The delo
alization indu
ed by the 
ovalent intera
tions that generate thesebands tends to disappear when we 
onsider them as one single group. In order to
ompute the varian
e of the whole O 2s and Pb 5d bands, we have to use Eq. (2.20).As an example let us 
onsider PbTiO3. The di�erent elements 
an be summarized ina matrix where the diagonal elements are the varian
es (Bohr2) and the o�-diagonalelements the 
ovarian
es (Bohr2) of the individual groups� 1:874 �0:240�0:240 1:490 � :The total varian
e of the (O 2s + Pb 5d) group 
onsidered as a whole redu
es to 0.734Bohr2. For �-PbO, we obtain similar values of 0.732 Bohr2 for hr2?i
 and 0.701 Bohr2for hr2ki
. These values 
an be 
ompared to the mean spread of the atomi
 orbitals16 (0:929+ 5� 0:657) = 0:702 Bohr2:The results presented above show that inner orbitals su
h as O 2s, Ba 5p, Nb 4p orPb 5d are 
hemi
ally not inert in the materials under investigation. This observation



48 CHAPTER 2. THE ELECTRON LOCALIZATION TENSORTable 2.4: Band-by-band de
omposition of the Born e�e
tive 
harges (a. u. of 
harge)in PbTiO3 and �-PbO. The 
ontributions have been separated into a referen
e nominalvalue and an anomalous 
harge. PbTiO3 �-PbOBand Z�Pb Z�Pb? Z�PbkCore 14.00 14.00 14.00O 2s 0 + 3.47 0 + 1.89 0 + 0.26Pb 5d -10 - 3.36 -10 - 1.80 -10 - 0.40Pb 6s + O 2p -2 + 1.78 -2 + 1.06 -2 + 0.48Tot. 2 + 1.89 2 + 1.15 2 + 0.34seems in 
ontradi
tion with the 
on
lusions drawn from partial density of states anal-ysis [110℄ that these states are rather inert. Nevertheless the inspe
tion of the Borne�e
tive 
harges in BaO, BaTiO3 or LiNbO3 [69, 102, 104℄ 
on�rms our observationsthat will now be illustrated for �-PbO and PbTiO3. This points out that the globalshape of the band stru
ture is less sensitive to the underlying 
ovalent intera
tionsthan the varian
e of the lo
alization tensor or the Born e�e
tive 
harges.In order to investigate the 
onne
tion between the lo
alization tensor and the Borne�e
tive 
harges we report in Table 2.4 the band-by-band de
omposition of Z�Pb inPbTiO3 and �-PbO. In the perovskite, this tensor is isotropi
 while in �-PbO it hasthe same symmetry as the lo
alization tensor. The 
ontribution of ea
h group ofbands has been separated into a referen
e nominal value and an anomalous 
harge 2.For �-PbO, we observe the same anisotropy as for the lo
alization tensor: the 
ovalentintera
tions inside an atomi
 layer (Z�Pb?) generate larger anomalous 
ontributionsthan the intera
tions involving atoms of di�erent layers (Z�Pbk). By looking at theO 2s and Pb 5d bands we see that they generate important anomalous 
harges that
on�rm our observations 
on
erning the varian
es of these bands. Interestingly, in bothmaterials these 
ontributions 
an
el out when they are summed. We observe thus thesame tenden
ies for the Born e�e
tive 
harges and the lo
alization tensor: the e�e
tsindu
ed by the 
ovalent intera
tions between inner orbitals tend to disappear when theresulting bands are 
onsidered together.2.6 Dis
ussionsBased on the simple model exposed in Se
. 2.3.2 we 
an suggest the following me
h-anism to explain the results presented in the pre
eding se
tion. The atomi
 orbitals2The Born e�e
tive 
harges are usually 
ompared to an isotropi
 nominal value that is the 
hargeexpe
ted in a purely ioni
 
ompound. All deviations with respe
t to this referen
e nominal value arereferred to as anomalous.



2.6. DISCUSSIONS 49O 2s and Pb 5d (for whi
h the hypothesis of zero overlap (2.22) is reasonable) presentweak 
ovalent intera
tions that generate the 
orresponding energy bands in PbTiO3and �-PbO. When we 
onstru
t maximally lo
alized Wannier fun
tions for ea
h indi-vidual group, the resulting orbitals are delo
alized on Pb and O atoms so that duringan atomi
 displa
ement an interatomi
 transfer of 
harges � generating anomalousBorn e�e
tive 
harges � is possible. The fa
t that the varian
e of the global (O 2s+ Pb 5d) group of bands is 
lose to the mean spread of the atomi
 orbitals suggeststhat the maximally lo
alized Wannier fun
tions 
onstru
ted on these bands are similarto the original atomi
 orbitals. In other words, they are 
on�ned on a single atom.This 
on�nement also suppresses the interatomi
 
harge transfer so that the anomalous
harges disappear. We 
an make similar observations for the Ba 5p and O 2s bandsin BaO and BaTiO3, although, in the latter 
ompound, the 
an
ellation in the Borne�e
tive 
harges and the varian
e is not as 
omplete as in the three remaining ones.This suggests that in the lead oxides as well as in BaO, the inner bands Pb 5d and O2s (respe
tively Ba 5p and O 2s) mainly result from hybridizations between two typesof atomi
 orbitals. In 
ontrast, in BaTiO3 the Ba 5p and O 2s bands are formed ofmore than two types of atomi
 orbitals.Looking now at the bands at the Fermi level, we see that their varian
e is sig-ni�
antly larger in BaO and �-PbO than in the 
orresponding perovskites and thatit remains nearly 
onstant in the di�erent phases of BaTiO3 and LiNbO3. This lat-ter observation seems surprising for two reasons. (i) In BaTiO3, the LDA band gappresents drasti
 
hanges when passing from the 
ubi
 (1.72 eV) to the rhombohedral(2.29 eV) phase. In LiNbO3, we observe a similar strong variation when passing fromthe paraele
tri
 (2.60 eV) to the ferroele
tri
 (3.48 eV) phase. These in
reases suggestmu
h stronger lo
alization of the O 2p ele
trons in the ferroele
tri
 phases. (ii) Thegiant Born e�e
tive 
harges observed in the paraele
tri
 phases [69,102,103℄ imply animportant reorganization of the ele
troni
 
loud during an atomi
 displa
ement. Itappears surprising that this reorganization has su
h small e�e
ts on the lo
alizationtensor.Considering point (i), we note that the 
orrelation between the band gap and thelo
alization tensor is not as tight as one might think. The varian
e of the O 2p bandsfor instan
e is signi�
antly larger in BaO than in BaTiO3 in spite of the fa
t that itsLDA band gap (1.69 eV) is 
lose to the gap in the 
ubi
 phase of BaTiO3.Considering point (ii), we note that it is possible to have an important reorgani-zation of the ele
troni
 
harge without a�e
ting the lo
alization tensor signi�
antly.Following the ideas of the Harrison model [106℄, the giant e�e
tive 
harges in ferro-ele
tri
s result from dynami
al orbital hybridizations 
hanges generating interatomi
transfers of 
harges. In Figure 2.3 (a) we have drawn s
hemati
ally an O 
enteredWannier fun
tion in the 
ubi
 phase of BaTiO3 along a Ti - O 
hain. Due to the O2p - Ti 3d hybridization, this Wannier fun
tion has a �nite probability on the neigh-boring Ti1 and Ti2 atoms. A

ording to the Harrison model, a fra
tion of ele
tronsis transferred from Ti1 to Ti2 during a displa
ement d� of the O atom (Figure 2.3(b)). Even if the quantity of 
harges involved in this pro
ess is small, the large s
aleon whi
h this transfer takes pla
e (of the order of the latti
e parameter) implies a shift



50 CHAPTER 2. THE ELECTRON LOCALIZATION TENSOR
OTi Ti

dτ

a)

b)

21

Figure 2.3: Oxygen 
entered Wannier fun
tions in the 
ubi
 phase (solid line) ofBaTiO3 (a) and its variation during the transition to the tetragonal phase (dashedline) (b).of the Wannier fun
tion 
enter larger than the underlying atomi
 displa
ement andexplains the anomalous e�e
tive 
harges. During the transition from the 
ubi
 to thetetragonal phase, the 
entral O atom is displa
ed by few per
ent of the latti
e 
onstanta (d�a = 0:045) with respe
t to Ti1 and Ti2. The resulting shift of the Wannier fun
tion
enter generates the spontaneous polarization in the ferroele
tri
 phase.Based on this simple pi
ture the origin of the small variations of the O 2p varian
eduring the phase transitions be
omes more obvious: when the ele
trons are transferredfrom Ti1 to Ti2 their distan
e to the initial Wannier fun
tion 
enter remains una�e
tedand their distan
e to the displa
ed Wannier fun
tion 
enter slightly de
reases due toits shift towards Ti2. Mathemati
ally speaking, due to the fa
t that the variations donot depend on the dire
tion of the atomi
 displa
ement, they are of the se
ond orderin d�a .In order to get a numeri
al estimate of the 
harges transferred during this pro
essand its impa
t on the lo
alization tensor we 
an 
onsider a one dimensional modelWannier fun
tion whose square is the sum of three delta-Dira
 fun
tionsjWn(x)j2 = 12 �2� Z 0O2 [Æ(x� a) + Æ(x+ a)℄ + Z 0OÆ(x)� : (2.33)This model only takes into a

ount the delo
alization of the ele
trons on di�erentatoms (third term of Eq. (2.25)) while it 
ompletely negle
ts the delo
alization of theele
troni
 
loud on the individual atoms (�rst and se
ond term of Eq. (2.25)). Inthis parti
ular 
ase we 
an identify the lo
alization tensor to the se
ond moment ofthe Wannier fun
tion. This is no more 
ompletely true in a real, three-dimensional
rystal. In BaTiO3 for instan
e, the O 2p group 
ontains 9 di�erent Wannier fun
tions
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ell lo
ated on three di�erent O atoms. These orbitals extend in di�erentspatial dire
tions so that their average spread in the x-dire
tion is lower than thespread of one single Wannier fun
tion as the one shown in Figure 2.3.In Eq. (2.33), Z 0O represents the probability of the ele
trons to be found on the Oatom. It 
an be 
omputed from the value of the O 2p varian
e in the paraele
tri
 phaseof BaTiO3 and the latti
e 
onstant a using the relation R x2jWn(x)j2dx = hr2i
;O2p:This yields Z 0O = 1:73. This quantity allows an estimate of the stati
 
harge of theO atom in BaTiO3 by subtra
ting three times Z 0O from the 
harge due to the nu
leusand the 
ore ele
trons O 1s and O 2s. This yields ZO;st = 4� 3 � 1:73 = �1:19 e.When the O atom is displa
ed, the shift of the Wannier fun
tion 
enter is dire
tlyrelated to the quantity of 
harges " transferred from Ti1 to Ti2. The value of " 
anbe 
omputed from the value of the e�e
tive 
harge generated by the O 2p ele
trons(Z�O2p = �9:31) in the 
ubi
 phase [103℄ by taking into a

ount that the anomalous
harges are generated by three Wannier fun
tions lo
ated on the same O atom [29℄. Toget the polarization due to one single Wannier fun
tion, we have to divide this quantityby 3 sin
e ea
h of them brings a similar 
ontribution to Z�O2p. In the tetragonal phase,the model Wannier fun
tion writesjWn(x)j2 = 12 �2� Z 0O � "2 Æ(x+ a) + Z 0OÆ(x� d�) + 2� Z 0O + "2 Æ(x� a)� : (2.34)By identifying twi
e its �rst moment to Z�O2pd�=3 one gets " = 0:0614 at the transitionfrom the 
ubi
 to the tetragonal state. It implies a de
rease in the spread of the modelWannier fun
tion of 0.18 Bohr2.This variation is larger than the observed one (0.023 Bohr2). Part of the dis
repan
yis probably due to the fa
t that we 
onsidered Z�O2p to be 
onstant along the path ofatomi
 displa
ement from the paraele
tri
 to the ferroele
tri
 phase. Using the valueof Z�O2p in the tetragonal phase we obtain a value of 0.0467 for " while the varian
ede
reases of 0.12 Bohr2. Moreover, one has to bear in mind that the lo
alization tensorin BaTiO3 is an average value that has to be taken over 9 Wannier fun
tions. Six ofthem are 
entered on O atoms that lie in a plane perpendi
ular to the dire
tion of thespontaneous polarization. They are probably less a�e
ted by the phase transition. Asa 
onsequen
e, the variation of the Wannier fun
tion lo
ated on the remaining O atom(the one represented on Figure 2.3) is expe
ted to be larger than the variation of thelo
alization tensor.In summary, even if there is no formal 
onne
tion between the real Wannier fun
-tions in BaTiO3 or LiNbO3 and Eq. (2.33), this simple model shows that small vari-ations of the lo
alization tensor are 
ompatible with giant e�e
tive 
harges and theirinterpretation in terms of the Harrison model. As illustrated with the model Wannierfun
tion, the transfer of 
harges along the Ti�O 
hains only implies a slight de
reasein the spread of one single Wannier fun
tion. This de
rease is expe
ted to be largerthan the de
rease in the varian
e be
ause this latter quantity is an average value over 9Wannier fun
tions that are not modi�ed to the same extent during the phase transition.
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lusionsThe 
hara
terization of ele
tron lo
alization in extended systems had been a 
halleng-ing problem that was only solved re
ently. Thanks to the modern theory of polariza-tion, it is now possible to study the ele
troni
 polarization and lo
alization length froma uni�ed formalism. In this Chapter, we used a plane-wave-pseudopotential approa
hto DFT to 
ompute the ele
tron lo
alization tensor for various oxides. Our study wasbased on the work on semi
ondu
tors performed by Sgiarovello and 
o-workers butused linear-response te
hniques to 
ompute the �rst-order wave fun
tions.In order to investigate the properties of ele
trons o

upying individual groups ofbands independently, we �rst set-up a band-by-band de
omposition of the lo
alizationtensor. In analogy with the �eld of statisti
s we had to distinguish between varian
e and
ovarian
e in this de
omposition. The signi�
an
e of these new 
on
epts was illustratedin terms of Wannier fun
tions and explained on a simple model. The varian
e allowsto get some insight into the hybridizations of atomi
 orbitals. The 
ovarian
e 
an beuseful to help 
onstru
ting maximally lo
alized Wannier fun
tions: it identi�es thebands that have to be 
onsidered together in order to improve their lo
alization. Wealso made a 
onne
tion between the lo
alization tensor and the Born e�e
tive 
hargesand we dis
ussed the di�eren
e between all-ele
tron and pseudopotential 
al
ulations.We applied these te
hniques to binary oxides (BaO and �-PbO) and ferroele
tri
oxides (BaTiO3, PbTiO3 and LiNbO3). By 
onsidering �rst the ele
trons of the innerbands we showed that some of them present a strong delo
alization with respe
t to thesituation in an isolated atom. This observation suggests that the underlying atomi
orbitals are 
hemi
ally not inert but present non-negligible 
ovalent intera
tions. Thisfa
t had been 
on�rmed from an inspe
tion of the Born e�e
tive 
harges.Finally, the variations of the O 2p varian
e during the ferroele
tri
 phase transi-tions of BaTiO3 and LiNbO3 were found to be very small. This surprising result wasexplained in terms of the ele
troni
 stru
ture of these 
ompounds as it is interpretedin the Harrison model.We think that, when 
ombined with Born e�e
tive 
harges, the band-by-band de-
omposition of the lo
alization tensor 
ould provide a powerful tool for the qualitative
hara
terization of bonds in solids. However, more studies are needed, for di�erent
lasses of materials [112℄, in order to make it fully e�e
tive.2.8 Referen
esThe formalism and results presented in this Chapter have been partly dis
ussed in thefollowing papers:� M. Veithen, X. Gonze and Ph. Ghosez, Ele
tron lo
alization: Band-by-bandde
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eedings 626, 208 (2002).
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Chapter 3Nonlinear response ofinsulators to ele
tri
 �elds:theory3.1 Introdu
tionHaving dis
ussed the ele
tri
 �eld perturbation in Se
. 1.4.5, we present in this Chaptertwo methodologies to study the nonlinear response of insulators to ele
tri
 �elds. The�rst te
hnique uses density fun
tional perturbation theory (DFPT) and the se
ondone uses �nite ele
tri
 �elds. We report the expressions that we implemented in theabinit 
ode [64℄. In the following Chapter, these te
hniques will be applied to varioussemi
ondu
tors and ferroele
tri
s.Our interest in the nonlinear response of insulators to ele
tri
 �elds lies in thefa
t that many interesting properties are determined by this behavior. In parti
ular,the nonlinear opti
al sus
eptibilities, Raman s
attering eÆ
ien
ies and ele
tro-opti

oeÆ
ients are related to third-order derivatives of the energy with respe
t to two ormore ele
tri
 �elds. In 
ontrast to the linear response formalism that is nowadaysroutinely applied to various systems (see for example Ref. [34℄), the nonlinear responseformalism has been mostly restri
ted to quantum 
hemistry problems. Although thehyperpolarizabilities of a huge number of mole
ules have been 
omputed, taking intoa

ount both ele
troni
 and vibrational (ioni
) 
ontributions [113,114℄, appli
ations in
ondensed matter physi
s have fo
used on rather simple 
ases [56{63℄.The formalism we des
ribe in this Chapter takes advantage of several re
ent theoret-i
al developments. Nunes and Gonze [115℄ used Eq. (1.39) as an ansatz for a periodi
energy fun
tional. In their formalism, the polarization was 
omputed as a Berry phaseof �eld polarized Blo
h fun
tions (Eqs. (1.26) and (1.28)). This ansatz was justi�edlater by Souza and 
o-workers [116℄ who showed that the minima of the fun
tional of55



56 CHAPTER 3. ELECTRIC FIELDS: THEORYNunes and Gonze are stationary solutions of the time dependent S
hr�odinger equationfor suÆ
iently weak �elds. Using perturbation theory, Nunes and Gonze showed thatit is possible to obtain analyti
 expressions of the derivatives of the energy with respe
tto ele
tri
 �elds up to any order. In parti
ular, at the lowest order, they re
overedthe same expressions of energy derivatives as given by more 
onventional perturbationmethods [37, 117℄. While Nunes and Gonze 
onsidered the response of extended sys-tems to in�nitesimal �elds, Souza and 
o-workers [15℄ and Umari and 
o-workers [16℄studied the response of extended systems to �nite ele
tri
 �elds (FEF) by minimizingthe energy fun
tional in Eq. (1.39) with respe
t to the �eld polarized Blo
h fun
tions.In this Chapter, we �rst parti
ularize the formalism of Nunes and Gonze to the 
om-putation of sele
ted third-order energy derivatives. We report the lo
al density approx-imation (LDA) expressions of the nonlinear opti
al sus
eptibilities and the derivativesof the linear opti
al sus
eptibilities with respe
t to atomi
 displa
ements. We thenshow how these quantities 
an be used to 
ompute the Raman s
attering eÆ
ien
iesof transverse and longitudinal opti
al phonons and the EO 
oeÆ
ients under di�erentme
hani
al boundary 
onditions. Finally, we dis
uss the �nite ele
tri
 �eld method ofSouza and 
o-workers [15℄.3.2 Third-order density fun
tional perturbation the-ory3.2.1 Mixed third-order energy derivativesIn this se
tion, we present the general framework of the 
omputation of third orderenergy derivatives based on the 2n + 1 theorem [35, 36, 118℄. Using the notations ofSe
. 1.4.6 (see also Refs. [37, 38℄), we 
onsider three Hermitian perturbations labeled�1, �2 and �3. The mixed third-order derivatives of the Kohn-Sham energy Eq. (1.7)E�1�2�3 = 16 �3E��1��2��3 �����1=0;�2=0;�3=0 (3.1)
an be 
omputed from the ground-state and �rst-order wave fun
tionsE�1�2�3 = 16 � eE�1�2�3 + eE�1�3�2 + eE�2�1�3 + eE�2�3�1 + eE�3�2�1 + eE�3�1�2� (3.2)witheE�1�2�3 = X� [h �1� j(T + vext)�2�3 j (0)� i+ h �1� j(T + vext + vHx
)�2 j �3� i+h (0)� j(T + vext)�1�2�3 j (0)� i+ h (0)� j(T + vext)�1�2 j �3� i℄�X�;� ��2��h �1� j �3� i
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[n(0)℄Æn(r)Æn(r0)Æn(r00)n�1(r)n�2(r0)n�3(r00)+12 Z drdr0 dd�2 Æ2EHx
[n(0)℄Æn(r)Æn(r0) �����=0 n�1(r)n�3(r0)+12 Z dr d2d�1d�3 ÆEHx
[n(0)℄Æn(r) �����=0 n�2(r) + 16 d3EHx
[n(0)℄d�1d�2d�3 �����=0 :(3.3)T is the kineti
 energy and EHx
 (vHx
) is the sum of the Hartree and ex
hange-
orrelation energy (potential). The �rst-order potential v�2Hx
 
an be 
omputed as ase
ond-order fun
tional derivative of EHx
 [36℄:v�2Hx
 = Z Æ2EHx
[n(0)℄Æn(r)Æn(r0) n�2(r0) dr0 + dd�2 ÆEHx
[n(0)℄Æn(r) �����=0 : (3.4)Within the parallel gauge, the �rst-order Lagrange multipliers are given by��2�� = h (0)� j(T + vext + vHx
)�2 j (0)� i: (3.5)As a 
onsequen
e of the 2n + 1 theorem, the evaluation of Eq. (3.3) requires nohigher order derivative of the wave fun
tions than the �rst one. These �rst-orderwave fun
tions are nowadays available in several �rst-prin
iples 
odes. They 
an be
omputed from linear response by minimizing a stationary expression of the se
ond-order energy as des
ribed in Se
. 1.4.2 or equivalently by solving the 
orrespondingSternheimer equation [119℄. It follows that the 
omputation of third-order energyderivatives does not require additional quantities other than the 
al
ulation of se
ond-order energy derivatives.Eq. (3.3) is the general expression of the third-order energy derivatives. In 
ase atleast one of the perturbations does not a�e
t the expli
it form of the kineti
 energy orthe Hartree and ex
hange-
orrelation energy, it 
an be simpli�ed: some of the termsmay be zero. This is the 
ase for the ele
tri
 �eld perturbations treated in this workas well as for phonon type perturbations. Further simpli�
ations 
an be made in 
asepseudopotentials without nonlinear ex
hange-
orrelation 
ore-
orre
tion are used.3.2.2 The ele
tri
 �eld perturbationAs dis
ussed in Se
. 1.4.5, in 
ase one of the perturbations �j is a ma
ros
opi
 ele
tri
�eld E , we 
an no more use the Kohn-Sham energy as it is de�ned in Eq. (1.7).Instead, we have to 
onsider the ele
tri
 �eld dependent energy fun
tional, F , de�nedin Eq. (1.39) where the polarization is 
omputed as a Berry phase of the �eld-polarizedBlo
h fun
tions [Eq. (1.26)℄. In order to use Eq. (1.26) in pra
ti
al 
al
ulations, theintegration over the BZ and the di�erentiation with respe
t to k have to be performedon a dis
rete mesh of Mk k-points. As dis
ussed in Se
. 1.4.3, in 
ase of the ground-state polarization, the standard approa
h is to build strings of k-points parallel to ave
tor of the re
ipro
al spa
e, Gk. The polarization 
an then be 
omputed as a string-averaged Berry phase [Eq. (1.28)℄. Unfortunately, the adaptation of this method to
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omputation of the energy derivatives is plagued with several te
hni
al diÆ
ulties,like the following. The general form of the nonlinear opti
al sus
eptibility tensor of a
ompound is imposed by its symmetry. For example, in zin
-blende semi
ondu
tors,this tensor, expressed in Cartesian 
oordinates redu
es to �(2)ijl = �(2)j�ijlj, where �is the Levi-Civita tensor. It follows that the redu
ed 
oordinate formulation of �(2)ijlsatis�es the relation ������(2)ijl�(2)iii ����� = 13 ; (3.6)where at least one of the three indi
es i, j and l are di�erent from the two others.When we tried to use strings of k-points to 
ompute �(2)ijl , Eq. (3.6) was not satis�ed.However, we were able to avoid these problems, by using the �nite di�eren
e formulaof Marzari and Vanderbilt [28℄ on a regular grid of spe
ial k-points (instead of strings)rf(k) =Xb wbb [f(k+ b)� f(k)℄ ; (3.7)where b is a ve
tor 
onne
ting a k-point to one of its nearest neighbors and wb isa weight fa
tor. The sum in Eq. (3.7) in
ludes as many shells of �rst neighbors asne
essary to satisfy the 
onditionXb wbb�b� = g��(2�)2 ; (3.8)where b� are the redu
ed 
oordinates of b and g�� is the metri
 tensor asso
iated withthe real spa
e 
rystal latti
e.In the 
ase of the ground-state polarization, we 
annot apply the dis
retization Eq.(3.7) dire
tly to Eq. (1.26). As shown by Marzari and Vanderbilt, the dis
retizationof Eq. (1.26) does not transform 
orre
tly under the gauge transformationunk(r)! e�ik�Runk(r): (3.9)Sin
e Eq. (3.9) is equivalent to a shift of the origin by one latti
e ve
tor R, P must
hange a

ordingly by one polarization quantum. In order to obtain a dis
rete expres-sion that mat
hes this requirement, we must 
ombine Eq. (3.7) with the King-Smithand Vanderbilt formula [7, 8℄P = 2eMk
0 Xk Xb wbb= ln det [S(k;k+ b)℄ ; (3.10)where S is the overlap matrix between Blo
h fun
tions at k and k+ b de�ned in Eq.(1.31).As dis
ussed by Nunes and Gonze [115℄, when we apply the perturbation expansionof the pre
eding se
tion to the energy fun
tional Eq. (1.39), we 
an adopt two equiv-alent approa
hes. The �rst possibility is the use of Eq. (1.26) for the polarization and
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retization after having performed the perturbation expansion. The se
ond possi-bility is to apply the 2n+1 theorem dire
tly to Eq. (3.10) in whi
h 
ase no additionaldis
retization is needed. Using the notations of Nunes and Gonze, we will refer to the�rst 
ase as the DAPE (dis
retization after perturbation expansion) formulation and tothe se
ond one as the PEAD (perturbation expansion after dis
retization) formulationof the third-order energy. In the following se
tions, we will dis
uss both expressions. Inaddition, in Se
. 4.3.1, we will 
ompare their 
onvergen
e with respe
t to the k-pointsampling to the 
onvergen
e of the �nite ele
tri
 �eld te
hnique dis
ussed in Se
. 3.4.The perturbation expansion of the �rst term (E) of Eq. (1.39) 
an easily be performedas it is des
ribed in the Se
. 3.2.1. In 
ontrast, the expansion of the se
ond term(�
0E � P) is more tri
ky sin
e it expli
itly depends on the polarization. In the twose
tions that follow, we will fo
us on the �
0E � P term of Eq. (1.39). It will bereferred to as Epol.3.2.3 DAPE expressionA

ording to the formalism of the pre
eding se
tion, the E �P term a
ts as an additionalexternal potential that has to be added to the ioni
 one. The E � P perturbation islinear in the ele
tri
 �eld and does not depend expli
itly on other variables su
h as theatomi
 positions. It just enters the terms of Eq. (3.3) that involve the �rst derivativeof vext with respe
t to E . In other words, the only terms in Eq. (3.2) that involvethe expansion of P are of the form eE�1Ei�3 where �1 and �3 represent an arbitraryperturbation su
h as an ele
tri
 �eld or an atomi
 displa
ement.The DAPE expression of the third-order derivative of Epol is written as followseE�1Ei�3pol = 2ie
0(2�)3 ZBZ dk o

Xn hu�1nkj ��ki o

Xm ju�3mkihu(0)mkj! ju(0)nki; (3.11)where u�jnk are the proje
tion of the �rst-order wave fun
tions on the 
ondu
tion bands.The 
omplete expression of various third-order energy derivatives, taking into a

ountthe expansion of both E and Epol, are reported in Se
. 3.3. Eq. (3.11) was derived�rst by Dal Corso and Mauri [117℄ in a slightly di�erent 
ontext: they performed theperturbation expansion of the energy fun
tional Eq. (1.39) using a Wannier basis.The resulting expression of the third-order energy derivatives was expressed in termsof Blo
h fun
tions by applying a unitary transform to the Wannier orbitals.Using the �nite di�eren
e expression of Marzari and Vanderbilt Eq. (3.7), Eq.(3.11) be
omes eE�1Ei�3pol = 2ieMk Xk Xb o

Xn;mwb(b �Gi)�nhu�1nkju�3mk+bihu(0)mk+bju(0)nki� hu�1nkju�3mkiÆn;mo ; (3.12)



60 CHAPTER 3. ELECTRIC FIELDS: THEORYwhere Gi is a basis ve
tor of the re
ipro
al latti
e.3.2.4 PEAD expressionApplying dire
tly the 2n + 1 theorem to Eq. (3.10) we obtain the alternative PEADformulation of the third-order energy derivatives:eE�1Ei�3pol = �eMk=Xk Xb wb(b �Gi)�"""2 o

Xn;mhu�1nkju�3mk+biQmn(k;k+ b)� o

Xn;m;l;l0 S�1mn(k;k+ b)Qnl(k;k+ b)�S�3ll0 (k;k+ b)Ql0m(k;k+ b)###; (3.13)where Q is the inverse of the overlap matrix S and S�j its �rst-order perturbationexpansion S�jnm(k;k+ b) = hu�jnkju(0)mk+bi+ hu(0)nkju�jmk+bi: (3.14)3.3 Computation of nonlinear opti
al propertiesIn the pre
eding se
tion we have dis
ussed the general expressions of third-order en-ergy derivatives. We now parti
ularize them to the 
omputation of sele
ted nonlinearproperties.3.3.1 Nonlinear opti
al sus
eptibilitiesAs shown in Se
. 1.3.1, in an insulator the polarization 
an be expressed as a Taylorexpansion of the ma
ros
opi
 ele
tri
 �eldPi = Psi + 3Xj=1 �(1)ij Ej + 3Xj;l=1�(2)ijl EjEl + � � � ; (3.15)where Psi is the zero-�eld (spontaneous) polarization, �(1)ij the linear opti
al sus
epti-bility (se
ond rank tensor) and �(2)ijl the se
ond-order nonlinear opti
al sus
eptibility(third rank tensor). In the literature on nonlinear opti
s, one often �nds another de�-nition of the nonlinear opti
al sus
eptibility: instead of �(2)ijl , it is more 
onvenient torely on the d tensor de�ned as dijl = 12�(2)ijl : (3.16)



3.3. COMPUTATION OF NONLINEAR OPTICAL PROPERTIES 61In general, the polarization depends on valen
e ele
trons as well as on ions. In thepresent se
tion, we deal only with the ele
troni
 
ontribution: we will 
onsider theioni
 
ores as 
lamped to their equilibrium positions. This 
onstraint will be relaxedin the following se
tions where we allow for ioni
 displa
ements.Experimentally, the ele
troni
 
ontribution to the linear and nonlinear sus
eptibil-ities 
orresponds to measurements for ele
tri
 �elds at frequen
ies high enough to getrid of the ioni
 relaxation but low enough to avoid ele
troni
 ex
itations. In 
ase ofthe se
ond-order sus
eptibilities, this 
onstraint implies that both the frequen
y of E ,and its se
ond harmoni
, are lower than the fundamental absorption gap.The general expression of the ele
troni
 nonlinear opti
al sus
eptibility depends onthe frequen
ies of the opti
al ele
tri
 �elds [see for example Ref. [120℄℄. In the present
ontext of the 2n + 1 theorem applied within the LDA to (stati
) DFT, we negle
tthe dispersion of �(2)ijl . As a 
onsequen
e, �(2)ijl satis�es Kleinman's [121℄ symmetry
ondition whi
h means that it is symmetri
 under a permutation of i, j and l. In orderto be able to investigate its frequen
y dependen
e, one would need either to apply theformalism of time-dependent DFT [56℄ or to use expressions that involve sums overex
ited states [55, 122{125℄.Following the work of Dal Corso and 
o-workers [56,117℄ we 
an relate the nonlinearopti
al sus
eptibilities to a third-order derivative of the energy fun
tional de�ned inEq. (1.39) with respe
t to an ele
tri
 �eld�(2)ijl = � 3
0FEiEjEl (3.17)where FEiEjEl is de�ned as the sum over the permutations of the three perturbationseFEiEjEl (3.2). Using the PEAD formulation of Se
. 3.2.2 we 
an express these termsas follows:eFEiEjEl = �eMk=Xk Xb wb(b �Gj)"""2 o

Xn;mhuEinkjuElmk+biQmn(k;k+ b)� o

Xn;m;n0;m0 SEimn(k;k+ b)Qnn0(k;k+ b)SEln0m0(k;k+ b)Qm0m(k;k+ b)###+ 2Mk Xk o

Xn;m"""Æm;nhuEinkjvEjhx
juElmki � hu(0)mkjvEjhx
ju(0)nkihuEinkjuElmki###+16 Z drdr0dr00 Æ3Ex
[n0℄Æn(r)Æn(r0)Æn(r00)nEi(r)nEj (r0)nEl(r00): (3.18)3.3.2 Raman sus
eptibilities of zone-
enter opti
al phononsWe now 
onsider the 
omputation of Raman s
attering eÆ
ien
ies of zone-
enter opti
alphonons. In the limit q ! 0, the matrix of interatomi
 for
e 
onstants eC 
an be
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al part and a non-analyti
al term [38℄eC��;�0�(q ! 0) = eCAN��;�0�(q = 0) + eCNA��;�0�(q ! 0): (3.19)The analyti
al part 
orresponds to the se
ond-order derivative of the energy with re-spe
t to an atomi
 displa
ement at q = 0 under the 
ondition of vanishing ma
ros
opi
ele
tri
 �eld. The se
ond term is due to the long-range ele
trostati
 intera
tions in po-lar 
rystals. It is at the origin of the so-
alled LO-TO splitting and 
an be 
omputedfrom the knowledge of the Born e�e
tive 
harges, Z���� ; and the ele
troni
 diele
tri
tensor [38℄ "ij . The phonon frequen
ies, !m, and eigendispla
ements, Um(��), aresolutions of the following generalized eigenvalue problemX�0;� eC��;�0�Um(�0�) =M�!2mUm(��); (3.20)where M� is the mass of atom �. As a 
onvention, we 
hoose the eigendispla
ementsto be normalized as X�;�M�Um(��)Un(��) = Æm;n: (3.21)In what follows we 
onsider non-resonant Raman s
attering where an in
omingphoton of frequen
y !0 and polarization e0 is s
attered to an outgoing photon offrequen
y (!0�!m) and polarization eS by 
reating a phonon of frequen
y !m (Stokespro
ess). The s
attering eÆ
ien
y [126,127℄ (
gs units) 
orresponds todSdV = jeS �Rm � e0j2= (!0 � !m)4
4 jeS ��m � e0j2 �h2!m (nm + 1) (3.22)where 
 is the speed of light in va
uum and nm the boson fa
tornm = 1exp(�h!m=kBT )� 1 : (3.23)The Raman sus
eptibility �m is de�ned as�mij =p
0X�;� ��(1)ij���� Um(��); (3.24)where �(1)ij is the ele
troni
 linear diele
tri
 sus
eptibility tensor. V is the angle of
olle
tion in whi
h the outgoing photon is s
attered. Due to Snell's law, V is modi�edat the interfa
e between the sample and the surrounding medium. Experimentally, thes
attering eÆ
ien
ies are measured with respe
t to the solid angle of the medium whileEq. (3.22) refers to the solid angle inside the sample. In order to relate theory andexperiment, one has to take into a

ount the di�erent refra
tive indi
es of the sample
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ase, Eq. (3.22) has to be multiplied [126℄by (n0=n)2 where n and n0 are, respe
tively, the refra
tive indi
es of the sample andthe medium.For pure transverse opti
al phonons, ��(1)ij =���� 
an be 
omputed as a mixed third-order derivative of the energy with respe
t to an ele
tri
 �eld, twi
e, and to an atomi
displa
ement under the 
ondition of zero ele
tri
 �eld��(1)ij���� �����E=0 = � 6
0F���EiEj : (3.25)In 
ase of longitudinal opti
al phonons with wave ve
tor q ! 0 in a polar 
rystal,Eq. (3.24) must take into a

ount the e�e
t of the ma
ros
opi
 ele
tri
 �eld gener-ated by the latti
e polar vibration. This �eld enters the 
omputation of the Ramansus
eptibilities at two levels. On one hand, it gives rise to the non-analyti
al part ofthe matrix of interatomi
 for
e 
onstants Eq. (3.19) that modi�es the frequen
ies andeigenve
tors with respe
t to pure transverse phonons. On the other hand, the ele
tri
�eld indu
es an additional 
hange in the diele
tri
 sus
eptibility tensor related to thenonlinear opti
al 
oeÆ
ients �(2)ijk . For longitudinal opti
al phonons, Eq. (3.25) has tobe modi�ed as follows [128℄:��ij���� = ��ij���� ����E=0 � 8�
0 Pl Z���lqlPl;l0 ql"ll0ql0 Xl �(2)ijl ql: (3.26)The mixed third-order derivatives (3.25) 
an be 
omputed from various te
hniquesin
luding �nite di�eren
es of the diele
tri
 tensor [129{131℄ or the se
ond derivative ofthe ele
troni
 density matrix [132,133℄. Here, we follow an approa
h similar to Deinzerand Strau
h [60℄ based on the 2n+1 theorem. The third-order energy derivatives 
anbe 
omputed as the sum over the 6 permutations Eq. (3.2) of ���, Ei and Ej . A

ordingto the dis
ussion of Se
. 3.2.2, we have to distinguish between the terms that involvethe dis
retization of the polarization su
h as eF���EiEj or eFEjEi��� and those that 
anbe 
omputed from a straightforward appli
ation of the 2n+1 theorem su
h as eFEi���Ej .The former ones show an ele
tri
 �eld as se
ond perturbation. They 
an be 
omputedfrom an expression analogous to Eq. (3.18):eF���EiEj = �eMk=Xk Xb wb(b �Gi)"""2 o

Xn;mhu���nk juEjmk+biQmn(k;k+ b)� o

Xn;m;l;l0 S���mn (k;k+ b)Qnl(k;k+ b)SEjll0 (k;k+ b)Ql0m(k;k+ b)###+ 2Mk Xk o

Xn;m"""Æm;nhu���nk jvEihx
juEjmki � hu(0)mkjvEihx
ju(0)nkihu���nk juEjmki###+16 Z drdr0dr00 Æ3Ex
[n0℄Æn(r)Æn(r0)Æn(r00)n���(r)nEi(r0)nEj (r00): (3.27)



64 CHAPTER 3. ELECTRIC FIELDS: THEORYWe obtain a similar expression for eFEjEi��� . The remaining terms do not require anydi�erentiation with respe
t to k. They 
an be 
omputed from the �rst-order 
hangeof the ioni
 (pseudo-) potential with respe
t to an atomi
 displa
ement v���exteFEi���Ej = 2Mk Xk o

Xn;m"""huEinkjv���ext + v���hx
juEjmkiÆn;m�hu(0)nkjv���ext + v���hx
ju(0)mkihuEimkjuEjnki###+12 Z drdr0 dd��� Æ2EHx
Æn(r)Æn(r0) ����n(0) nEi(r)nEj (r0)+16 Z drdr0dr00 Æ3Ex
[n0℄Æn(r)Æn(r0)Æn(r00)n���(r)nEi(r0)nEj (r00): (3.28)In pseudopotential 
al
ulations, the 
omputation of the �rst-order ioni
 potential v���extrequires the derivative of lo
al and non-lo
al (usually separable) operators. Theseoperations 
an be performed easily without any additional workload as des
ribed inRef. [37℄.In spite of the similarities between Eqs. (3.27) and (3.28) and the expression pro-posed by Deinzer and Strau
h we 
an quote few di�eren
es. First, our expression of thethird-order energy derivatives makes use of the PEAD fomulation for the expansion ofthe polarization. Moreover, Eq. (3.28) is more general sin
e it allows the use of pseu-dopotentials with nonlinear 
ore 
orre
tion through the derivative of the se
ond-orderex
hange-
orrelation energy with respe
t to ��� (third term).3.3.3 Sum ruleAs in the 
ases of the Born e�e
tive 
harges and of the dynami
al matrix [134℄, the
oeÆ
ients ��(1)ij =���� must vanish when they are summed over all atoms in the unit
ell. X� ��(1)ij���� = 0: (3.29)Physi
ally, this sum rule guarantees that the ma
ros
opi
 diele
tri
 sus
eptibility re-mains invariant under a rigid translation of the 
rystal. In pra
ti
al 
al
ulations, it isnot always satis�ed although the violation is generally less severe than in 
ase of eCor Z�. Even in 
al
ulations that present a low degree of 
onvergen
e, the deviationsfrom this law 
an be quite weak. They 
an be 
orre
ted using similar te
hniques as in
ase of the Born e�e
tive 
harges [38℄. For example, we 
an de�ne the mean ex
ess of��(1)ij =���� per atom ��(1)ij��� = 1Nat X� ��(1)ij���� (3.30)



3.3. COMPUTATION OF NONLINEAR OPTICAL PROPERTIES 65and redistribute it equally between the atoms��(1)ij���� ! ��(1)ij���� � ��(1)ij��� : (3.31)3.3.4 Ele
tro-opti
 tensorThe opti
al properties of a 
ompound usually depend on external parameters su
has the temperature, ele
tri
 �elds or me
hani
al 
onstraints (stress, strain). In thepresent se
tion we 
onsider the variations of the refra
tive index indu
ed by a stati
 orlow-frequen
y ele
tri
 �eld E
 . At linear order, these variations are des
ribed by thelinear EO 
oeÆ
ients (Po
kels e�e
t)� �"�1�ij = 3X
=1 rij
E
 ; (3.32)where ("�1)ij is the inverse of the ele
troni
 diele
tri
 tensor and rij
 the EO tensor.As dis
ussed in Se
. 1.3.4, within the Born and Oppenheimer approximation, theEO tensor 
an be expressed as the sum of three 
ontributions: a bare ele
troni
 partrelij
 , an ioni
 
ontribution rionij
 and a piezoele
tri
 
ontribution rpiezoij
 .The ele
troni
 part is due to an intera
tion of E
 with the valen
e ele
trons when
onsidering the ions arti�
ially as 
lamped at their equilibrium positions. It 
an be
omputed from the nonlinear opti
al 
oeÆ
ients. As 
an be seen from Eq. (3.15), �(2)ijlde�nes the se
ond-order 
hange of the indu
ed polarization with respe
t to E
 . Takingthe derivative of Eq. (3.15), we also see that �(2)ijl de�nes the �rst-order 
hange of thelinear diele
tri
 sus
eptibility, whi
h is equal to 14��"ij : Sin
e the EO tensor dependson �("�1)ij rather than �"ij , we have to transform �"ij to �("�1)ij by the inverseof the zero �eld ele
troni
 diele
tri
 tensor [77℄�("�1)ij = � 3Xm;n=1 "�1im�"mn"�1nj : (3.33)Using Eq. (3.33) we obtain the following expression for the ele
troni
 EO tensorrelij
 = �8� 3Xl;l0=1 ("�1)il�(2)ll0k("�1)l0j���k=
 : (3.34)Eq. (3.34) takes a simpler form when expressed in the prin
ipal axes of the 
rystalunder investigation 1 relij
 = �8�n2in2j �(2)ijk�����k=
 ; (3.35)1In some 
ases, the ele
tri
 �eld 
an indu
e a rotation of the prin
ipal axes. Eq. (3.35) is expressedin the prin
ipal axes of the 
rystal under zero ele
tri
 �eld.
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oeÆ
ients are the prin
ipal refra
tive indi
es.The origin of the ioni
 
ontribution to the EO tensor is the relaxation of the atomi
positions due to the applied ele
tri
 �eld E
 and the variations of "ij indu
ed by thesedispla
ements. It 
an be 
omputed from the Born e�e
tive 
harges Z��;�� and the ��ij����
oeÆ
ients introdu
ed in Se
. 3.3.2. As shown in appendix B [see also Refs. [128,135℄℄,the ioni
 EO tensor 
an be 
omputed as a sum over the transverse opti
 phonon modesat q = 0 rionij
 = � 4�p
0n2in2j Xm �mij pm
!2m ; (3.36)where �m is the Raman sus
eptibility of mode m [Eq. (3.24)℄ and pm
 the modepolarity pm
 =X�;� Z��;
�Um(��) (3.37)whi
h is dire
tly linked to the mode os
illator strengthSm;�� = pm� � pm� : (3.38)For simpli
ity, we have expressed Eq. (3.36) in the prin
ipal axes while a more generalexpression 
an be derived from Eq. (3.33).Finally, the piezoele
tri
 
ontribution is due to a relaxation of the unit 
ell shapedue to the 
onverse piezoele
tri
 e�e
t [87℄. As it is dis
ussed in appendix B, it 
an be
omputed from the elasto-opti
 
oeÆ
ients �ij�� and the piezoele
tri
 strain 
oeÆ
ientsd
�� : rpiezoij
 = 3X�;�=1 �ij��d
�� : (3.39)In the dis
ussion of the EO e�e
t, we have to spe
ify whether we are dealingwith strain-free (
lamped) or stress-free (un
lamped) me
hani
al boundary 
onditions.The 
lamped EO tensor r�ij
 takes into a

ount the ele
troni
 and ioni
 
ontributionsbut negle
ts any modi�
ation of the unit 
ell shape due to the 
onverse piezoele
tri
e�e
t [87℄: r�ij
 = relij
 + rionij
 : (3.40)Experimentally, it 
an be measured for frequen
ies of E
 high enough to eliminate therelaxations of the 
rystal latti
e but low enough to avoid ex
itations of opti
al phononmodes (usually above � 100 MHz). To 
ompute the un
lamped EO tensor r�ij
 , wehave to add the piezoele
tri
 
ontribution to r�ij
 :r�ij
 = r�ij
 + rpiezoij
 : (3.41)Experimentally, r�ij
 
an be measured for frequen
ies of E
 below the (geometry de-pendent) me
hani
al body resonan
es of the sample [87℄ (usually below � 1 MHz).
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tri
 �eld te
hniquesThe 2n + 1 theorem is not the only formalism to study the nonlinear response ofinsulators to ele
tri
 �elds. An alternative approa
h 
onsists in the dire
t minimizationof the energy fun
tional, F , de�ned in Eq. (1.39) for a �nite ele
tri
 �eld E [15,16, 136, 137℄. Di�erent s
hemes to perform these 
al
ulations have been proposed inthe literature [15, 16, 138℄. Here, we des
ribe the method of Ref. [15℄ that has beenimplemented in the abinit 
ode.As explained in Se
. 1.4.5, be
ause of the interband (Zener) tunneling, an insulatorin an ele
tri
 �eld has no true ground-state. In pra
ti
al 
al
ulations, the problem ofthe tunneling 
urrent 
an partially be over
ome by the use of a �nite grid of k-points. Inmost 
al
ulations, a dis
rete mesh of k-points is introdu
ed for 
omputational reasons,to integrate quantities su
h as the energy or the 
harge density. In the presen
e of a�nite ele
tri
 �eld however, the use of a �nite k-point grid plays the additional role toeliminate the possibility of runaway solutions, allowing for stable stationary solutionsof Eq. (1.39) to exist.To illustrate how the dis
retization pro
edure endows the energy fun
tional withminima, we 
onsider in Figure 3.1 a one dimensional system with periodi
 boundary
onditions over a super
ell of size L. Sin
e the number of k-points, M , is equal to thenumber of unit 
ells in the super
ell we have L =Ma where a is the latti
e 
onstant.This system is 
an be visualized as a ring of perimeter L [139℄. For a given numberof k-points, the energy fun
tional will have minima only if E is small enough to avoidZener tunneling. This should happen as long as the distan
e a
ross whi
h the ele
tronshave to tunnel to lower their energy is larger than the ring perimeter L. A

ording toFigure 1.8, the potential energy drop a
ross the super
ell, �E = eEL, must be smallerthan the band gap, Eg , of the system. In other words, the ele
tri
 �eld must be smallerthan the 
riti
al �eld E
 = EgeMa: (3.42)Eq. (3.42) shows that E
 de
reases as the number of k-points in
reases. This behavior
an impose some limitations on pra
ti
al 
al
ulations. One the one hand, we usuallyneed a large number of k-points to obtain well-
onverged results. On the other hand,for large M , the 
riti
al �eld 
an be quite low (depending on the band gap of thesystem) and we are limited to study the e�e
t of relatively weak �elds.For ele
tri
 �elds smaller than E
, the minimization of the energy fun
tional, F , 
anbe performed using standard te
hniques su
h as a pre
onditioned 
onjugate-gradientalgorithm [15, 88℄. At the minimum Eq. (1.39) yields the energy and polarization ofan insulator in an ele
tri
 �eld. In addition, sin
e the �eld-polarized Blo
h fun
tionsare stationary points of Eq. (1.39), we 
an use the Hellmann-Feynman argument [88℄to 
ompute for
es and stresses at E 6= 0. The for
e on an atom � along dire
tion �
an be 
omputed as the sum of the standard Hellmann-Feynman expression at zeroele
tri
 �eld plus a 
ontribution due to the ioni
 
oresf�� = � �F���� = � �E���� + Z�E�; (3.43)



68 CHAPTER 3. ELECTRIC FIELDS: THEORYFigure 3.1: A one dimensional system with periodi
 boundary 
onditions over M unit
ells 
an be visualized as a ring with perimeter L =Ma where a is the latti
e 
onstant.
ε

a

where Z� is the ioni
 
harge of the nu
leus and the 
ore ele
trons.In 
ase of the stress tensor ��� = 1
0 �F���� ; (3.44)we have to spe
ify the ele
tri
al boundary 
onditions under whi
h the strain derivativesof F are 
omputed. Let us �rst use Eq. (1.28) to rewrite the �eld 
oupling term inEq. (1.39) in terms of the ele
troni
 and ioni
 Berry phases
0E �P = 
02� 3Xi=1(E � ai)(P �Gi)= e2� 3Xi=1(E � ai)('(i)el + '(i)ion) (3.45)When a 
rystal is deformed by a homogeneous strain, �,ai �! (1+ �)ai (3.46)we 
an keep 
onstant either the ele
tri
 �eld, E , or the potential drop a
ross ea
h latti
eve
tor, Vi = �E � ai. If we keep 
onstant the potential drop2, the strain derivatives ofthe ele
tri
 �eld 
oupling term Eq. (3.45) vanish be
ause 'el and 'ion do not expli
itlydepend on �. The stress tensor at 
onstant potential 
an therefore be 
omputed as thestrain derivative of the zero �eld Kohn-Sham energy�(V )�� = 1
0 �E���� : (3.47)2This situation is often met in pra
ti
al experiments where a voltage is applied a
ross a samplebetween 
ondu
ting ele
trodes.
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ontrast, if we keep 
onstant the ele
tri
 �eld, the derivatives of the �eld 
ouplingterm no more vanish. The stresses in the two 
ases are related by�(E)�� = �(V )�� � e2� 3Xi=1 E�[ai℄�('(i)el + '(i)ion): (3.48)The formalism presented in this se
tion o�ers an alternative approa
h to 
omputethe nonlinear response of insulators to ele
tri
 �elds. In fa
t, all quantities dis
ussedin Se
. 3.3 
an be 
omputed from �nite di�eren
es of the energy, the polarization orthe for
es with respe
t to ele
tri
 �elds as will be illustrated in the following Chapter.Compared to the perturbative approa
h of Se
s. 3.2 and 3.3, the �nite ele
tri
 �eldte
hnique has the advantage to be very general and to be easily appli
able to the
omputation of physi
al quantities other than those of Se
. 3.3 su
h as the tunabilityof the diele
tri
 
onstant [140℄ or higher-order nonlinear opti
al responses. Moreover,this te
hnique allows to use the fun
tionals for the ex
hange-
orrelation energy that arealready available for zero-�eld ground-state 
al
ulations. In 
ontrast, in order to applythe perturbative approa
h of Se
s. 3.2 and 3.3, all physi
al quantities and expressionsfor the ex
hange-
orrelation energy must be implemented expli
itly. However, whenthe additional 
oding is terminated, the perturbative approa
h o�ers a more systemati
and elegant way to 
ompute nonlinear response fun
tions than the �nite ele
tri
 �eldte
hnique. Moreover, in the perturbative approa
h, there are no problems related to
riti
al �elds as it is the 
ase of the �nite ele
tri
 �eld te
hnique.3.5 Con
lusionsIn this Chapter, we presented two methodologies to study the nonlinear response ofinsulators to ele
tri
 �elds. The �rst te
hnique is based on density fun
tional pertur-bation theory and the se
ond te
hnique is based on �nite ele
tri
 �elds.Starting from the work of Nunes and Gonze, we reported the LDA expressions ofthe nonlinear opti
al sus
eptibilities and the derivatives of the linear opti
al sus
ep-tibilities with respe
t to atomi
 displa
ements as we have implemented them in theabinit 
ode. We then showed how these quantities 
an be used to 
ompute the Ramans
attering eÆ
ien
ies of transverse and longitudinal opti
al phonons and the 
lampedand un
lamped EO 
oeÆ
ients. We �nally dis
ussed how the �nite ele
tri
 �eld te
h-nique of Souza and 
o-workers 
an be applied to 
ompute the energy of a solid in anele
tri
 �eld as well as the for
es on the atoms and the stress tensor under distin
tele
tri
al boundary 
onditions.In Chapter 4, the present formalism will be applied to sele
ted ferroele
tri
s andsemi
ondu
tors.
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Chapter 4Nonlinear response ofinsulators to ele
tri
 �elds:results4.1 Introdu
tionFerroele
tri
 oxides are well known to exhibit unusual linear and nonlinear responseproperties and are 
urrently used in many devi
es. In order to �nd better materials forsu
h appli
ations, it is important to understand the physi
al me
hanisms that are atthe origin of these properties and to 
larify the role of the soft mode in the ele
trome-
hani
al 
oupling of these materials. Unfortunately, the experimental 
hara
terizationof ferroele
tri
s is not always easy. In addition, experiments give no dire
t informationabout the me
hanisms responsible for the observed results. For example, the measure-ments of nonlinear opti
al properties require high-quality single 
rystals that are notalways a

essible nor easy to make. Moreover, the determination of phonon frequen-
ies from Raman spe
tros
opy 
an be quite diÆ
ult as it is the 
ase of the E-modes inLiNbO3.For su
h reasons, a

urate theoreti
al 
al
ulations of Raman s
attering eÆ
ien
iesand EO 
oeÆ
ients are highly desirable. On the one hand, these 
al
ulations 
an beused to predi
t the amplitude of the EO 
oeÆ
ients in situations where no experimentaldata are available. On the other hand, the mi
ros
opi
 quantities 
omputed from �rst-prin
iples help to identify the me
hanisms responsible for the observed properties andto assign the peaks on an experimental Raman spe
trum to spe
i�
 phonon modes.In this Chapter, we apply the formalism of Chapter 3 to sele
ted ferroele
tri
s inorder to (i) identify the me
hanisms responsible for their large EO responses and (ii) to
larify the assignation of the E-modes in LiNbO3. The theoreti
al study of the Ramanspe
trum of ferroele
tri
s has the additional bene�t that it will help us to understand71
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ontribution to the EO 
oeÆ
ients in these materials.To start, we illustrate in Se
. 4.3 the formalism of the pre
eding Chapter by 
om-puting the nonlinear opti
al sus
eptibilities, Raman polarizabilities and EO 
oeÆ
ientsof sele
ted semi
ondu
tors. In parti
ular, we 
ompare the 
onvergen
e of di�erent ex-pressions to 
ompute third-order energy derivatives with respe
t to the number of k-points and we dis
uss the e�e
t of the approximations used for the ex
hange-
orrelationenergy.In Se
. 4.4, we dis
uss some of the basi
 ingredients required to study the Ramanspe
tra and EO 
oeÆ
ients in BaTiO3, PbTiO3 and LiNbO3. We report the nonlinearopti
al sus
eptibilities and the derivatives of the linear opti
al sus
eptibilities withrespe
t to atomi
 displa
ements. As in 
ase of the semi
ondu
tors, we 
ompare theresults obtained from the 2n+1 theorem to the results obtained from the �nite ele
tri
�eld te
hnique.In Se
. 4.5, we dis
uss the Raman spe
tra of PbTiO3 and LiNbO3. We �nd that thetheoreti
al Raman spe
tra are suÆ
iently a

urate to be 
ompared to the experimentand that they 
an be helpful to interpret experimental Raman spe
tra. In parti
ular,we are able to 
larify some of the ambiguities in the assignation of the phonon modesin LiNbO3.Finally, in Se
. 4.6, we study the EO tensor of the three ferroele
tri
 oxides LiNbO3,BaTiO3 and PbTiO3. We �nd that �rst-prin
iples 
al
ulations are fully predi
tive andprovide signi�
ant new insights into the mi
ros
opi
 origin of the EO e�e
t in thesematerials. In parti
ular, we highlight the predominant role of the soft mode in the EO
oupling in LiNbO3 and BaTiO3, in 
ontrast with its minor role in PbTiO3.4.2 Te
hni
al detailsAll results presented in this Chapter have been obtained with the abinit pa
kage [64℄.The 
onvergen
e study on AlAs in Se
. 4.3.1 (Figure 4.2) has been performed atthe theoreti
al latti
e 
onstant. We used the LDA for the ex
hange-
orrelation energy,Troullier-Martins pseudopotentials [141℄ and a plane wave kineti
 energy 
uto� of 10hartree.For all other 
al
ulations on semi
ondu
tors, presented in Se
. 4.3 we used eitherthe LDA or the GGA for the ex
hange-
orrelation energy. In 
ase of the LDA, we 
hosethe parameterization of Perdew and Wang [142℄ and in 
ase of the GGA, we 
hose theparameterization of Perdew, Burke, Ernzerhof [143℄. In order to isolate the e�e
t ofthese approximations on the nonlinear opti
al properties from other e�e
ts, su
h asthe dependen
e of these properties on the latti
e 
onstants or the parameters of thepseudopotentials, we worked at the experimental latti
e 
onstants. Moreover, we usedthe fhi98PP 
ode [144℄ to build norm-
onserving pseudopotentials. For ea
h atom,the same parameters (
uto� radius, nonlinear ex
hange-
orrelation 
ore-
orre
tion, ...)were used to build the LDA and GGA pseudopotentials. These 
al
ulations have beenperformed using a 16�16�16 grid of spe
ial k-points and a plane-wave kineti
 energy
uto� of 20 hartree.



4.3. NONLINEAR RESPONSE OF SEMICONDUCTORS 73For BaTiO3 and PbTiO3, we used extended norm-
onserving pseudopotentials [108℄,a plane-wave kineti
 energy 
uto� of 45 hartree and a 10� 10� 10 k-point grid. Thetheoreti
al atomi
 positions relaxed at the experimental latti
e 
onstants have been re-ported in Se
. 1.2. For LiNbO3, we used the same norm-
onserving pseudopotentialsas in Ref. [69℄ as well as the Born e�e
tive 
harges, phonon frequen
ies and eigenve
torsalready reported in that paper. For this 
ompound, a 8�8�8 k-point grid and a planewave kineti
 energy 
uto� of 35 hartree give 
onverged values for �(2)ijl and ��(1)ij =����.The theoreti
al latti
e 
onstants and atomi
 positions have been reported in Se
. 1.2.4.3 Nonlinear response of semi
ondu
tors to ele
tri
�eldsIn order to illustrate the 
omputation of third-order energy derivatives des
ribed inChapter 3, we performed a series of 
al
ulations on various 
ubi
 AB semi
ondu
torswhere A denotes the 
ation (f. ex. Al) and B the anion (f. ex. As). The aim ofthese 
al
ulations is to 
ompare the results obtained from the 2n+ 1 theorem to theresults obtained from the �nite ele
tri
 �eld te
hnique and to study the e�e
t of theex
hange-
orrelation fun
tional on the nonlinear opti
al properties. We �rst dis
ussthe 
omputation of nonlinear opti
al sus
eptibilities. In parti
ular, we 
ompare the
onvergen
e of the PEAD and DAPE formulations to the 
onvergen
e of the �niteele
tri
 �eld te
hnique. We then dis
uss the 
omputation of Raman polarizabilitiesand EO 
oeÆ
ients.4.3.1 Nonlinear opti
al sus
eptibilitiesIn 
ubi
 semi
ondu
tors, the se
ond-order nonlinear opti
al sus
eptibility tensor (Voigtnotations) has a very simple formd = 0� � � � d36 � �� � � � d36 �� � � � � d36 1A : (4.1)It has only one independent element1, d36 (= 12�(2)36 = 12�(2)321). The 
omputation of thiselement from the 2n+1 theorem has been des
ribed in Se
. 3.3.1. In order to 
omputed36 from �nite ele
tri
 �elds, we have to apply an ele
tri
 �eld along two (or more)distin
t Cartesian dire
tions and to study the nonlinear evolution of the polarization,P , along the third dire
tion. This is illustrated in Figure 4.1 for an LDA 
al
ulationon AlAs. The ele
tri
 �eld is 
hosen along the (1,1,1) dire
tion with an amplitude, E ,de�ned as E = E(1; 1; 1): (4.2)1The elements of the nonlinear opti
al sus
eptibility tensor in these 
ompounds 
an also be de�nedas dijl = d36j�ijlj, where �ijl are the elements of the Levy-Civita tensor.
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an be de
omposed intoPi(E) = PLi (E) + PNLi (E) i = 1; 2; 3 (4.3)where PLi and PNLi are respe
tively the linear and nonlinear 
omponents of PiPLi (E) = Psi + �(1)E (4.4)PNLi (E) = 4d36E2 +O(E3): (4.5)The parameters Psi , �(1) and d36 have been determined by �tting the �rst-prin
iplesdata with Eq. (4.3). The se
ond term of the right-hand side of Eq. (4.5) is relatedto higher-order e�e
ts. It will not be dis
ussed here 2 although it was in
luded in the�t. Figure 4.1 shows the dependen
e of PNL1 on E . The points are the �rst-prin
iplesdata from whi
h we have subtra
ted the linear part, PL1 , and the line 
orresponds toEq. (4.5). The inset of Figure 4.1 shows the values of the total polarization for variousele
tri
 �elds (points) and the �t of Eq. (4.3) (line) to the �rst-prin
iples data. For agiven �eld, the nonlinear polarization is about two orders of magnitude smaller thanthe total polarization. On the one hand, this result shows that the dependen
e ofP on E is dominated by linear e�e
ts. On the other hand, we need to 
ompute thepolarization with a high a

ura
y of j�P=Pj < 10�3 if we want to 
ompute nonlinearopti
al sus
eptibilities. This requires a high degree of 
onvergen
e of the wave fun
tionsobtained from the minimization of Eq. (1.39). The value of d36 
omputed from the
urvature of PNL1 at the origin is 38 pm/V, in ex
ellent agreement with the value
omputed from the 2n+ 1 theorem (see Table 4.1).The formalism of the 2n+1 theorem presented in Se
. 3.2.2 involves an integrationover the Brillouin zone and a derivative with respe
t to k. In pra
ti
al 
al
ulations,these operations must be performed on a dis
rete mesh of spe
ial k-points. As ex-plained in Se
. 3.2.2, the dis
retization 
an either be performed before (PEAD) orafter (DAPE) the perturbation expansion of the energy fun
tional Eq. (1.39). Upuntil now, the appli
ations of the present formalism to real materials [56,60℄ made useof the DAPE formula of the third-order energy. The only appli
ation of the PEADformula has been reported by Nunes and Gonze [115℄ on a one-dimensional model sys-tem. These authors observed that the PEAD formula 
onverges better with respe
t tothe k-point sampling than the DAPE formula. In order to 
ompare the performan
eof these two approa
hes for a realisti
 
ase, we applied both of them to 
ompute thenonlinear opti
al sus
eptibility, d36, of AlAs. We performed a series of 
al
ulationson a n � n � n grid of spe
ial k-points. In addition, we used the �nite ele
tri
 �eldte
hnique (FEF) to 
ompute the nonlinear opti
al sus
eptibility for these grids. As2The fa
tor of 4 in the �rst term of the right-hand side of Eq. (4.5) 
an be obtained from the thirdterm of the right-hand side of Eq. (3.15) and Eq. (3.16). For example, in 
ase of PNL1 we obtain:PNL1 = 3Xj;l=1�(2)1jlEjEl = 2 3Xj;l=1 d1jlEjEl = 2(d123E2E3 + d132E3E2) = 4d36E2:
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Figure 4.1: Dependen
e of the nonlinear polarization of AlAs on an ele
tri
 �eld alongthe (1,1,1) dire
tion. The amplitude of the ele
tri
 �eld, E , used as abs
issa is de�nedin Eq. (4.2). The inset shows the dependen
e of the total polarization on E .
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ial k-points. The values have been 
omputed using the 2n+ 1 theorem(PEAD and DAPE expressions) and the �nite ele
tri
 �eld te
hnique (FEF).
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76 CHAPTER 4. ELECTRIC FIELDS: RESULTSTable 4.1: Nonlinear opti
al sus
eptibilities d36 (pm/V) of the semi
ondu
tors AlAs,AlP and GaP 
omputed at the theoreti
al (T) and experimental (E) latti
e 
onstants(LC). The values in the lines labeled "PEAD + SCI" and "SOS + SCI" have beenobtained using a s
issors 
orre
tion. LDA GGAMethod LC AlAs AlP GaP AlAs AlP GaPPEAD (present) E 38 22 64FEF (present) E 38 22 65 36 20 57SOS [122℄ E 39 24 59PEAD (present) T 35 20 48DAPE [56℄ T 32 19 41FEF [15℄ T 32 19 33SOS [122℄ T 34 21 33PEAD + SCI (present) E 24 13 38SOS + SCI [122℄ E 24 15 35Exp. [145℄ 37Exp. [146℄ 41
an be seen in Figure 4.2 the three approa
hes give the same value of d36 for large nfor large n3. However, the PEAD formula 
onverges faster than the DAPE formula orthe FEF approa
h. For this reason, the PEAD formula has been applied to obtain theresults presented in the following se
tions. It is the one that is a
tually available inthe abinit 
ode.In Table 4.1, we report the nonlinear opti
al sus
eptibilities of AlAs, AlP and GaP
omputed at the experimental and theoreti
al latti
e 
onstants (LC) using either thePEAD expression or the FEF te
hnique. In 
ase of the FEF 
al
ulations, we used eitherthe LDA or the GGA for the ex
hange-
orrelation energy. Our results are 
omparedto the results of Dal Corso and 
o-workers [56℄ who used the 2n+1 theorem within theDAPE formalism, the results of Souza and 
o-workers [15℄ who used a FEF te
hnique,the results of Levine and Allan [122℄ who used a "sum over ex
ited states" (SOS)te
hnique and to the experiment. The values in the lines labeled "PEAD + SCI" and"SOS + SCI" have been obtained using a s
issors 
orre
tion [147℄.The values 
omputed from the PEAD expression are in good agreement with thevalues obtained from the FEF te
hnique and the values of Levine and Allan. The3The 
rossing between the values obtained from the PEAD expression and the values obtainedfrom the �nite ele
tri
 �eld te
hnique and the small di�eren
e at large n 
an be related to the distin
t�nite di�eren
e expressions used in 
onne
tion with the two te
hniques. In 
ase of the �nite ele
tri
�eld te
hnique, we use strings of k-points whereas in 
ase of the 2n + 1 theorem (PEAD and DAPEexpressions) we use the �nite di�eren
e formula of Marzari and Vanderbilt Eq. (3.7). Nevertheless,this di�eren
e is small 
ompared to the errors introdu
ed by the LDA or the pseudopotentials andwill not be dis
ussed here.



4.3. NONLINEAR RESPONSE OF SEMICONDUCTORS 77di�eren
es between the results reported in the top of Table 4.1 and the results ofRefs. [15, 56℄ 
an be related to the fa
t that the former ones have been obtained atthe experimental latti
e 
onstants whereas the latter ones have been obtained at thetheoreti
al latti
e 
onstants. Using the theoreti
al latti
e 
onstants, we obtain valuesof 35, 20 and 48 pm/V for the nonlinear opti
al sus
eptibilities of AlAs, AlP and GaPin better agreement with the values obtained in Refs. [15, 56℄.The nonlinear opti
al sus
eptibilities 
omputed within the GGA are smaller thanthose 
omputed within the LDA. The s
issors 
orre
tion de
reases the values of the d36even further, in agreement with the dis
ussion of Ref. [147℄ 4. To the authors' knowl-edge, no experimental data are available for AlAs and AlP. In 
ase of GaP, the values
omputed within the LDA at the theoreti
al latti
e 
onstant and the values 
omputedat the experimental latti
e 
onstant making use of a s
issors 
orre
tion are 
lose tothe experiment. However, it is not 
lear that the use of a s
issors 
orre
tion alwaysimproves the agreement with the experiment. Moreover, it will even have a negativee�e
t in 
ase the LDA (or the GGA) underestimates the experimental nonlinear opti
alsus
eptibilities. In addition, it is not straightforward to isolate the error of the LDA(or GGA) from other sour
es of errors. Other fa
tors 
an have a similar strong in
u-en
e on the nonlinear opti
al sus
eptibilities. As dis
usses above, the dij are stronglya�e
ted by the error on the latti
e 
onstants of the 
rystals. Another important sour
eof error 
an be the pseudopotentials used in the 
al
ulations as dis
ussed in Ref. [56℄.4.3.2 Raman polarizabilitiesIn the 
ubi
 AB semi
ondu
tors, the derivatives of the linear opti
al sus
eptibilitieswith respe
t to atomi
 displa
ements are de�ned by a single number, ��(1)=�� . Makinguse of the Levy-Civita tensor, �ijk , we 
an write for the 
ation (A)��(1)ij��A;� = ��(1)�� j�ij�j (4.6)and for the anion (B) ��(1)ij��B;� = ���(1)�� j�ij�j: (4.7)The quantities ��(1)ij =���;� 
an be 
omputed from various te
hniques. A �rst te
hniquebased on the 2n+1 theorem is des
ribed in Se
. 3.3.2. A se
ond te
hnique 
onsists in
omputing the derivatives ��(1)ij =���;� from frozen-phonon (FP) 
al
ulations by taking4A

ording to the dis
ussion of Ref. [147℄, we expe
t the LDA value of the nonlinear opti
alsus
eptibility, dLDA, to be related to the value obtained making use of the LDA and a s
issors
orre
tion, dSCI , by the relation dSCI � dLDA�1� �Eg�3 ;where Eg is the band gap and � the amplitude of the s
issors 
orre
tion.
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Figure 4.3: Dependen
e of the nonlinear 
omponent of the for
e on Al along x in AlAson an ele
tri
 �eld along the (1,1,1) dire
tion. The amplitude of the ele
tri
 �eld, E ,used as abs
issa is de�ned in Eq. (4.2). The inset shows the dependen
e of the totalfor
e on E .
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Table 4.2: Absolute values of the Raman polarizabilities (�A2) of the transverse opti
alphonon modes of some semi
ondu
tors. Our results have been 
omputed at the experi-mental latti
e 
onstants using the 2n+1 theorem (PEAD expression), the �nite ele
tri
�eld (FEF) te
hnique and frozen phonon (FP) 
al
ulations. The three experimentalvalues for GaP have been obtained by distin
t experimental te
hniques.LDA GGAMethod Si AlAs AlP GaP Si AlAs AlP GaPPEAD (present) 21.53 8.66 4.79 10.70FEF (present) 20.24 8.23 4.55 10.19 19.26 7.58 4.26 8.41FP (present) 21.81 8.69 4.79 10.79 20.69 7.99 4.47 8.83DAPE [60℄ 23.56 7.39 5.13 11.38FP [60℄ 20.44 5.64 4.44 9.48FP [129℄ 26.16Exp. [148,149℄ 23 � 4 19,16,23
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es of �(1)ij with respe
t to atomi
 displa
ements. Finally, we 
an use the�nite ele
tri
 �eld te
hnique to 
ompute the �rst-order derivatives ��(1)ij =���;� as ase
ond-order derivative of the for
e on atom �, f�;�, with respe
t to the ele
tri
 �eld��(1)ij���;� = 1
0 �2f�;��Ei�Ej : (4.8)The third method is illustrated in Figure 4.3 in 
ase of AlAs. The amplitude ofthe ele
tri
 �eld, E , is de�ned in Eq. (4.2). The for
e on the 
ation along a Cartesiandire
tion, �, 
an be expressed asfA;� = Z�A;��E +
0 ��(1)�� E2 (4.9)where Z�A;�� is the Born e�e
tive 
harge of the 
ation.The data 
omputed from �rst-prin
iples have been �tted with Eq. (4.9). The pointsin Figure 4.3 
orrespond to the for
e on Al along x 
omputed for di�erent amplitudesof the ele
tri
 �eld from whi
h we have subtra
ted the �rst term of the right-handside of Eq. (4.9). The line 
orresponds to the dependen
e of fAl;x on the ele
tri
 �eld
omputed through the se
ond term of the right-hand side of Eq. (4.9). The inset showsthe dependen
e of the total for
e on the ele
tri
 �eld (points) and the �t of Eq. (4.9)to the �rst-prin
iples data (line). As in 
ase of the polarization illustrated in Figure4.1, the nonlinear part of the for
e is about two orders of magnitude smaller than thelinear part. As a 
onsequen
e, we need a high degree of 
onvergen
e of the ele
troni
wave fun
tions in order to obtain a pre
ision of j�f=f j < 10�3 that is required to
ompute ��(1)=�� a

urately.In Table 4.2, we report the Raman polarizabilities of Si, AlAs, AlP and GaP de�nedas a = 
0 ��(1)�� : (4.10)All values are found to be negative and we only report their absolute values. TheLDA values we obtained from the 2n + 1 theorem (PEAD expression), �nite ele
tri
�eld (FEF) and frozen-phonon (FP) 
al
ulations are very similar. They are 
lose tothe theoreti
al values of Refs. [60, 129℄. We should note however that the Ramanpolarizabilities 
omputed in Ref. [60℄ from the 2n+1 theorem (DAPE expression) arein worse agreement with the values 
omputed from frozen-phonon 
al
ulations than inour 
ase. The absolute values of the Raman polarizabilities 
omputed within the GGAare signi�
antly smaller than the 
orresponding LDA values. This behavior is similarto what we observed for the nonlinear opti
al sus
eptibilities in Se
. 4.3.1.4.3.3 Clamped ele
tro-opti
 
oeÆ
ientsThe nonlinear opti
al sus
eptibilities and Raman polarizabilities dis
ussed in Se
s.4.3.2 and 4.3.1 are related to the nonlinear response of a 
ompound to opti
al ele
tri




80 CHAPTER 4. ELECTRIC FIELDS: RESULTSFigure 4.4: Graphi
al illustration of the (a) 7- and (b) 4-point formulas used to 
omputethe se
ond-order mixed derivatives of the polarization.
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�elds as de�ned in Se
. 1.3. They have been 
omputed from the nonlinear dependen
eof the polarization and the for
es on the ele
tri
 �eld. In these 
al
ulation, the atomswere held �xed at their zero-�eld equilibrium positions. As a 
onsequen
e, the nonlinearopti
al sus
eptibilities and Raman polarizabilities are determined by pure ele
troni
pro
esses. In addition to the ele
troni
 
ontribution, the 
lamped EO 
oeÆ
ients aredetermined by an ioni
 
ontribution due to ele
tri
 �eld indu
ed atomi
 displa
ements.In 
ase we use the formalism of the 2n+ 1 theorem presented in Se
. 3.3.4, the ioni

ontribution 
an be 
omputed from Eq. (3.36).In order to 
ompute the EO 
oeÆ
ients from the �nite ele
tri
 �eld te
hnique, wehave (i) to relax the atoms within the ele
tri
 �eld and (ii) to 
ompute the di�eren
ebetween the opti
al diele
tri
 tensors of the zero-�eld equilibrium stru
ture and thedistorted stru
ture at non-zero ele
tri
 �eld. In this se
tion, we illustrate this pro
edurefor the 
ubi
 semi
ondu
tors AlAs, AlP and GaP. In Se
. 4.6, we apply it to theperovskite ferroele
tri
s BaTiO3 and PbTiO3.The form of the EO tensor in 
ubi
 semi
ondu
tors is given by the transpose oftheir nonlinear opti
al sus
eptibility tensor in Eq. (4.1). It only has one independentelement, r63. The 
omputation of this element is performed in two steps. First, westudy the dependen
e of the polarization on an ele
tri
 �eld that is the sum of a stati
�eld, Est, and an opti
al ele
tri
 �eld, Eo. In analogy with the dis
ussion of Se
. 4.3.1,the 
urvature of P gives the nonlinear EO sus
eptibility dEO. Se
ond, we apply atransformation similar to Eq. (3.35) to transform dEO into the 
lamped EO 
oeÆ
ientr�63 r�63 = �16�n4 dEO ; (4.11)where n is the refra
tive index of the 
ompound.The 
omputation of dEO is not straightforward. It has to be 
omputed as a se
ond-



4.3. NONLINEAR RESPONSE OF SEMICONDUCTORS 81order mixed derivative of the polarization with respe
t to Est and Eo. By analogy withEq. (4.2), we 
onsider an ele
tri
 �eld along the (1,1,1) dire
tion that is the sum ofEst and Eo. E = (Est + Eo)(1; 1; 1): (4.12)The nonlinear EO sus
eptibility 
an than be 
omputed asdEO = 18 �2Pk�Est�Eo k = 1; 2; 3: (4.13)In the dis
ussions that follow, we 
hose Est and Eo equal to 0 or �E . To 
omputethe se
ond-order mixed derivative of P , we 
an either use a 7-point formula or a 4-point formula [150℄ as illustrated in Figure 4.4. The points labeled "(i; j)" represent apolarization Pk(i � E ; j � E) = Pk(Est = i � E ; Eo = j � E): (4.14)The expressions of dEO obtained from the 7- and 4-point formulas aredEO = �116E2���Pk(E ; 0) + Pk(�E ; 0) + Pk(0; E) + Pk(0;�E)�2Pk(0; 0)�Pk(E ; E)�Pk(�E ;�E)��� (4.15)dEO = 132E2���Pk(E ; E)� Pk(E ;�E)�Pk(�E ; E) + Pk(�E ;�E)���: (4.16)In order to use Eqs. (4.15) and (4.16) we have to apply di�erent 
ombinationsof stati
 and opti
al �elds to the 
ompound. In pra
ti
e, the 
hange in polarizationindu
ed by an opti
al �eld is 
omputed at 
lamped atomi
 positions while the 
hangein polarization indu
ed by a stati
 �eld is 
omputed by taking into a

ount the ele
tri
�eld indu
ed atomi
 displa
ements. In 
ase both stati
 and opti
al ele
tri
 �elds areapplied to the solid, we must (i) relax the atoms for an ele
tri
 �eld E1 equal to thestati
 
omponent of the �eld and (ii) 
ompute the polarization for an ele
tri
 �eld E2equal to the sum of the stati
 and opti
 
omponents of the �eld while keeping 
onstantthe atomi
 positions at the values obtained in (i). For example, in order to 
omputePk(E ; E), we �rst relax the atoms for an ele
tri
 �eld E1 = E(1; 1; 1). Then, we keep
onstant the atomi
 positions and we 
ompute the polarization for an ele
tri
 �eldE2 = 2E(1; 1; 1). The values of E1 and E2 required to 
ompute the polarizations usedin Eqs. (4.15) and (4.16) are summarized in Table 4.3.The EO 
oeÆ
ients of AlAs, AlP and GaP 
omputed from the 2n+1 theorem andfrom the �nite ele
tri
 �eld (FEF) te
hnique are summarized in Table 4.4. In 
ase ofthe �nite ele
tri
 �eld 
al
ulations, the results obtained from the 4-point formula are
lose to the results obtained from the 7-point formula. For example, using Eqs. (4.15)and (4.16) to 
ompute the 
lamped EO 
oeÆ
ient of AlAs we obtained respe
tively-1.118 and -1.130 pm/V. The LDA values of r�63 
omputed from the 2n+1 theorem andfrom �nite ele
tri
 �elds are very 
lose. Moreover, they are 
lose to the 
orrespondingGGA values. This behavior is opposite to the behavior observed for the nonlinear
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Table 4.3: Ele
tri
 �elds used to relax the atomi
 positions, E1, and ele
tri
 �elds usedto 
ompute the polarization, E2, for the values of i and j used in Figure 4.4.(i; j) E1 E2(0; 0) 0 0(1; 0) E(1; 1; 1) E(1; 1; 1)(�1; 0) �E(1; 1; 1) �E(1; 1; 1)(0; 1) 0 E(1; 1; 1)(0;�1) 0 �E(1; 1; 1)(1; 1) E(1; 1; 1) 2E(1; 1; 1)(�1; 1) �E(1; 1; 1) 0(1;�1) E(1; 1; 1) 0(�1;�1) �E(1; 1; 1) �2E(1; 1; 1)
Table 4.4: Clamped EO 
onstant r�63 (pm/V) of AlAs, AlP and GaP 
omputed at theexperimental latti
e 
onstant using the 2n + 1 theorem (PEAD expression) and the�nite ele
tri
 �eld (FEF) te
hnique. The values obtained from the 2n+1 theorem aresplit into the ele
troni
 and ioni
 
ontributions.Method XC Contribution AlAs AlP GaPPEAD LDA Ele
troni
 -1.69 -1.25 -2.24Ioni
 0.64 0.50 0.64Total -1.05 -0.75 -1.60FEF LDA Total -1.12 -0.81 -1.71FEF GGA Total -1.15 -0.84 -1.71Exp. [151℄ Total -0.97
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al sus
eptibilities and the Raman polarizabilities. In 
ase of these two quantities,we found the absolute GGA values to be signi�
antly smaller than the 
orrespondingLDA values.The EO 
oeÆ
ients 
omputed from the 2n+1 theorem are split into their ele
troni
and ioni
 
ontributions. It is interesting to observe that both 
ontributions are of thesame magnitude and that they are of opposite sign. As a 
onsequen
e, they tend tode
rease the values of the EO 
oeÆ
ients when we take their sum.4.4 Nonlinear response of ferroele
tri
s to ele
tri
�elds at 
lamped atomi
 positionsIn the present se
tion, we dis
uss the nonlinear opti
al sus
eptibilities, dij , the opti
aldiele
tri
 
onstants, "ij , and the derivatives of the linear opti
al sus
eptibilities withrespe
t to atomi
 displa
ements, ��(1)ij =����, of BaTiO3 and PbTiO3 in their tetrag-onal phase and of LiNbO3 in its ferroele
tri
 phase. In 
ase of BaTiO3 and PbTiO3,we also 
ompare the results obtained from the 2n+ 1 theorem to the results obtainedfrom �nite ele
tri
 �eld 
al
ulations. The quantities dis
ussed in this se
tion will beused in Se
. 4.5 and 4.6 to study the Raman spe
trum and the EO 
oeÆ
ients of thesematerials.In the perovskites, the nonlinear opti
al sus
eptibility tensor has the three inde-pendent elements d31, d33 and d15 (Voigt notations):d = 0� � � � � d15 �� � � d15 � �d31 d31 d33 � � � 1A : (4.17)In LiNbO3, this tensor has the 4 independent elements d31, d33, d15 and d22:d = 0� � � � � d15 �d22�d22 d22 � d15 � �d31 d31 d33 � � � 1A : (4.18)In 
ase Kleinman's symmetry rule 
an be applied, the number of independent elementsof these tensors is further de
reased sin
e d31 = d15. As dis
ussed in Se
. 3.3.1, in 
aseof the 2n + 1 theorem, this rule is automati
ally satis�ed. In 
ase of a �nite ele
tri
�eld 
al
ulation, we will see that it is not stri
tly satis�ed although the di�eren
esbetween d31 and d15 are small and due to the numeri
al a

ura
y of the 
al
ulation.In BaTiO3 and PbTiO3, the ��(1)ij =���� 
oeÆ
ients take a very simple form asshown in Table 4.5. For ea
h atom in the unit 
ell as de�ned in Table 1.1, these
oeÆ
ients are determined by 5 numbers denoted a, b, 
, d and e. In 
ase of Ba, Pb, Tiand O1, the number of independent elements is even smaller be
ause a = b and 
 = d.In LiNbO3, the form of ��(1)ij =���� is more 
ompli
ated and we do not dis
uss these
oeÆ
ients here. In Se
. 4.5, we present instead a study of the Raman spe
trum ofthis 
ompound.
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oeÆ
ients of Ba/Pb, Ti and O in the tetragonal phase ofBaTiO3 and PbTiO3. x, y and z denote the dire
tion of the atomi
 displa
ement, �.The rows and 
olumns of the matri
es 
orrespond to the indexes i and j.x y z0� � � a� � �a � � 1A 0� � � �� � b� b � 1A 0� 
 � �� d �� � e 1ATable 4.6: Nonlinear opti
al sus
eptibilities (pm/V) and ele
troni
 diele
tri
 
onstantsof the perovskite ferroele
tri
s BaTiO3 and PbTiO3 in their tetragonal phase. Re-ported are the theoreti
al values 
omputed from density fun
tional perturbation the-ory (DFPT, PEAD expression) and the �nite ele
tri
 �eld (FEF) te
hnique as well asthe experimental values reported in Refs. [152{156℄ for BaTiO3 and Refs. [157{159℄ forPbTiO3. Material Method d15 d31 d33 "11 "33BaTiO3 DFPT -11.10 -11.10 -18.38 6.49 5.85FEF -10.74 -10.73 -17.60 6.31 5.72Exp. -17.0 -15.7 -6.8 5.19 5.05PbTiO3 DFPT -27.76 -27.76 -5.70 7.31 6.79FEF -26.42 -26.15 -5.35 7.12 6.67Exp. -37.9 -42.8 +8.5 6.64 6.63The results obtained from the 2n+1 theorem and from the �nite ele
tri
 �eld (FEF)te
hnique are summarized in the Tables 4.6, 4.7 and 4.8. To 
ompute the nonlinear op-ti
al sus
eptibilities, the ele
troni
 diele
tri
 
onstants and the ��(1)ij =���� 
oeÆ
ientsfrom �nite ele
tri
 �elds, we used an approa
h similar to the one des
ribed in Se
. 4.3,in whi
h we applied ele
tri
 �elds along the (1,0,0), (0,0,1) and (1,0,1) dire
tions. Asin 
ase of the semi
ondu
tors, the agreement between the results obtained from the2n+1 theorem and those obtained from the �nite ele
tri
 �eld te
hnique is very good.The absolute values of the nonlinear opti
al sus
eptibilities are in reasonable agree-ment with the 
orresponding experimental values. All sus
eptibilities are found to benegative. In 
ase of BaTiO3, this result 
orresponds to what has been observed experi-mentally. In 
ontrast, the experimental values of d33 in PbTiO3 and d22 in LiNbO3 arepositive. We should note however that nonlinear opti
al sus
eptibilities are diÆ
ultto measure a

urately and that the values reported by di�erent authors are often insubstantial disagreement [87℄. It is therefore not easy to say whether this dis
repan
yis due to the theoreti
al 
al
ulation or to the experiment.
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Table 4.7: Nonlinear opti
al sus
eptibilities (pm/V) and ele
troni
 diele
tri
 
onstantsof LiNbO3 
omputed from density fun
tional perturbation theory (DFPT, PEAD ex-pression). Method d31 d22 d33 "11 "33DFPT -8.08 -1.30 -30.22 5.59 5.51Exp. [160℄ -4.64 +2.46 -41.7Exp. [128℄ -6.25 +3.6 -37.5Exp. [161℄ 5.0 4.6
Table 4.8: Independent elements of ��(1)ij =���� (Bohr�1) in BaTiO3 and PbTiO3 
om-puted from the 2n+1 theorem (DFPT, PEAD expression) and the �nite ele
tri
 �eld(FEF) te
hnique. BaTiO3 PbTiO3DFPT FEF DFPT FEFBa/Pb a,b -0.0038 -0.0043 -0.0265 -0.0259
,d -0.0065 -0.0063 -0.0826 -0.0798e 0.0218 0.0213 -0.0486 -0.0477Ti a,b -0.0873 -0.0860 -0.1407 -0.1383
,d -0.1290 -0.1235 -0.1563 -0.1495e -0.3100 -0.2983 -0.1276 -0.1222O1 a,b 0.0335 0.0332 0.0621 0.0613
,d 0.1208 0.1153 0.1927 0.1849e 0.2468 0.2380 0.1786 0.1725O2 a -0.0029 -0.0027 -0.0240 -0.0236b 0.0606 0.0598 0.1291 0.1265
 -0.0063 -0.0061 -0.0363 -0.0347d 0.0209 0.0207 0.0825 0.0791e 0.0207 0.0194 -0.0012 -0.0013



86 CHAPTER 4. ELECTRIC FIELDS: RESULTSIn 
ase of Ba or Pb, the absolute values of a, 
 and e are signi�
antly smallerthan the 
orresponding values for Ti or O1. A similar behavior has been observed forthe Born e�e
tive 
harges [103℄, Z�: the anomalous e�e
tive 
harges of Ba or Pb aresmaller then the anomalous e�e
tive 
harges of Ti or O1. The amplitude of the Borne�e
tive 
harges in these 
ompounds 
an be explained from their ele
troni
 stru
tureas interpreted within the bond orbital model of Harrison [106℄: the Ba atom in BaTiO3and, to a mu
h lower extent, the Pb atom in PbTiO3 are 
lose to a fully ionized 
on-�guration whereas there is a partly 
ovalent intera
tion between Ti and O1. During anatomi
 displa
ement, the parameters that determine the 
ovalent intera
tions betweenTi 3d and O1 2p atomi
 orbitals (the hopping integrals) vary. As dis
ussed in Se
.2.3.2, this variation produ
es a dynami
al 
harge transfer between Ti and O1, whi
his at the origin of the anomalous e�e
tive 
harges of these atoms. The derivatives ofthe linear opti
al sus
eptibility with respe
t to atomi
 displa
ements 
an be expressedas derivatives of the Born e�e
tive 
harges with respe
t to an ele
tri
 �eld:��(1)ij���� = 1
0 �Z��;�j�Ei : (4.19)The amplitude of these quantities therefore depends on the way the dynami
al 
hargetransfer is a�e
ted by an ele
tri
 �eld. In 
ase of Ba and Pb, this transfer of 
harges is
lose to zero and, be
ause of the ioni
 
on�guration of these atoms, it is only slightlya�e
ted by an ele
tri
 �eld. In 
ontrast, be
ause of the partly 
ovalent intera
tionsbetween Ti and O1 the transfer of 
harges between these atoms is more sensitive to anele
tri
 �eld. The amplitude of the ��(1)ij =���� 
oeÆ
ients 
an therefore be interpretedfrom similar arguments as the amplitude of the Born e�e
tive 
harges.4.5 Raman spe
tra of ferroele
tri
sThe theoreti
al determination of Raman spe
tra is highly desirable sin
e it 
an be usedto asso
iate Raman lines on an experimental spe
trum to spe
i�
 phonon modes. Inthe present se
tion, we show that the Raman spe
tra obtained from �rst-prin
iples aresuÆ
iently a

urate to be 
ompared to the experiment. We �rst illustrate the methodfor tetragonal PbTiO3. We then dis
uss the Raman spe
tra in the ferroele
tri
 phaseof LiNbO3 and we try to 
larify some ambiguities in the assignation of the E-modes inthis 
ompound.4.5.1 Tetragonal PbTiO3In the P4mm phase of PbTiO3, the zone-
enter opti
al phonons 
an be 
lassi�ed into3A1 +B1 + 4E:All modes are Raman a
tive. In addition, the A1 and E modes are infrared a
tive. Atthe �-point, they are split into transverse (TO) and longitudinal (LO) 
omponents.
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ies (
m�1) of the transverse and longitudinal opti
al phonon modesin the tetragonal phase of PbTiO3. Experimental data has been obtained by Raman(Ra) spe
tros
opy.Transverse modes Longitudinal modesPresent Ra [162℄ Ra [159℄ Present Ra [162℄ Ra [159℄A1 TO1 151 148 149 LO1 189 194TO2 357 362 359 LO2 442 465TO3 653 650 647 LO3 791 795E TO1 79 89 87 LO1 117 130 128TO2 202 220 219 LO2 269 290 289TO3 269 290 289 LO3 416 440 441TO4 484 508 505 LO4 656 720 687B1 283 289The theoreti
al frequen
ies of all zone-
enter phonon modes are reported in Table 4.9where they are 
ompared to the experiment.As dis
ussed in Se
. 3.3.2, the Raman s
attering eÆ
ien
ies 
an be 
omputed fromthe proje
tion of the Raman sus
eptibility tensors, �m, on the polarization ve
tors ofthe in
oming and s
attered photons (3.22). For a given 
rystal, the form of �m dependson the symmetry and the polarization of the phonon mode eigenve
tor [126,163℄. Forthe A1 modes in PbTiO3, polarized along z, we 
an writeA1(z) = 0� a � �� a �� � b 1A : (4.20)The E modes in PbTiO3 are polarized in the plane perpendi
ular to z. In 
ase theeigenve
tors are polarized along x or y, the Raman sus
eptibilities 
an be expressed asE(x) = 0� � � e� � �e � � 1A ; E(y) = 0� � � �� � e� e � 1A : (4.21)Finally, the Raman sus
eptibility of the B1 modes 
an be written as5B1 = 0� 
 � �� 
 �� � � 1A : (4.22)The method presented in Se
. 3.3.2 gives no information about the shape or thewidth of the Raman peaks. In order to draw a theoreti
al Raman spe
trum, we use5Sin
e the B1 modes are infrared ina
tive, it is not possible to de�ne a polarization for these modes.



88 CHAPTER 4. ELECTRIC FIELDS: RESULTSthe following 
onvention: for ea
h normal mode, we use a normalized Lorentzian 
en-tered around the theoreti
al phonon frequen
y with a half width at half maximumof 5 
m�1.6 These Lorentzians are then multiplied by the 
orresponding theoreti
als
attering eÆ
ien
ies 
omputed from Eq. (3.22).Figure 4.5 shows two theoreti
al (a) and the 
orresponding experimental [162℄ (b)Raman spe
tra of PbTiO3. The bottom spe
tra have been obtained for a x(zz)ys
attering 
on�guration in whi
h the in
oming photon has its wave ve
tor, k0, alongx and its polarization, e0, along z while the s
attered photon has its wave ve
tor, kS ,along y and its polarization, eS , along z. Proje
ting the Raman sus
eptibilities givenin Eqs. (4.20), (4.21) and (4.22) on e0 and eS , we see that (i) only the A1 modes 
anbe dete
ted in this 
on�guration and (ii) the intensity of the Raman peaks dependson the element b of their Raman sus
eptibility. Due to wave ve
tor 
onservation, thewave ve
tor of the phonons 
reated in a Stokes pro
ess, q, 
an be 
omputed as thedi�eren
e q = k0 � kS : (4.23)It follows that the wave ve
tor of the phonons dete
ted in a x(zz)y s
attering 
on�gu-ration is parallel to the (1,-1,0) dire
tion7. Be
ause the A1 modes are polarized alongz, the modes in the bottom spe
trum of Figure 4.5 (a) are purely transverse.The spe
tra in the top of Figures 4.5 (a) and (b) have been obtained for a x(zx)y
on�guration where the wave ve
tor and polarization of the in
oming photon (s
atteredphoton) are along x and z (y and x). Proje
ting the Raman sus
eptibilities in Eqs.(4.20), (4.21) and (4.22) on e0 and eS , we see that only the E modes 
an be dete
ted inthis 
on�guration. Be
ause the E-modes are polarized in the xy plane, both transverseand longitudinal modes are visible in this 
on�guration8.The qualitative agreement between the theoreti
al and experimental spe
tra inFigure 4.5 is very good. In 
ase of the A1 modes, the TO3 mode has the strongests
attering eÆ
ien
y while the TO2 mode has the weakest s
attering eÆ
ien
y. In 
aseof the E modes, the LO4 mode at 656 
m�1 has the weakest s
attering eÆ
ien
y. Itdoes not even appear on the experimental spe
trum although it is reported in Ref. [162℄to be around this frequen
y.6This value was arbitrarily 
hosen.7Here, we 
onsider the limit q! 0 along this dire
tion8The expression of the Raman sus
eptibilities in Eq. (4.21) is only valid for modes stri
tly polarizedalong x or y. In the x(zx)y 
on�guration, the phonon wave ve
tor is along (1,-1,0) and the trans-verse and longitudinal modes are respe
tively polarized along (1,1,0) and (1,-1,0). The 
orrespondingsus
eptibility tensors 
an be expressed as linear 
ombinations of the tensors in Eq. (4.21)E(x; y) = 1p2 (E(x) +E(y))E(x;�y) = 1p2 (E(x)�E(y)):.
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Figure 4.5: Theoreti
al (a) and experimental [162℄ (b) Raman spe
tra of PbTiO3. Thetop spe
tra have been obtained for a x(zx)y s
attering 
on�guration. They show thetransverse and longitudinal E modes. The bottom spe
tra have been obtained for ax(zz)y 
on�guration. They show the transverse A1 modes.
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90 CHAPTER 4. ELECTRIC FIELDS: RESULTSTable 4.10: Frequen
ies (
m�1) of the transverse and longitudinal A1 modes in theferroele
tri
 phase of LiNbO3. Experimental data has been obtained by Raman (Ra)and Infrared (IR) spe
tros
opy.Transverse modes Longitudinal modesPresent Ra [164℄ Ra [161℄ Present IR [161℄TO1 243 252 252 LO1 287 273TO2 288 275 276 LO2 348 306TO3 355 332 333 LO3 413 423TO4 617 632 634 LO4 855 8694.5.2 Ferroele
tri
 LiNbO3In the ferroele
tri
 phase of LiNbO3, the zone-
enter phonon modes 
an be 
lassi�edinto 4A1 + 5A2 + 9E:The A1 and E modes are Raman and infrared a
tive. The frequen
ies of the 
orre-sponding transverse and longitudinal modes are reported in the Tables 4.10 and 4.11.The A2 modes are neither Raman nor infrared a
tive and will not be dis
ussed here.The Raman sus
eptibility of the A1 modes is given in Eq. (4.20) while the Ramansus
eptibilities of the E modes 
an be written asE(y) = 0� 
 � �� �
 d� d � 1A ; E(x) = 0� � 
 d
 � �d � � 1A : (4.24)Figures 4.6 show the theoreti
al (a) and experimental [164,166℄ (b) Raman spe
traof LiNbO3 obtained for a x(zz)y s
attering 
on�guration. As in 
ase of PbTiO3,only the transverse A1 modes 
an be dete
ted in this 
on�guration. The qualitativeagreement between theory and experiment is very good. The TO1 and TO4 modes are
orre
tly predi
ted to have the strongest s
attering eÆ
ien
y. The TO2 peak appearsweaker on the theoreti
al spe
trum than on the experimental spe
trum. This e�e
tis not related to the intrinsi
 s
attering eÆ
ien
y of the TO2 mode. It is rather a
onsequen
e of the fa
t that the TO1 peak in Figure 4.6 (b) is quite broad and thatit overlaps with the TO2 peak. This is not the 
ase for the theoreti
al spe
trum sin
ewe use a 
onstant width to represent the Raman peaks in Figure 4.6 (a). Finallythe s
attering eÆ
ien
y of the TO3 mode is weaker than that of the other modes inagreement with the experiment, although the theoreti
al eÆ
ien
y is so small that thispeak does not appear in Figure 4.6 (a).The analysis of the E modes in LiNbO3 is more diÆ
ult. In the literature, manydi�erent frequen
ies have been reported, whi
h were di�erently assigned (see f. ex.
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Figure 4.6: Theoreti
al (a) and experimental [164,166℄ (b) Raman spe
trum of LiNbO3for a x(zz)y s
attering 
on�guration. The spe
tra show the transverse A1 modes.
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92 CHAPTER 4. ELECTRIC FIELDS: RESULTSTable 4.11: Frequen
ies (
m�1) of the transverse and longitudinal E modes in theferroele
tri
 phase of LiNbO3. Experimental data has been obtained by Raman (Ra)and Infrared (IR) spe
tros
opy. The values in bra
kets are not assumed to be relatedto �rst-order phonons.Transverse modes Longitudinal modesPresent Ra Ra Ra IR Present Ra Ra IR[165,166℄ [167℄ [161℄ [161℄ [165℄ [167℄ [161℄TO1 155 153 155 152 152 LO1 197 195 198 198(177) (186)TO2 218 238 238 238 236 LO2 224 240 243 238TO3 264 264 265 264 265 LO3 298 299 295 296TO4 330 322 325 321 322 LO4 349 345 342TO5 372 363 LO5 384 371TO6 384 369 371 367 LO6 423 424 428 418TO7 428 432 431 434 431 LO7 452 456 454 450TO8 585 580 582 579 586 LO8 675 668 660(610) (625)TO9 677 663 668 670 LO9 863 878 880 878Ref. [69℄ for a more 
omplete dis
ussion). This 
omes from the fa
t that the propertiesof lithium niobate 
rystals strongly depend on the internal and external defe
ts [168℄. Inparti
ular, Raman spe
tros
opy is very sensitive to small modi�
ations in the stru
tureand to the stoi
hiometry of the samples [165,169℄.For the transverse opti
 phonons, most authors seem to agree on seven modesaround 152, 237, 265, 322, 368, 431 and 580 
m�1. For the two missing modes, di�erentfrequen
ies have been suggested in
luding those around 180 and 610 
m�1 (values inbra
kets in Table 4.11). Our 
al
ulation reprodu
es the seven modes mentioned abovebut we do not �nd any phonon frequen
ies around 180 and 610 
m�1. For the tworemaining modes, we suggest instead that one of them has a frequen
y of about 670
m�1 in agreement with Refs. [161,166,167℄. Moreover, we suggest that the Raman andinfrared peaks around 370 
m�1 do not 
orrespond to one transverse opti
al phononbut to two transverse opti
al phonons. One of them 
an only be dete
ted by infraredspe
tros
opy while the other one 
an only be dete
ted by Raman spe
tros
opy.In Figure 4.7, we 
ompare a theoreti
al (a) and an experimental [165, 166℄ (b)Raman spe
trum of LiNbO3 obtained for a x(yz)y s
attering 
on�guration. In this
on�guration, the transverse and longitudinal E modes 
an be dete
ted. As in 
ase ofthe A1 modes, the qualitative agreement between theory and experiment is very good.In Table 4.12, we 
ompare the theoreti
al and experimental infrared os
illator strengths(
omputed from Eq. (3.38)) and Raman s
attering eÆ
ien
ies. Experimentally, it isdiÆ
ult to determine absolute Raman s
attering eÆ
ien
ies a

urately. We thereforereport the intensities of the Raman peaks relative to the intensity of the TO1 peak.The TO5 mode has an os
illator strength of 3:59 � 10�4a:u:, in good agreementwith the experiment, and a weak Raman s
attering eÆ
ien
y. Due to its signi�
ant
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Figure 4.7: Theoreti
al (a) and experimental [165,166℄ (b) Raman spe
trum of LiNbO3for a x(yz)y s
attering 
on�guration. The spe
tra show the transverse and longitudinalE modes.
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94 CHAPTER 4. ELECTRIC FIELDS: RESULTSTable 4.12: Infrared (IR) mode os
illator strengths (10�4 a. u.) and redu
ed Raman(Ra) s
attering eÆ
ien
ies of the transverse E modes in LiNbO3.Theory ExperimentMode IR Ra IR [161℄ Ra [165,166℄Sm I/ITO1 Sm I/ITO1TO1 5.85 1.00 6.02 1.00TO2 0.55 0.91 0.53 0.83TO3 4.38 0.15 4.58 0.39TO4 2.71 0.38 2.70 0.55TO5 3.59 0.04 3.59TO6 0.15 0.32 0.68TO7 0.31 0.17 0.40 0.22TO8 14.33 0.88 13.43 0.78TO9 0.37 0.01 1.06 0.12os
illator strength, this mode is easy to dete
t by infrared spe
tros
opy and it givesrise to a measurable LO-TO splitting. In 
ontrast, this mode is diÆ
ult to dete
t byRaman spe
tros
opy. The TO6 mode has a weak os
illator strength and a signi�
antRaman s
attering eÆ
ien
y. As 
an be seen in Figure 4.7 it gives rise to a well-de�nedRaman peak. In 
ontrast, due to its weak os
illator strength, this mode is diÆ
ult todete
t by infrared spe
tros
opy and it does not give rise to a sizeable LO-TO splitting(see also Table 4.11).The distin
t 
hara
teristi
s of the TO5 and TO6 modes give a �rst argument infavor of our assumption that there are two transverse opti
al modes around 370 
m�1.A stronger argument 
omes from an experiment of Claus and 
o-workers [167℄. The au-thors of Ref. [167℄ used Raman spe
tros
opy to measure the dependen
e of the phononfrequen
ies on the angle between the phonon wave ve
tor, q, and the z-axis of LiNbO3.In 
ase of the mode around 370 
m�1 they observed no angular dependen
e of thefrequen
y, indi
ating that this mode has a negligible infrared os
illator strength. The
hara
teristi
s of the mode measured by Claus and 
o-workers are therefore 
ompatiblewith the 
hara
teristi
s of the TO6 mode. These observations 
annot be explained if weassume only one mode at this frequen
y be
ause an os
illator strength of 3:59 �10�4a:u:is not 
ompatible with the absen
e of angular dispersion of the phonon frequen
y.To summarize, our study has shown that the theoreti
al 
al
ulation of RamaneÆ
ien
ies 
an help the interpretation of experimental Raman spe
tra. In parti
ular,we have shown that LiNbO3 has two E-modes around 370 
m�1 whereas previousstudies suggest that it only has one E-mode around this frequen
y.In the following se
tion, we will study the EO tensor in BaTiO3, PbTiO3 andLiNbO3. The results of this se
tion will help us to understand the unusual ioni

ontribution to the EO 
oeÆ
ients of these materials.
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tro-opti
 tensor in ferroele
tri
 oxides4.6.1 Ferroele
tri
 LiNbO3The EO tensor in the ferroele
tri
 phase of LiNbO3 has the four independent elements(Voigt notations) r13, r33, r22 and r51:r = 0BBBBBB� � �r22 r13� r22 r13� � r33� r51 �r51 � ��r22 � �
1CCCCCCA : (4.25)As dis
ussed in Se
. 4.5.2, the TO modes 
an be 
lassi�ed into 4A1 + 5A2 + 9E.The A1 and E modes are simultaneously Raman and IR a
tive. Only the A1 modes
ouple to r13 and r33, while the E modes are linked to r22 and r51. In Table 4.13, wereport the four 
lamped and un
lamped 
oeÆ
ients, as well as the 
ontribution of ea
hopti
al phonon and the piezoele
tri
 
ontribution. For 
omparison, we also mentionthe 
oeÆ
ients 
omputed by Johnston [128℄ from measurements of IR and Ramanintensities (IR + R) as well as the results of a bond-
harge model (BCM) 
al
ulationby Shih and Yariv [170℄. The �rst-prin
iples 
al
ulations 
orre
tly predi
t the signof the four EO 
oeÆ
ients [70℄. The absolute values are also well reprodu
ed by ourmethod, espe
ially if we take into a

ount that NLO properties are generally diÆ
ultto determine a

urately. The experimental values are sensitive to external parameterssu
h as temperature 
hanges [171℄ and the stoi
hiometry of the samples. For example,using 
rystals of various 
ompositions, Abdi and 
o-workers measured absolute valuesbetween 1.5 pm/V and 9.9 pm/V for r�22 [172℄. These diÆ
ulties support the need forsophisti
ated theoreti
al tools to predi
t NLO properties. In 
ontrast to the models ofRefs. [128,170℄, our method is predi
tive and does not use any experimental parameters.Moreover, it reprodu
es the 
lamped EO 
oeÆ
ients r�13, r�33 and r�22 better than thesemiempiri
al models.The EO 
oeÆ
ients of LiNbO3 are signi�
antly larger than the EO 
oeÆ
ients of thesemi
ondu
tors dis
ussed in Se
. 4.3.3. This di�erent behavior 
an be explained fromthe de
omposition of the EO 
oeÆ
ients into their ele
troni
 and ioni
 
ontributions.In Se
. 4.3.3, we observed that these 
ontributions are of the same order of magnitudein semi
ondu
tors and that they are of opposite sign. As a 
onsequen
e, they 
an
elout, giving a small r�63. In 
ontrast, the EO 
oeÆ
ients of LiNbO3 are dominated bythe ioni
 
ontribution of the A1 TO1 and the E TO1 modes. In addition, the 
ontri-butions of these modes are mu
h lager than the ele
troni
 and ioni
 
ontributions inthe semi
ondu
tors. This 
an be explained as follows. At the paraele
tri
-ferroele
tri
phase transition, the unstable A2u and Eu modes of the paraele
tri
 phase (see Se
.1.2) transform to low-frequen
y and highly polar modes in the ferroele
tri
 phase [69℄,generating a large EO response if they exhibit, in addition, a large Raman sus
eptibil-ity. The A1 TO1 and E TO1 modes of the ferroele
tri
 phase have a strong overlap
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tively 0.82 and 0.68 with the unstable A2u and Eu modes of the paraele
tri
phase and 
ombine giant polarity [69℄ and large Raman sus
eptibility (see Figures 4.6and 4.7 and Table 4.14).As dis
ussed in Se
. 3.3.4, the piezoele
tri
 
ontribution to the EO 
oeÆ
ientsis related to deformations of the 
ell shape due to the 
onverse piezoele
tri
 e�e
tand the 
hanges in the indi
es of refra
tion indu
ed by these deformations. UsingEq. (3.39), this 
ontribution 
an be 
omputed as the produ
t of the piezoele
tri
strain 
oeÆ
ients, d
�� , and the elasto-opti
 
oeÆ
ients, �ij�� . The 
omputationof the piezoele
tri
 strain 
oeÆ
ients is more diÆ
ult than the 
omputation of thepiezoele
tri
 stress 
oeÆ
ient, e
��. Both quantities are related through the linearsystem of equations [173℄ e
�� =X�� d
��
���� (4.26)where 
���� are the elasti
 
onstants. The values of �ij�� , e
��, 
���� 
omputed from�nite di�eren
es and d
�� 
omputed by solving Eq. (4.26) are summarized in Table4.15.The un
lamped EO 
oeÆ
ients in LiNbO3 are also reported in Table 4.13. As thepiezoele
tri
 
oeÆ
ients d31 and d33 are small 
ompared to d15 and d22, the piezoele
-tri
 e�e
t is important for r�22 and r�51 and negligible for r�13 and r�33. The un
lampedEO 
oeÆ
ient r�51 is nearly twi
e as large as the 
lamped one. Moreover, its theoret-i
al value is in better agreement with the experiment than that of the 
lamped one.This suggests that the piezoele
tri
 
ontribution was not entirely eliminated duringthe measurement of r�51; the 
orre
t value of the 
lamped 
oeÆ
ient might be 
loser tothe theoreti
al 14.9 pm/V.4.6.2 Tetragonal BaTiO3 and PbTiO3As dis
ussed in Se
. 4.5.1, in the tetragonal phase of BaTiO3 and PbTiO3, the TOmodes 
an be 
lassi�ed into 3A1 + 4E +B1. The EO tensor 
an be written asr = 0BBBBBB� � � r13� � r13� � r33� r42 �r42 � �� � �
1CCCCCCA : (4.27)It has only three independent elements: r13, and r33, 
oupling to the A1 modes, andr42, linked to the E modes. The B1-mode is IR ina
tive and does not in
uen
e the EOtensor. The values of the 
lamped EO 
oeÆ
ients of the two 
ompounds 
omputedfrom the 2n + 1 theorem and the �nite ele
tri
 �eld (FEF) te
hnique are reportedin Table 4.16. We also report the de
omposition of the EO 
oeÆ
ients into theirele
troni
 and ioni
 
ontributions as obtained from the 2n+ 1 theorem. As in 
ase of
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Table 4.13: EO tensor (pm/V) in LiNbO3 : ele
troni
, ioni
 and piezoele
tri
 
ontri-butions, and 
omparison with experiment, for the 
lamped and un
lamped 
ases. Theioni
 part is split into 
ontributions from TO modes (!m in 
m�1).A1-modes E-modes!m r13 r33 !m r22 r51Ele
troni
 1.0 4.0 0.2 1.0Ioni
 TO1 243 6.2 18.5 155 3.0 7.5TO2 287 -0.2 -0.4 218 0.4 1.5TO3 355 -0.1 0.0 264 0.6 1.3TO4 617 2.8 4.8 330 -0.3 1.2TO5 372 -0.2 0.4TO6 384 -0.1 -0.2TO7 428 0.2 0.2TO8 585 0.7 2.1TO9 677 0.0 0.0Sum of ioni
 8.7 22.9 4.4 13.9Strain 0.8 0.1 3.0 13.7Clamped Present 9.7 26.9 4.6 14.9Exp. [168℄ 8.6 30.8 3.4 28IR+R [128℄ 12 39 6 19BCM [170℄ 25.9 20.5Un
lamped Present 10.5 27.0 7.5 28.6Exp. [168℄ 10.0 32.2 6.8 32.6Exp. [172℄ 9.9
Table 4.14: Raman sus
eptibilities and mode polarities (10�2 a. u.) of the A1 TOmodes in LiNbO3, BaTiO3 and PbTiO3.LiNbO3 BaTiO3 PbTiO3p3 �11 �33 p3 �11 �33 p3 �11 �33TO1 3.65 -0.70 -2.02 1.22 -0.16 -0.13 1.25 -0.67 -0.43TO2 0.45 0.30 0.53 3.25 -1.18 -2.73 2.18 -0.75 -0.33TO3 0.67 0.18 -0.05 1.74 -1.26 -2.55 2.68 -2.42 -2.28TO4 3.82 -1.96 -3.23
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Table 4.15: Theoreti
al and experimental [168, 174℄ values of the independent elasti

onstants, piezoele
tri
 stress 
oeÆ
ients, piezoele
tri
 strain 
oeÆ
ients and elasto-opti
 
oeÆ
ients in LiNbO3. Voigt notations are used for all 
oeÆ
ients.Property CoeÆ
ient Theory ExperimentElasti
 
11 1.96 2.03(N/m2) 
12 0.71 0.53
13 0.70 0.75
14 0.05 0.09
33 2.58 2.45
44 0.66 0.60
66 0.63 0.75Piezoele
tri
 stress e15 3.44 3.7(C/m2) e22 2.41 2.5e31 0.15 0.2e33 1.42 1.3Piezoele
tri
 strain d15 5.59 6.8(10�11C=N) d22 2.16 2.1d31 -0.10 -0.1d33 0.60 0.6Elasto-opti
 �11 -0.0048 -0.026�12 0.0583 0.09�13 0.1421 0.133�14 -0.0778 -0.075�31 0.1131 0.179�33 0.0640 0.071�41 -0.1444 -0.151�44 0.1329 0.146
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troni
 and ioni
 
ontributions of individual TO modes (!m in 
m�1)to the 
lamped EO 
oeÆ
ients (pm/V) in the P4mm phase of PbTiO3 and BaTiO3.For 
omparison, we also report the value of r�33 
omputed from the �nite ele
tri
 �eld(FEF) te
hnique. PbTiO3 BaTiO3A1-modes E-modes A1-modes!m r�13 r�33 !m r�42 !m r�13 r�33Ele
. 2.1 0.5 2.2 1.0 2.1TO1 151 3.9 2.9 79 16.4 161 1.0 1.0TO2 357 1.4 0.7 202 10.5 300 5.7 16.3TO3 653 1.6 1.8 269 0.2 505 1.2 2.9TO4 484 1.2Tot 9.0 5.9 30.5 8.9 22.3FEF 5.9 22.6Exp. [176℄ 13.8 5.9Exp. [177℄ 10.2 40.6Exp. [87℄ 8 28the semi
ondu
tors, there is a good agreement between the values 
omputed from thetwo te
hniques.For PbTiO3, we found only measurements of r�13 and r�33, whi
h agree well withour theoreti
al results. Moreover, our 
al
ulation predi
ts that PbTiO3 exhibits alarge r�42, in spite of its low r�33. Combined with other advantageous features, su
h assmall thermo-opti
 
oeÆ
ients [175℄, this suggests that PbTiO3 might be an interesting
andidate for EO appli
ations if properly oriented.In BaTiO3, the low temperature stru
ture is rhombohedral. The P4mm phaseis unstable and exhibits, in the harmoni
 approximation, an unstable E-mode thatprevents the use of Eq. (3.36) to 
ompute rion42 . The theoreti
al estimates of r�13 and r�33are reasonably a

urate and reprodu
e the 
orre
t trends, despite an underestimationof the theoreti
al r�33. The origin of the error 
an be attributed to various sour
es.First, the values 
omputed for the P4mm phase 
orrespond to an extrapolation of theEO tensor to 0 K, while experimental results are obtained at room temperature. Also,linear and NLO sus
eptibilities 
an be relatively ina

urate within the LDA. In this
ontext, note the use of the LDA opti
al refra
tive indexes in Eqs. (3.35) and (3.36),overestimating the experimental values by about 10 %.4.6.3 Dis
ussionWe 
ompare now the NLO response of the three 
ompounds. r�13 is similar for all ofthem, while r�33 is signi�
antly smaller in PbTiO3 than in LiNbO3 and BaTiO3. In the



100 CHAPTER 4. ELECTRIC FIELDS: RESULTSTable 4.17: De
omposition of the Raman sus
eptibility of the A1 TO2 mode in BaTiO3and PbTiO3 into 
ontributions from the individual atoms in the unit 
ell.BaTiO3 PbTiO3� p
0 ��(1)33���3 u(�; 3) �33(�) p
0 ��(1)33���3 u(�; 3) �33(�)(a.u.) (10�2 a.u.) (a.u.) (10�2 a.u.)Ba/Pb 0.45 -0.014 -0.01 -1.00 -0.006 0.01Ti -6.46 0.257 -1.66 -2.64 0.216 -0.57O1 5.15 -0.167 -0.86 3.69 0.059 0.22O2/O3 0.43 -0.240 -0.10 -0.02 -0.316 0.01Tot -2.73 -0.32latter two 
ompounds, the magnitude of r�33 is dominated by one parti
ular phononmode. In BaTiO3, the TO2 mode at 300 
m�1 has a similar strong overlap (92%)with the unstable mode in the paraele
tri
 phase than the TO1 modes in LiNbO3,as previously dis
ussed. In PbTiO3, all A1 modes 
ontribute almost equally to r�33.The TO2 mode at 357 
m�1 has the strongest overlap (73%) with the soft mode inthe 
ubi
 phase. Surprisingly, its 
ontribution to r�33 is 23.5 times smaller than the
ontribution of the 
orresponding TO2 mode in BaTiO3.To identify the origin of the distin
tive behavior of PbTiO3, we report in Table4.14 the mode polarities and Raman sus
eptibilities of the A1 TO modes. In thethree 
ompounds, � has two independent elements �11 and �33 that determine theamplitude of r�13 and r�33. �33 is large for the TO1 mode in LiNbO3 and the TO2mode in BaTiO3. On the other hand, it is the smallest for the TO2 mode in PbTiO3,in agreement with experiments as dis
ussed in Se
. 4.5.1. Combined with a higherfrequen
y (!2PbTiO3=!2BaTiO3 = 1:41), a lower polarity (pBaTiO3=pPbTiO3 = 1:49), anda larger value of the refra
tive index (n4PbTiO3=n4BaTiO3 = 1:35), this weak Ramansus
eptibility (�BaTiO3=�PbTiO3 = 8:27) explains the weak 
ontribution of the TO2mode to r�33 in PbTiO3.The mi
ros
opi
 origin of the lower A1 TO2 mode Raman sus
eptibility in PbTiO3,
ompared to BaTiO3, is explained by the de
omposition of �33 into 
ontributions ofthe individual atoms in the unit 
ell (see Table 4.17 and Table 1.1 for the labels of theatoms). In both perovskites, the major 
ontributions to the Raman sus
eptibility ofthe A1 TO2 modes are �33(T i) and �33(O1); �33 is mostly due to the displa
ementsof the atoms lo
ated on the Ti{O 
hains oriented along the polar dire
tion. First,the derivatives of �(1)33 versus atomi
 displa
ement are of opposite sign for Ti and O1atoms, and signi�
antly larger in BaTiO3 than in PbTiO3. Se
ond, the opposingdispla
ements of Ti and O1 atoms in the TO2 mode in BaTiO3 produ
e 
ontributionsthat add to yield a giant �33. On the other hand, the in-phase displa
ements of Tiand O1 in PbTiO3 produ
e 
ontributions that 
an
el out, giving a small �33. This
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t behavior goes beyond a simple mass e�e
t. Changing the mass of Pb to thatof Ba in the dynami
al matrix of PbTiO3 has no signi�
ant e�e
t on the relative Ti{Odispla
ement. Large atomi
 displa
ements of opposite dire
tion along the Ti{O 
hainsare therefore needed to generate a large �33 and potentially a large r33.4.7 Con
lusionsIn this Chapter, we studied nonlinear opti
al properties of sele
ted semi
ondu
tors andferroele
tri
s. We applied both the 2n+1 theorem and the �nite ele
tri
 �eld te
hnique.From the results obtained in this study, we 
an draw the following 
on
lusions:First, as it has been illustrated on several examples, the formalism of the 2n + 1theorem (PEAD and DAPE expressions) and the �nite ele
tri
 �eld te
hnique 
anequivalently be used to study nonlinear opti
al properties. However, the PEAD formula
onverges faster with respe
t to the number on k-points than the DAPE formula orthe �nite ele
tri
 �eld te
hnique.Se
ond, the Raman spe
tra 
omputed from �rst-prin
iples 
an be helpful to inter-pret experimental Raman spe
tra. In parti
ular, we were able to 
larify some of theproblems in the assignation of the E-modes in the ferroele
tri
 phase of LiNbO3. By
omparing the theoreti
al Raman s
attering eÆ
ien
ies and infrared mode os
illatorstrengths to the 
orresponding experimental values, we showed that LiNbO3 has twoE-modes around 370 
m�1.Third, the di�eren
e between the EO properties of ferroele
tri
s and semi
ondu
tors
an be explained from the ioni
 
ontribution to the EO 
oeÆ
ients. In the semi
ondu
-tors, the ioni
 and ele
troni
 
ontributions are small and tend to 
an
el ea
h other out.In 
ontrast, in the ferroele
tri
 phase of LiNbO3 and BaTiO3, the large EO responseoriginates in the giant 
ontribution of the su

essor of the soft mode, whi
h 
ombineslow frequen
y, high polarity and high Raman sus
eptibility.In the next Chapter, we will take advantage of the dominant 
ontribution of the su
-
essor of the soft mode to build a model that allows us to study the �nite temperaturedependen
e of the EO 
oeÆ
ients and refra
tive indi
es of BaTiO3.4.8 Referen
esThe te
hniques and results presented in this Chapter have been partly dis
ussed in thefollowing papers:� M. Veithen, X. Gonze and Ph. Ghosez, First-Prin
iples Study of the Ele
tro-Opti
 E�e
t in Ferroele
tri
 Oxides, Phys. Rev. Lett. 93, 187401 (2004).� M. Veithen and Ph. Ghosez, First-Prin
iples study of the diele
tri
 and dynam-i
al properties of lithium niobate, Phys. Rev. B 65, 214302 (2002).� I. Souza, J. �I~niguez and D. Vanderbilt, First-Prin
iples Approa
h of Insulatorsin Finite Ele
tri
 Fields, Phys. Rev. Lett. 89, 117602 (2002).
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Chapter 5Temperature dependen
e ofthe ele
troopti
 tensor andrefra
tive indi
es of BaTiO35.1 Introdu
tionIn the previous Chapter, we studied the EO properties of LiNbO3, BaTiO3 and PbTiO3for their quantum me
hani
al ground-state at 0 K. These 
al
ulations gave a qualitativeinsight into the me
hanisms responsible for the large EO responses of these materials.However, we must be 
areful when we 
ompare the 
omputed values of the EO 
oef-�
ients to experimental values measured at room temperature. It is well known thatphysi
al properties of ferroele
tri
s strongly depend on temperature and that they 
anpresent a divergent behavior in the vi
inity of a phase transition. In 
ase of LiNbO3and PbTiO3, we expe
t the values of the EO 
oeÆ
ients 
omputed at 0 K to be a goodapproximation of their room temperature values sin
e the phase transition tempera-tures are quite high: 1480 and 763 K. In 
ontrast, in 
ase of BaTiO3, the rhombohedralphase is stable at 0 K whereas the tetragonal phase dis
ussed in Se
. 4.6.2 is stableat room temperature. The EO 
oeÆ
ients 
omputed for this phase are therefore anextrapolation from 0 K and their 
omparison to experiment is questionable. Moreover,we were not able to 
ompute the value of r42 for this phase sin
e the ioni
 
ontributionto this 
oeÆ
ient is determined by an unstable E-mode.In opti
al appli
ations, it is mandatory to know pre
isely the dependen
e of therelevant properties on temperature. For instan
e, the temperature dependen
e of theEO 
oeÆ
ients and refra
tive indi
es often imposes serious limitations on modulatorsand other devi
es. In order to work at low operating voltage, the EO 
oeÆ
ients ofa material should be as high as possible. Unfortunately, it has been observed thatthe higher the EO 
oeÆ
ients of a material, the stronger usually their temperature103
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e [87℄.Opti
al properties 
an also be used as an experimental probe. For example, it ispossible to determine the phase diagram [178℄ and polarization [179,180℄ of disorderedferroele
tri
s from measurements of their birefringen
e as a fun
tion of temperatureand 
omposition. Moreover, it is possible to study ferroele
tri
ity in ferroele
tri
 thin�lms from measurements of their EO response [181℄.In this Chapter, we introdu
e a method to 
ompute the �nite temperature de-penden
e of the EO 
oeÆ
ients and refra
tive indi
es of ferroele
tri
s using a �rst-prin
iples e�e
tive Hamiltonian [17℄. This method is well suited for 
ompounds inwhi
h the soft mode plays a dominant role and is applied to tetragonal BaTiO3. We
ompare our approa
h with the model of DiDomeni
o and Wemple [182℄, a formalismwidely used to dis
uss the temperature dependen
e of the opti
al properties in ferro-ele
tri
s [179, 180, 183℄. In parti
ular, we show why this model is valid although itsunderlying hypothesis is not satis�ed.In Se
. 5.2, we report the parameters of the latti
e Wannier fun
tion and thee�e
tive Hamiltonian used in this study. In Se
. 5.3, this Hamiltonian is applied tostudy the temperature dependen
e of the polarization, the stru
tural parameters, thediele
tri
 tensor and the piezoele
tri
 tensor of BaTiO3. In Se
. 5.4, we extend thisapproa
h to study the temperature dependen
e of the EO 
oeÆ
ients and refra
tiveindi
es of this 
ompound. In Se
. 5.5, we report the results obtained for the tetragonalphase and in Se
. 5.6, we 
ompare our approa
h with the Model of DiDomeni
o andWemple.5.2 E�e
tive Hamiltonian for BaTiO3In this se
tion, we des
ribe the BaTiO3 e�e
tive Hamiltonian of Ghosez and 
o-workers[184℄ used in this study. In this model, the full latti
e Hamiltonian is proje
ted on thesubset of degrees of freedom de�ned by the unstable phonon bran
h of the 
ubi
 phaseand the ma
ros
opi
 (homogeneous) strain. To ea
h unit 
ell, i, we asso
iate a lo
alizedatomi
 displa
ement pattern that 
orresponds to the latti
e Wannier fun
tion of theunstable phonon bran
h, �̂i. These Wannier fun
tions de�ne an orthonormal basis thatspans the e�e
tive Hamiltonian subspa
e. Within this basis, a given set of values ofthe 
oordinates 
orresponds dire
tly to a parti
ular pattern of atomi
 displa
ement.This approa
h is di�erent from the approa
h of Zhong and 
o-workers [17,18℄ who onlyused the soft mode at the �-point to built the lo
alized atomi
 displa
ement pattern.Sin
e the ferroele
tri
 phase transition involves only small stru
tural distortions, theHamiltonian is expressed as a low-order Taylor expansion around the high-symmetry
ubi
 stru
ture. All the expansion parameters are determined from �rst-prin
iples totalenergy and linear response 
al
ulations. The temperature dependent properties of theHamiltonian are studied using 
lassi
al Monte Carlo simulations on a big super
ell
ontaining M unit 
ells with periodi
 boundary 
onditions.
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e Wannier fun
tion of BaTiO3The latti
e Wannier fun
tion of BaTiO3 is 
onstru
ted following the method des
ribedin Ref. [185℄. The dis
ussion that follows is 
lose to that of KNbO3 in Ref. [22℄. Itis also similar to the dis
ussion of PbTiO3 in Ref. [21℄ with the only di�eren
e thatthe latti
e Wannier fun
tions in BaTiO3 and KNbO3 are build from the eigenve
torsof the dynami
al matrix while the latti
e Wannier fun
tion of PbTiO3 is build fromthe eigenve
tors of the for
e 
onstant matrix. The 
hoi
e of the dynami
al matrixhas the advantage that the e�e
tive Hamiltonian 
an be used in mole
ular dynami
ssimulations sin
e the form of the kineti
 energy is greatly simpli�ed.Following the dis
ussion of Ref. [22℄, we 
an build a Ti-
entered latti
e Wannierfun
tion from the eigenve
tors of the dynami
al matrix at the high symmetry q-points�, X , M and R that 
orrespond to the unstable phonon modes �15, X5 and M 03 aswell as the Ti-dominated stable phonon modes R025, X1 and M 05 [65,74℄. To obtain anexpli
it form for the latti
e Wannier fun
tion, we 
onsider the symmetri
 
oordinationshells surrounding a Ti-site and identify the independent displa
ement patterns ofea
h shell that transform a

ording to the ve
tor representation of the site symmetrygroup Oh. For a given shell there 
an be more than one pattern of displa
ements witha given transformation property. To ea
h su
h pattern 
orresponds an independentamplitude parameter. By in
luding the displa
ements of shells up to �rst neighborBa and se
ond neighbor Ti shells as well as sele
ted displa
ements of O shells at �rst,se
ond and fourth neighbors, we obtain a total of 13 parameters. The �rst shell of Baatoms has 2 independent displa
ement patterns. There are 1, 2 and 2 parameters forthe zeroth, �rst and se
ond shells of Ti atoms and 2, 3 and 1 parameters for the �rst,se
ond and fourth shells of oxygen atoms. These displa
ement patterns are shown inFigure 5.1 for the z 
omponent of the latti
e Wannier fun
tion.To determine the numeri
al values of the parameters, we build the normalizedeigenve
tors1 of the dynami
al matrix, vq(��), for the phonon modes �15, X5, M 03,R025, X1 and M 05 (the index � labels an atom and � a Cartesian dire
tion) from theparameterized latti
e Wannier fun
tion usingvq(��) =Xj eiq�Rj �̂j(��) (5.1)where Rj is a dire
t latti
e ve
tor and �̂j(��) is a latti
e Wannier fun
tion 
entered atthe Ti site in the jth unit 
ell. Eq. (5.1) spe
i�es ea
h 
omponent of the eigenve
torsas a linear 
ombination of the parameters to be determined. The values determinedby solving the linear system of equations are reported in Table 5.1. As 
an be seen,the magnitude of these values de
ays rapidly with shell-radius. As a 
onsequen
e, thelatti
e Wannier fun
tion is well lo
alized around the Ti site. This justi�es the fa
t thatwe did not in
lude more shells in the 
onstru
tion of the latti
e Wannier fun
tion.1The eigenve
tors of the dynami
al matrix, v(��), are related to the eigendispla
ements de�nedin Eq. (3.20) by v(��) = pM�U(��), where M� is the mass of atom �.
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Figure 5.1: z 
omponent of the Ti-
entered latti
e Wannier fun
tion of BaTiO3. Ba,Ti and O atoms are represented by open squares, solid squares and 
ir
les respe
tively.Parameters labeling the displa
ement patterns 
orrespond to the length of the dis-pla
ements (arrows) of the atoms. a denotes the latti
e parameter of the 
ubi
 unit
ell.
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e Wannier fun
tion parameters.Ba-parameters b1 0.0022330b1p -0.0213426Ti-parameters d0 0.8013753d1a -0.0408339d1b -0.0025517d2a -0.0029953d2b 0.0052709O-parameters O1a -0.2082255O1b -0.2653019O2a -0.0043680O2b -0.0129174O2
 0.0374073O4 0.00035385.2.2 Determination of the parameters of the e�e
tive Hamil-tonianFollowing the work of Waghmare and Rabe [21℄, the e�e
tive Hamiltonian is expressedas the sum of �ve parts: a lo
al mode self-energy, a short-range intera
tion betweenlo
al modes, a long-range dipole-dipole intera
tion, an elasti
 energy and an intera
tionbetween lo
al modes and ma
ros
opi
 strainsHeff (f�rg; f�g) = Hself (f�rg) +Hshort(f�rg)+Hdpl(f�rg) +Helas(f�g) +Hint(f�rg; f�g): (5.2)�r is the amplitude of the displa
ement along the latti
e Wannier fun
tion in 
ell rand � the strain tensor.The self-energy is the only part of the e�e
tive Hamiltonian that takes into a

ountanharmoni
 intera
tions. It in
ludes isotropi
 terms up to eighth order in j�rj and
ubi
 anisotropy at fourth order:Hself (f�rg) =Xr �Aj�r j2 +Bj�r j4 + C(�4rx + �4ry + �4rz) +Dj�r j6 +Ej�rj8� : (5.3)To evaluate the short-range intera
tion between lo
al modes, we 
onsider quadrati
intera
tions up to third nearest neighbors with the most general form allowed by thespa
e group symmetry:Hshort(f�rg) = Xr Xd̂=nn1naL(�r � d̂)(�r(d̂) � d̂) + aT [�r � �r(d̂)� (�r � d̂)(�r(d̂) � d̂)℄o



108 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSOR+Xr Xd̂=nn2nbL(�r � d̂)(�r(d̂) � d̂) + bT1(�r � d̂1)(�r(d̂) � d̂1)+ bT2(�r � d̂2)(�r(d̂) � d̂2)o+Xr Xd̂=nn3n
L(�r � d̂)(�r(d̂) � d̂)+ 
T [�r � �r(d̂)� (�r � d̂)(�r(d̂) � d̂)℄o : (5.4)The sums over d̂ in Eq. (5.4) are taken over the �rst (nn1), se
ond (nn2) and third(nn3) nearest neighbors of site r that are lo
ated respe
tively in the h100i, h110i andh111i dire
tions. �r(d̂) denotes the latti
e Wannier fun
tion at a neighbor of site r in d̂dire
tion. The se
ond neighbor sites are lo
ated along the diagonal of a square of sidea (a is the latti
e 
onstant of the 
ubi
 unit 
ell). The unit ve
tor d̂1 is in the planeof the square perpendi
ular to this diagonal, while d̂2 is perpendi
ular to the planeof the square. To des
ribe the long-range intera
tions, we use a dipole-dipole formparameterized by the mode e�e
tive 
harge Z� and the ele
troni
 diele
tri
 
onstant"1 Hdpl(f�rg) =Xr Xd (Z�)2"1 �r � �r(d))� 3(�r � d̂)(�r(d̂) � d̂)jdj3 : (5.5)The sum over d in Eq. (5.5) is taken over all neighbors of site r.The elasti
 energy is given by a se
ond-order expansion of the energy with respe
tto the homogeneous strain variables ���Helas(f�g) = Nf 3X�=1 ��� + N2 C11 3X�=1 �2�� + N2 C12 3X�;�=1�6=� ������ + N4 C44 3X�;�=1�6=� �2��(5.6)and the 
oupling between the strain and the lo
al modes is given by the expressionHint(f�rg; f�g) = g0 3X�=1 ���!Xr j�rj2+g1 3X�=1 ���Xr �2r�!+ g2 3X�;�=1�<� ���Xr �r��r� : (5.7)The parameters used in the e�e
tive Hamiltonian have been obtained from LDAtotal energy and linear response 
al
ulations performed at the experimental latti
e
onstant of BaTiO3 as des
ribed in Ref. [21℄. Their values are summarized in Table5.2.
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tive Hamiltonian (units eV per unit 
ell, ex
ept forZ�="1 whi
h is dimensionless).A 2.9080 aL 0.3718 C11 123.0243B 11.5242 aT -0.4832 C12 47.1910C 23.2260 bL 0.2302 C44 192.6313D -53.1421 bT1 0.0354 g0 -7.2916E 169.9803 bT2 -0.1047 g1 -51.8323Z� 1.9220 
L 0.2094 g2 -2.2036"1 6.7467 
T -0.0389 f 3.06115.3 Stru
tural & diele
tri
 properties5.3.1 Te
hni
al detailsWe solve the Hamiltonian using Monte Carlo (MC) simulations on a 12 � 12 � 12super
ell (8640 atoms) with periodi
 boundary 
onditions. We typi
ally do 15000sweeps to equilibrate the system and 165000 additional sweeps to 
ompute the averagevalues h��i and h���i and the 
orrelation fun
tions [19, 186℄ to get �(1)�� and d
�� . Atea
h temperature, up to six 
al
ulations are 
arried out using di�erent seeds to generatethe random numbers. The linear term, f , in Eq. (5.6) is set to zero in the simulations,to 
ompensate for the �rst-prin
iples underestimate of the latti
e 
onstant.5.3.2 Spontaneous polarization and spontaneous strainFigure 5.2 shows the temperature dependen
e of the spontaneous polarization, Ps,and spontaneous strain, �s, 
omputed from the average normal mode 
oordinate andstrain Ps = Z�
0 h�i (5.8)�s = h�i: (5.9)At high temperature, we �nd that Psx, Psy and Psz are 
lose to zero indi
ating thatthe system is in the paraele
tri
 phase. The tensile strains, �s1, �s2 and �s3, are equal 2and the shear strains (Voigt notations), �s4, �s5 and �s6 are zero. Consequently, the high2The elasti
 energy de�ned in Eq. 5.6 depends quadrati
ally on the strain. We might thereforeexpe
t that the tensile strains, �s1, �s2 and �s3 , vanish in the 
ubi
 phase. The non-zero values of �s1,�s2 and �s3 in Figure 5.2, are due to the parameterization of the intera
tion between the strain andthe lo
al modes de�ned in Eq. (5.7) that depends on the average value of the squared lo
al mode
oordinates. These terms to not vanish in the 
ubi
 phase. Sin
e Hint depends linearly on the tensilestrains (�rst and se
ond term), �s1, �s2 and �s3 are non-zero in the 
ubi
 phase.



110 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSORTable 5.3: Cal
ulated phase transition temperatures, T
, and saturated spontaneouspolarizations, Ps, of BaTiO3. Our results are 
ompared to the e�e
tive Hamiltonian
al
ulations of Ref. [17℄ and to the experimental values quoted in the same referen
e.Phase He� He� [17℄ Exp [17℄T
 (K) O-R 190 200 183T-O 240 230 278C-T 335 297 403Ps (C/m2) R 0.45 0.43 0.33O 0.37 0.35 0.36T 0.30 0.28 0.27temperature phase of BaTiO3 is 
orre
tly predi
ted to be 
ubi
. As the system is 
ooleddown past 330 K, Psz in
reases and be
omes signi�
antly larger than Psx and Psy . Thisindi
ates the transition to the tetragonal phase. The homogeneous strain variables
on�rm that the shape of the unit 
ell be
omes tetragonal at this temperature. Twoother phase transitions o

ur as the temperature is redu
ed further. The transitionfrom the tetragonal to the orthorhombi
 phase o

urs at 240 K (sudden in
rease of Psx)and the transition from the orthorhombi
 to the rhombohedral phase o

urs at 190 K(sudden in
rease of Psy).The sequen
e of transitions exhibited by the simulation is the same as observedexperimentally. In Table 5.3, we 
ompare the 
orresponding phase transition temper-atures and spontaneous polarizations to the values of Zhong and 
o-workers [17, 18℄obtained from a di�erent parameterization of the e�e
tive Hamiltonian and to theexperimental values. The theoreti
al results of the present study are 
lose to thetheoreti
al results of Ref. [17℄. The T
's predi
ted from both e�e
tive Hamiltoniansdeviate from the experimental T
's. As dis
ussed in Ref. [187℄, this dis
repan
y 
an beattributed to an in
orre
t modeling of the thermal expansion in the e�e
tive Hamilto-nian.5.3.3 Diele
tri
 and piezoele
tri
 tensorIn this se
tion we dis
uss the temperature dependen
e of the stati
 diele
tri
 tensorand the piezoele
tri
 tensor. We fo
us on the tetragonal phase, whi
h is the mostimportant one for pra
ti
al appli
ations sin
e it is stable at room temperature. Inthe Monte Carlo simulations, the stati
 diele
tri
 sus
eptibilities and the piezoele
tri

oeÆ
ients 
an be expressed as 
orrelation fun
tions. Following Ref. [186℄, we 
anwrite �(1)�� = �Z�
0 0� 1M hXi �i�Xj �j�i �Mh��ih��i1A (5.10)
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Figure 5.2: Temperature dependen
e of the spontaneous polarization and the sponta-neous strain in the 
ubi
 (C), tetragonal (T), orthorhombi
 (O) and rhombohedral (R)phases of BaTiO3.
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112 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSORFigure 5.3: Temperature dependen
e of the stati
 diele
tri
 
onstants in the 
ubi
(C) and tetragonal (T) phases of BaTiO3. Our results are 
ompared to the results ofthe e�e
tive Hamiltonian 
al
ulations of Gar
ia and Vanderbilt (GV) [20℄ and to theexperiment [177℄. The bottom and top x-axes 
orrespond respe
tively to the theoreti
aland experimental temperatures (see text).
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d
�� = �Z�0�h���Xj �j
i �Mh���ih�
i1A (5.11)where � = 1kT .In Figure 5.3, we show the temperature dependen
e of the stati
 diele
tri
 
oef-�
ients "11 and "33. Our results are 
ompared to the results of Gar
ia and Vander-bilt [20℄ who used the e�e
tive Hamiltonian of Refs. [17, 18℄ and to the experimentalresults [177℄. As dis
ussed in Se
. 5.3.2, the theoreti
al phase transition tempera-tures systemati
ally underestimate the experiment. In order to provide a meaningful
omparison of our results to experiment, we res
aled the theoreti
al temperatures asin Ref. [19℄. The bottom x-axis in Figure 5.3 shows the temperatures used in theMonte Carlo simulations while the top x-axis shows the 
orresponding experimentaltemperatures after a linear adjustment of the s
ale in order to mat
h the theoreti
aland experimental phase transition temperatures. Our results are in good agreementwith the results of Gar
ia and Vanderbilt. Both models 
orre
tly predi
t a divergen
eof the diele
tri
 
onstants at the 
ubi
 to tetragonal phase transition. In the tetrag-onal phase, "33 diverges at the transition to the 
ubi
 phase. At room temperature,the theoreti
al value of 120 is in ex
ellent agreement with the experimental value of130. "11 is 
orre
tly predi
ted to diverge at the transition from the tetragonal to the



5.3. STRUCTURAL & DIELECTRIC PROPERTIES 113Figure 5.4: Temperature dependen
e of the piezoele
tri
 
onstants in the 
ubi
 (C)and tetragonal (T) phases of BaTiO3.Our results are 
ompared to the results of thee�e
tive Hamiltonian 
al
ulations of Gar
ia and Vanderbilt (GV) [19℄ and to the ex-periment [177℄. The bottom and top x-axes 
orrespond respe
tively to the theoreti
aland experimental temperatures (see text).
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orthorhombi
 phase. The amplitude of the divergen
e is underestimated by the ef-fe
tive Hamiltonian of Ghosez and 
o-workers. We obtain a value of about 2200 thatunderestimates the experimental value of 4400 by a fa
tor of 2.Figure 5.4 shows the temperature dependen
e of the piezoele
tri
 
oeÆ
ients d31and d33. The temperatures on the top x-axis have been res
aled as des
ribed above.Our simulations and those of Gar
ia and Vanderbilt [19℄ 
orre
tly predi
t d31 and d33to diverge at the transition from the tetragonal to the 
ubi
 phase and to vanish in the
ubi
 phase. At room temperature, the theoreti
al d31 (-33 pC/N) and d33 (105 pC/N)are in good agreement with the experimental values of -33 and 90 pC/N [177℄. In 
aseof the piezoele
tri
 
oeÆ
ient d24 (not shown in Figure 5.4), the agreement betweentheory and experiment is less good. We obtain a value of 42 pC/N that stronglyunderestimates the experimental value of 564 pC/N.



114 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSOR5.4 EO 
oeÆ
ients & refra
tive indi
es5.4.1 FormalismThe prin
ipal refra
tive indi
es, ni, 
an be 
omputed as the square root of the eigen-values of the opti
al diele
tri
 tensor. At �nite temperature, T , we 
an writeh"ij(�r;�)i = Æij + 4�h�(1)ij (�r;�)i: (5.12)Let us write �r and � as �r = h�i+ Æ�r� = h�i+ Æ� (5.13)where Æ�r, Æ� denote the deviations from the average values. If we develop h�(1)ij (�r;�)ias a Taylor expansion about the paraele
tri
 stru
ture, we 
an separate the terms de-pending on h�i and h�i only from those involving also Æ�r and Æ�. At �nite tempera-ture, the diele
tri
 sus
eptibility 
an therefore be expressed ash�(1)ij (�r ;�)i = �(1)ij (h�i; h�i) + h�(1)ij (h�i; h�i; Æ�r ; Æ�)i: (5.14)The �rst term of the right hand side of Eq. (5.14) des
ribes the variations of �(1)ij due tothe average 
rystal latti
e distortions. It is responsible for the dis
ontinuity of ni at thephase transition in ferroele
tri
s su
h as BaTiO3 (see Ref. [188℄). Following Ref. [188℄,we 
onsider terms up to the se
ond order in the Taylor expansion of �(1)ij (h�i; h�i)�(1)ij (h�i; h�i) = �(1)ij (0; 0) +X� ��(1)ij��� �����0;0 h��i+X�;� ��(1)ij���� �����0;0 h���i+12X�;� �2�(1)ij������ �����0;0 h��ih��i+12X�;� X�0;�0 �2�(1)ij�������0�0 �����0;0 h���ih��0�0i+X� X�;� �2�(1)ij������� �����0;0 h��ih��� i: (5.15)In Eq. (5.15), the �rst-order derivative of �(1)ij with respe
t to �� and the mixedse
ond-order derivatives of �(1)ij with respe
t to �� and ��� are zero by symmetry 3.3The soft mode in the paraele
tri
 phase is polar (infrared a
tive). The quantities ��(1)ij��� and�2�(1)ij������� are related to the Raman sus
eptibilities of the soft mode in di�erent 
entrosymmetri

on�gurations of BaTiO3. They are zero by symmetry be
ause in a 
entrosymmetri
 
rystal, a phononmode 
annot be simultaneously Raman and infrared a
tive.
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ond term in the right hand side of Eq. (5.14) represents the variations of �(1)ijdue to thermal 
u
tuations and to their 
orrelations [189℄. It determines the variationsof ni in the paraele
tri
 phase. This term is diÆ
ult to 
ompute in pra
ti
e. However,in usual ferroele
tri
s su
h as BaTiO3, the variations of ni in the paraele
tri
 phase aresmall 
ompared to their variation at the phase transition. Following Ref. [188℄, we willnegle
t the se
ond term of the right hand side of Eq. (5.14) sin
e we are interested in thevariation of ni below the phase transition temperature (T
) where we expe
t the �rstterm to dominate. We note that this approximation is not always valid. In disorderedferroele
tri
s su
h as Pb(Mg1=3Nb2=3)O3 (PMN) or Pb(Zn1=3Nb2=3)O3 (PZN), largeanomalies of ni have been observed above T
 where h�i and h�i are zero [180, 190℄.Consequently, the �rst term of Eq. (5.14) is 
onstant and these anomalies are relatedto the se
ond term.The linear EO e�e
t is related to the �rst-order 
hange of the opti
al diele
tri
 ten-sor indu
ed by a stati
 or low frequen
y ele
tri
 �eld, E . Using an approa
h similar tothe one presented in Se
. 3.3.4, the un
lamped EO 
oeÆ
ient, r�ij
 , 
an be de
omposedinto three terms: r�ij
 = relij
 � 4�n2in2j 3X�=1 ��(1)ij��� �����h�i;h�i �h��i�E
� 4�n2in2j 3X�;�=1 ��(1)ij���� �����h�i;h�i �h���i�E
 : (5.16)The �rst term is a bare ele
troni
 part. Its value is assumed independent of temperaturein the ferroele
tri
 phase and equal to that reported in Table 4.16. It vanishes in the
ubi
 phase. The last two terms 
orrespond to the ioni
 and strain 
ontributions 4.They depend on (i) the variation of h�i and h�i in the �eld and (ii) the variation of �(1)ijwith atomi
 displa
ements and strains. The relaxations of the atomi
 positions andma
ros
opi
 strains within the �eld are related to the stati
 diele
tri
 sus
eptibilitytensor �(1)�
 and the piezoele
tri
 tensor d
�� :�h��i�E
 = 
0Z��(1)�
 (5.17)�h���i�E
 = d
�� : (5.18)They 
an be 
omputed from Eqs. (5.10) and (5.11). The dependen
e of �(1)ij on h�iand h�i 
an be estimated through Eq. (5.15):��(1)ij��� �����h�i;h�i = 3X�=1 �2�(1)ij������ �����0;0 h��i (5.19)4This de
omposition is di�erent from the one of Se
. 3.3.4. As it is dis
ussed in Appendix B, thederivative ����E
 involves a 
oupling with the strain that is not in
luded in the ioni
 
ontribution of Se
.3.3.4.



116 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSOR��(1)ij���� �����h�i;h�i = ��(1)ij���� �����0;0 + 3X�0;�0=1 �2�(1)ij�������0�0 �����0;0 h��0�0i: (5.20)5.4.2 Determination of parametersIn Se
. 5.4.1, we used a se
ond-order Taylor expansion to des
ribe the dependen
e of�(1)ij on atomi
 positions and strains. In 
ase of the strain, �, this quadrati
 approxi-mation is reasonable sin
e the unit 
ell deformations at the phase transition are rathersmall in most ferroele
tri
s. In 
ontrast, the internal distortions are larger and thepurely quadrati
 dependen
e of �(1)ij on h�i is questionable. To 
he
k this hypothesis,we 
omputed the opti
al diele
tri
 
onstants of BaTiO3 as a fun
tion of atomi
 dis-pla
ements along the soft-mode eigenve
tor polarized along z while keeping 
onstantthe 
ubi
 latti
e parameters. Figure 5.5 shows the dependen
e of "xx and "zz on thepolarization asso
iated with these distortions. We also show the 
orresponding double-well potential. The variation of " appears highly anharmoni
. We had to use an 8thorder polynome to �t the data in Figure 5.5 (a) [solid line℄ and the 
urvature of "(Pz)de
reases as Pz in
reases. Consequently, a se
ond-order expansion around the 
ubi
phase will lead to a strong overestimate of the value of "zz in the tetragonal phase ofBaTiO3.In spite of that, the use of a quadrati
 approximation may be justi�ed in a di�erentway. As dis
ussed in Se
. 5.3.2, h�i and h�i are dis
ontinuous at the phase transitionof BaTiO3 and their temperature dependen
e in the tetragonal phase is small. Inpra
ti
e, we 
an use the formula�2�(1)ij������ �����0;0 �= 1�F� ��(1)ij��� ������F ;�=0 ; (5.21)where �F denotes the position of the minimum of the double well potential in thepositive z-dire
tion, as an approximation of the 
oeÆ
ients of the quadrati
 terms inthe se
ond-order Taylor expansion of �(1)ij (h�i; h�i): The variation of "xx and "zz that
orresponds to this quadrati
 approximation is shown by the dotted lines in Figure 5.5(a).For the r�ij
 , Eq. (5.21) is a

urate around the tetragonal phase5 sin
e the tangentsto the solid 
urve and the 
orresponding dotted 
urve in Figure 5.5 (a) have the sameslope at the minima of the double well potential. Indeed, Eq. (5.21) is equivalent to alinear approximation of ��(1)ij =��� around these minima��(1)ij��� �����h�i;h�i �= 3X�=1 1�F� ��(1)ij��� �������F ;�=0 h��i: (5.22)5For the other phases, it might be ne
essary to go beyond the se
ond-order Taylor expansion of�(1)ij (h�i; h�i) and to 
ompute the exa
t values of the derivatives of �(1)ij .



5.4. EO COEFFICIENTS & REFRACTIVE INDICES 117Figure 5.5: Dependen
e of the opti
al diele
tri
 
onstants (a) and energy (b) on thepolarization in BaTiO3. The points 
orrespond to the values 
omputed for variousinternal distortions. The solid lines 
orrespond to a polynomial �t and the dotted linesto the quadrati
 approximation explained in the text.

-0.015

-0.01

-0.005

 0

 0.005

 0.01

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Pz (C/m2)

E
ne

rg
y 

(e
V

)

(b)

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

O
pt

ic
al

 d
ie

le
ct

ric
 c

on
st

an
t (a)

εxx
εzz

For n1 and n3, Eq. (5.21) reprodu
es the 
orre
t behavior but leads to an overes-timate of n3 as 
an be seen in Figure 5.5 (a).The derivatives of �(1)ij appearing in Eq. (5.15) are 
omputed within the LDA. These
ond order derivative of �(1)ij , as de�ned in Eq. 5.21, are 
omputed on a 10� 10�10 grid of spe
ial k-points. We use the 2n + 1 theorem to 
ompute the �rst-orderderivatives of �(1)ij in a stru
ture where the soft-mode eigenve
tor was frozen with anamplitude 
orresponding to the double-well potential minimum, while keeping 
onstantthe experimental 
ubi
 latti
e. To take into a

ount the variations of the soft modeeigenve
tor at the phase transition, these �rst-order derivatives were proje
ted on theeigenve
tors of the soft E and A1 modes in the tetragonal phase. The strain derivativesin Eq. (5.15) are 
omputed from �nite di�eren
es on a 6�6�6 grid of spe
ial k-points.



118 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSORTable 5.4: First- and se
ond-order derivatives of �(1)ij . The se
ond-order derivativeswith respe
t to � are reported in 10�5 bohr�2. The strain derivatives are dimensionless.They are reported in Voigt notations.��(1)11 =��1 -0.0657804��(1)22 =��1 0.2680479��(1)23 =��4 0.1026835��(1)11 =��1��1 0.7692116��(1)22 =��1��1 0.2204320��(1)11 =��1��2 1.3173122��(1)33 =��1��2 0.2063500��(1)23 =��1��4 -0.1142776��(1)31 =��1��5 0.2633623��(1)11 =��4��4 0.6583961��(1)22 =��4��4 3.2084150��(1)12 =��4��5 -0.1149256��(1)33 =��3��3 -3.4355776��(1)22 =��3��3 -1.1950726��(1)32 =��3��2 -0.9530569The values of all independent 
oeÆ
ients appearing in Eq. (5.15) are summarized inTable 5.4.5.5 ResultsFigure 5.6 shows the prin
ipal refra
tive indi
es (a) and the stress-free EO 
oeÆ
ients(b) in the 
ubi
 and tetragonal phases of BaTiO3. As dis
ussed in Se
. 5.3, thepredi
ted T
's do not perfe
tly mat
h the experimental values. In order to obtain
al
ulated values 
omparable with experimental values, we res
ale the temperatures asin Se
. 5.3.3. The bottom x-axis shows the temperatures used in the MC simulationswhile the top x-axis shows the 
orresponding experimental temperatures after a linearadjustment of the s
ale in order to mat
h the theoreti
al and experimental T
's.The LDA value of the refra
tive index in the 
ubi
 phase (n
 = 2.59) is about 7 %larger than the experimental value [191℄ (2.4). In order to 
ompare the theoreti
al andexperimental values of n1 and n3 in the tetragonal phase, we report in Figure 5.6 (a)the di�eren
e between the refra
tive indi
es of the 
ubi
 and tetragonal phases. Theinternal distortions related to the spontaneous polarization mainly determine the vari-ation of n1 and n3 while the spontaneous strain only plays a minor role. In parti
ular,



5.5. RESULTS 119Figure 5.6: Temperature dependen
e of the refra
tive indi
es (a) and EO 
oeÆ
ients(b) in the 
ubi
 (C) and tetragonal (T) phases of BaTiO3. The open (solid) symbols
orrespond to the theoreti
al (experimental [177, 191℄) values. The bottom and topx-axes 
orrespond respe
tively to the theoreti
al and experimental temperatures (seetext).
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the dis
ontinuous evolution of n1 and n3 at the phase transition is due to the dis
on-tinuous evolution of the spontaneous polarization and the spontaneous strain dis
ussedin Se
. 5.3.2. The values of �2�(1)33 =��23 and �2�(1)11 =��23 [see Table 5.4℄ are negative.Consequently, n1 and n3 are smaller in the tetragonal phase than in the 
ubi
 phaseand they de
rease as the temperature de
reases. Be
ause the �rst 
oeÆ
ient is abouttwo times more negative than the se
ond the variation of n3 is more pronoun
ed thanthat of n1. At room temperature, the e�e
tive Hamiltonian predi
ts a large negativebirefringen
e in agreement with the experiment although the theoreti
al value (-0.095)is somewhat more negative than the experimental value (-0.056 [191℄).The model Hamiltonian properly reprodu
es the �nite temperature dependen
eof the EO tensor. The three 
oeÆ
ients vanish in the 
ubi
 phase as requested by
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ubi
 ! tetragonal transition while r�42diverges at the tetragonal! orthorhombi
 transition. A

ording to Eqs. (5.16), (5.17)and (5.18), these divergen
es have the same origin as those of the stati
 diele
tri
 andpiezoele
tri
 tensors. At room temperature, the theoreti
al r�13 (25 pm/V) and r�33(122 pm/V) are in reasonable agreement with the experimental values [177℄ of 8 and105 pm/V. r�42 is 
orre
tly predi
ted to be about one order of magnitude larger thanr�13 and r�33 even if our result (622 pm/V) underestimates the experimental value of1300 pm/V (not shown in Figure 5.6 (b)). Part of this dis
repan
y 
omes from thetheoreti
al value of the stati
 diele
tri
 
onstant "11 (2600) that underestimates theexperimental value (4400) [177℄ as dis
ussed in Se
. 5.3.3.5.6 Model of DiDomeni
o and WempleWe 
an now 
ompare our approa
h with the model of DiDomeni
o and Wemple [182℄
onventionally used to explain the temperature dependen
e of opti
al properties inferroele
tri
s. In this latter model, the linear EO e�e
t is des
ribed as a quadrati
e�e
t biased by the spontaneous polarization. In the paraele
tri
 phase, the linear EOtensor is zero by symmetry and the lowest-order EO e�e
t is quadrati
. Using thepolarization P� as the basi
 variable, we 
an write� �"�1�ij = 3X�;�=1 gij��P�P� (5.23)where gij�� is the quadrati
 polarization-opti
 tensor. In the ferroele
tri
 phase, P�
an be expressed as the sum of a spontaneous and an indu
ed partP� = Ps� + 3X�=1�(1)��E�: (5.24)With the hypothesis that (i) the g-
oeÆ
ients remain 
onstant at the phase transitionand (ii) the dependen
e of the opti
al diele
tri
 tensor on P is purely quadrati
, weobtain the following expressions in the ferroele
tri
 phaserij
 = 2 3X�;�=1 gij��Ps��(1)�
 (5.25)"ij(�F ; �F ) = "ij(0; 0)� n2in2j 3X�;�=1 gij��Ps�Ps� : (5.26)As demonstrated above, in the 
ase of BaTiO3, the dependen
e of "ij on the polar-ization is highly anharmoni
 and a similar behavior in other ferroele
tri
s may beexpe
ted. Consequently, the use of Eqs. (5.25) and (5.26) is questionable. If we 
om-pute the g-
oeÆ
ients from a similar approximation as in Eq. (5.21), we 
an justify
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ond-order 
lamped polarization opti
 
oeÆ
ients gij�� (10�2 m4 C�2)of 
ubi
 BaTiO3. (i,j,�,�) Present Exp. [183℄ Exp. [87℄(3,3,3,3) 17.8 15 � 3 10(2,2,3,3) 5.0 3.8 � 0.6 3(3,2,3,2) 4.5 7 � 1.5 9the use of Eqs. (5.25) and (5.26). However, the so 
omputed g-
oeÆ
ients 
an no morebe identi�ed to the quadrati
 polarization-opti
 
oeÆ
ients of the paraele
tri
 phase:a

ording to Eq. (5.22), they de�ne the slope of "ij(P) in the ferroele
tri
 phase.With the approximation that the ferroele
tri
 distortion is restri
ted to the softmode eigenve
tor, the g-
oeÆ
ients 
an be related to the se
ond-order derivatives of�(1)ij as given by Eq. (5.21)gij�� = �4�n2in2j 
202(Z�)2 �2�(1)ij������ �����0;0 : (5.27)The theoreti
al values of the 
lamped gij�� reported in Table 5.5 are 
lose to theexperimental values. On the one hand, this agreement gives a further justi�
ation of theapproximations used in our approa
h and validates the use of an e�e
tive Hamiltonianto predi
t opti
al properties. On the other hand, Eq. (5.27) may be used to 
omputethe gij�� 
oeÆ
ients in situations, where no experimental data are available.5.7 Con
lusionsIn this Chapter, we have presented an eÆ
ient method to 
ompute the temperaturedependen
e of the EO 
oeÆ
ients and the refra
tive indi
es of ferroele
tri
s from a�rst-prin
iples e�e
tive Hamiltonian. We have su

essfully applied this formalism toBaTiO3 in its tetragonal phase.We �rst des
ribed the BaTiO3 e�e
tive Hamiltonian used in this study. We re-ported the parameters of the latti
e Wannier fun
tion and of the energy expansion andwe showed that this e�e
tive Hamiltonian 
orre
tly predi
ts the �nite temperature de-penden
e of the spontaneous polarization, the spontaneous strain, the stati
 diele
tri
tensor and the piezoele
tri
 tensor.We then proposed an extension of the e�e
tive Hamiltonian to study the tempera-ture dependen
e of the EO 
oeÆ
ients and indexes of refra
tion of ferroele
tri
s. Weshowed that the dependen
e of the opti
al diele
tri
 tensor on the stru
tural parame-ters is highly anharmoni
. This result a priori invalidates the usual hypothesis, whi
hassumes a quadrati
 dependen
e of the opti
al diele
tri
 
onstants on these parameters.



122 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSORNevertheless, we showed that it is possible to justify the use of a quadrati
 approxi-mation by using a modi�ed expression of the se
ond-order terms, whi
h in
ludes mostof the anharmoni
 dependen
e.We applied this formalism to BaTiO3 in its tetragonal phase. The dis
ontinuousevolution of the refra
tive indexes at the transition from the 
ubi
 to the tetragonalphase and the negative birefringen
e at room temperature 
an be explained from theinternal distortions related to the spontaneous polarization and the negative valuesof the parameters �2�(1)ij =������ . Our model 
orre
tly predi
ts the EO 
oeÆ
ientsto vanish in the 
ubi
 phase and to diverge at the phase transitions. These diver-gen
es have the same origin as the divergen
es of the stati
 diele
tri
 and piezoele
tri

oeÆ
ients.We 
ompared our formalism to the model of DiDomeni
o and Wemple, whi
h de-s
ribes the linear EO e�e
t in ferroele
tri
s as a quadrati
 e�e
t biased by the sponta-neous polarization. Although we showed that the dependen
e of the opti
al diele
tri

onstants on the polarization is highly anharmoni
, this model 
an be justi�ed if wemodify the de�nition of the quadrati
 polarization opti
 
oeÆ
ients to take into a
-
ount higher-order e�e
ts.It is interesting to note that models similar to the model of DiDomeni
o and Wem-ple are used to des
ribe the piezoele
tri
 e�e
t in ferroele
tri
s as a quadrati
 e�e
tbiased by the spontaneous polarization. These models assume that the strain in theparaele
tri
 phase depends quadrati
ally on the polarization [4℄ (ele
trostri
tive e�e
t).The results presented in this Chapter 
all into question the hypothesis of a quadrati
dependen
e. We must therefore be 
areful when we apply su
h models in pra
ti
alsituations su
h as the study of fatigue in ferroele
tri
s [192℄.5.8 Referen
esThe formalism and results presented in this Chapter have been partly dis
ussed in thefollowing papers:� M. Veithen and Ph. Ghosez, Temperature dependen
e of the ele
tro-opti
 tensorand refra
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ationin Phys. Rev. B.� W. Zhong, D. Vanderbilt and K. M. Rabe, Phase Transitions in BaTiO3 fromFirst Prin
iples, Phys. Rev. Lett. 73, 1861 (1994).� A. Gar
ia and D. Vanderbilt, Ele
trome
hani
al behavior of BaTiO3 from �rstprin
iples, Appl. Phys. Lett. 72, 2981 (1998).� U. V. Waghmare and K. M. Rabe, Ab initio statisti
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tri
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Con
lusions and Perspe
tivesFirst-prin
iples 
al
ulations performed within density fun
tional theory are a powerfultool to study the ground-state and linear response properties of materials. In this work,we extended this formalism to study the ele
tron lo
alization tensor and the nonlin-ear response to ele
tri
 �elds of ferroele
tri
s and other insulators. The te
hniqueswe developed are based on re
ent theoreti
al advan
es su
h as the modern theory ofpolarization, the theory of Wannier fun
tions, the e�e
tive Hamiltonian approa
h andthe density fun
tional perturbation theory. Our work 
an be summarized as follows.As a �rst step, we studied the ele
tron lo
alization tensor. This formalism makes itpossible to quantify the degree of ele
tron lo
alization in materials. We set up a band-by-band de
omposition of the lo
alization tensor that allows to study the lo
alization ofele
trons o

upying individual groups of bands in a solid and to over
ome the problemsin the de�nition of the lo
alization tensor in pseudopotential 
al
ulations. In 
ontrastto the polarization or the Born e�e
tive 
harges, whi
h are, in the parallel gauge, equalto the sum of the 
ontributions of the individual bands, we had to distinguish betweenthe varian
e and the 
ovarian
e in the band-by-band de
omposition of the lo
alizationtensor. We applied this formalism to several oxides and we showed that the band-by-band de
ompositions of the Born e�e
tive 
harges and the lo
alization tensor aresensitive probes to study the ele
troni
 stru
ture of materials. In addition, we observedonly small variations of ele
tron lo
alization during the phase transitions of BaTiO3and LiNbO3. This surprising result was explained in terms of the ele
troni
 stru
tureof these 
ompounds as interpreted in the Harrison model.As a se
ond step, we presented two methods to study the nonlinear responses ofinsulators to ele
tri
 �elds. The �rst method 
onsiders the response to in�nitesimal�elds. It allows a systemati
 study of nonlinear response properties from density fun
-tional perturbation theory. However, in order to use this te
hnique, ea
h responseproperty and approximation of the ex
hange-
orrelation energy has to be implementedexpli
itly. We reported the LDA expressions of the nonlinear opti
al sus
eptibilities,the ele
tro-opti
 
oeÆ
ients and the Raman s
attering eÆ
ien
ies of transverse andlongitudinal opti
al phonons. The se
ond method 
onsiders the response to �nite ele
-tri
 �elds. It 
onsists in the iterative minimization of an ele
tri
 �eld dependent energyfun
tional. Various linear and nonlinear response properties 
an be 
omputed from �-nite di�eren
es and do not require any additional implementations. Moreover, most125



126 CONCLUSIONS AND PERSPECTIVESapproximations of the ex
hange-
orrelation energy available for ground-state 
al
ula-tions at zero ele
tri
 �eld 
an also be used in �nite ele
tri
 �eld 
al
ulations.As a third step, we applied both methods to various ferroele
tri
s and semi
on-du
tors. The main results of this study 
an be summarized as follows. First, thetwo methods 
an equivalently be used to study the nonlinear response of insulatorsto ele
tri
 �elds. However, the perturbative approa
h within the PEAD formulation
onverges faster with respe
t to the k-point sampling than the DAPE formulation orthe �nite ele
tri
 �eld te
hnique. Se
ond, by 
omparing theoreti
al infrared os
illatorstrengths and Raman s
attering eÆ
ien
ies to the experiment, we were able to 
larifysome of the ambiguities in the assignation of the E-modes of LiNbO3. This showsthat the theoreti
al 
omputation of Raman spe
tra is a powerful tool to interpret ex-perimental Raman spe
tra. Third, the amplitude of the ele
tro-opti
 
oeÆ
ients inBaTiO3 and LiNbO3 is mainly determined by the ioni
 
ontribution of the su

essor ofthe soft mode in the ferroele
tri
 phase that 
ombines a high polarity, a high Ramansus
eptibility and a low frequen
y. In 
ontrast, the 
ontribution of a similar mode inPbTiO3 is mu
h weaker be
ause of its low Raman sus
eptibility. This result underlinesthe important 
ontribution of the soft mode to the ele
tro-opti
 
oeÆ
ients of BaTiO3and LiNbO3 in line with its well-known 
ontributions to the diele
tri
 
onstants andwith its dominant role in the ferroele
tri
 phase transition of these materials. It alsopoints out the distin
t behavior of PbTiO3, in spite of its perovskite stru
ture similarto BaTiO3.As a fourth step, using the fa
t that the ele
tro-opti
 
oeÆ
ients in BaTiO3 andLiNbO3 are dominated by the su

essor of the soft mode in the ferroele
tri
 phase,we developed in Chapter 5 a model to study the �nite temperature dependen
e ofopti
al properties of ferroele
tri
s. This model 
onsists in an extension of the standarde�e
tive Hamiltonian to take into a

ount the dependen
e of the opti
al diele
tri

onstants on atomi
 positions and strains. We applied the model to BaTiO3 in itstetragonal phase and we showed that it 
orre
tly predi
ts the temperature dependen
eof the ele
tro-opti
 
oeÆ
ients and the refra
tive indexes. In addition, we were ableto give a mi
ros
opi
 interpretation of the model of DiDomeni
o and Wemple and toexplain why this model is su

essful in many situations although the dependen
e of theopti
al diele
tri
 
onstants on the polarization is not quadrati
 as erroneously assumed.The theoreti
al advan
es presented in Chapter 2 and 3 have been implemented inthe abinit 
ode. They are therefore freely a

essible for future investigations and opennew perspe
tives.A �rst potential appli
ation is the systemati
 
omputation of Raman s
atteringeÆ
ien
ies. Together with the infrared os
illator strengths, the theoreti
al Ramans
attering eÆ
ien
ies 
an help to study the latti
e dynami
s of 
omplex materials fromexperimental infrared and Raman spe
tros
opy.A se
ond appli
ation is the systemati
 
omputation of ele
tro-opti
 
oeÆ
ientsof 
omplex materials in order to �nd better materials for opti
al appli
ations. We
an suggest two �elds that might be interesting to investigate in the future. First,disordered ferroele
tri
s su
h as PZN-PT are known to exhibit ex
ellent piezoele
tri




CONCLUSIONS AND PERSPECTIVES 127properties. It has been shown re
ently that these materials also have unusual ele
tro-opti
 properties [193℄ that might be interesting to study from �rst-prin
iples. Se
ond,the stru
ture and polarization of thin ferroele
tri
 �lms 
an be tuned by epitaxial strainindu
ed by the latti
e mismat
h between the ferroele
tri
 �lm and the substrate. Ithas been suggested re
ently that this strain engineering 
an also be used to tune theele
tro-opti
 properties of su
h �lms [47℄.Con
erning the potential theoreti
al developments, we mentioned above that the�nite ele
tri
 �eld te
hnique allows the use of most approximations of the ex
hange-
orrelation energy that are available for zero-�eld ground-state 
al
ulations. This te
h-nique therefore makes it possible to study the e�e
t of these approximations on thelinear and nonlinear opti
al sus
eptibilities in a systemati
 way.Finally, our work 
an also serve as a basis for further implementations in the abinit
ode in order to 
ompute anharmoni
 for
e 
onstants [58℄, the tunability of the diele
-tri
 
onstant [140℄, or the magnetoele
tri
 
oupling 
oeÆ
ients of multiferroi
s [51℄. Inaddition, the lo
alization tensor in 
onne
tion with the �nite ele
tri
 �eld te
hniquemight be used to study the diele
tri
 breakdown in solids [116℄.
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Appendix ARelation between thelo
alization tensor and theopti
al 
ondu
tivityThe opti
al 
ondu
tivity (imaginary part of the opti
al diele
tri
 tensor) of a givenmaterial is related to its absorption 
oeÆ
ient, the probability of the valen
e ele
tronsto perform opti
al transitions to the uno

upied 
ondu
tion bands under the in
uen
e ofan ele
tromagneti
 �eld. If we 
onsider only "verti
al" band-to-band transitions (thusnegle
ting elementary ex
itations like the ele
tron-hole intera
tion or the ele
tron-phonon 
oupling) this quantity writes in the dipolar approximation [101℄"00��(!) = 4�2e2m2e!2�h NXn=1 1Xm=N+1ZBZ 2dk(2�)3 p�nm(k)p�mn(k)Æ (!mn(k)� !) (A.1)where me is the ele
tron mass, pnm(k) = �i�hh nkjr mki and �h!mn(k) = "mk�"nk.The matrix elements of the momentum operator 
an equivalently be expressed aspnm(k) = �me!nm(k)hunkj�kumki: (A.2)It has been shown by Souza, Wilkens and Martin [13℄ that "00 is related to thelo
alization tensor by the relationZ 10 "00��(!) d! = 8�2e2N�h
0 hr�r�i
 : (A.3)In order to see the e�e
t of the band by band de
omposition, we will write "00 as"00��(!) = NgXi=18<:"00��(!;Gi) + NgXj 6=i "00��(!;Gi;Gj)9=; (A.4)129



130 APPENDIX A. OPTICAL CONDUCTIVITYwhere "00��(!;Gi) = 4�2e2m2e!2�h Xn2Gi 1Xm=1m62Gi ZBZ 2dk(2�)3 p�nm(k)p�mn(k)Æ (!mn(k)� !) (A.5)"00��(!;Gi;Gj) = �4�2e2m2e!2�h Xn2Gi Xm2Gj ZBZ 2dk(2�)3 p�nm(k)p�mn(k)Æ (!mn(k)� !) : (A.6)The �rst sum of Eq. (A.5) has to be taken over the bands of group Gi while these
ond sum extends over all bands (uno

upied or not) ex
ept those of group Gi. InEq. (A.6), the two sums extend over the bands of group Gi and Gj . It is easy to showthat "00��(!;Gi) and "00��(!;Gi;Gj) are related to the varian
es and 
ovarian
es by therelations Z 10 "00��(!;Gi)d! = 8�2e2ni�h
0 hr�r�i
 (Gi) (A.7)Z 10 "00��(!;Gi;Gj)d! = 8�2e2ninj�h
0 hr�r�i
 (Gi;Gj): (A.8)Thanks to these de�nitions, the physi
al meaning of the 
ovarian
e be
omes now ob-vious: If the total lo
alization tensor was simply the sum of the varian
es hr�r�i
 (Gi),the expression of the diele
tri
 tensor (A.1) would not only 
ontain transitions betweeno

upied and uno

upied states, but also transitions between o

upied states them-selves. It is by adding the 
ovarian
es hr�r�i
 (Gi;Gj) that one 
ompensates the e�e
tof these forbidden transitions in order to get a physi
ally 
orre
t quantity.



Appendix BExpressions of the 
lampedand un
lamped EO tensorsB.1 Ma
ros
opi
 approa
hAs dis
ussed in Se
. 3.3.4, the opti
al properties of a 
ompound are modi�ed byan ele
tri
 �eld E
 or a me
hani
al 
onstraint (a stress ��� or a homogeneous strain���). At linear order, the variations of "�1ij 
an be des
ribed using either the variables(E
 ; ���) or (E
 ; ���) [173,183℄�("�1)ij = 3X
=1 r�ij
E
 + 3X�;�=1�ij����� ; (B.1)�("�1)ij = 3X
=1 r�ij
E
 + 3X�;�=1}ij����� ; (B.2)where r�ij
 and r�ij
 are respe
tively the 
lamped (strain-free) and un
lamped (stress-free) EO 
oeÆ
ients, �ij�� are the elasto-opti
 (strain-opti
) 
oeÆ
ients and }ij��are the piezo-opti
al (stress-opti
al) 
oeÆ
ients. In order to relate Eqs. (B.1) and(B.2), we 
an express the strain as beeing indu
ed by the stress or by the ele
tri
 �eld(
onverse piezoele
tri
 e�e
t)��� = 3X�0;�0=1S���0�0��0�0 + 3X
=1 d
��E
 ; (B.3)where S���0�0 are the elasti
 
omplian
es and d
�� the piezoele
tri
 strain 
oeÆ
ients.If we assume, for example, that the unit 
ell is free to relax within the ele
tri
 �eld(stress-free me
hani
al boundary 
onditions) we 
an either use Eq. (B.2) (in whi
h
ase the se
ond term of the right-hand side is zero) or Eq. (B.1) to 
ompute �("�1)ij .131



132 APPENDIX B. CLAMPED & UNCLAMPED EO TENSORIn the latter 
ase, the strain indu
ed by the ele
tri
 �eld 
an be obtained from these
ond term of the right-hand side of Eq. (B.3)�("�1)ij = 3X
=1 r�ij
E
= 3X
=1 r�ij
E
 + 3X�;�=1 3X
=1�ij��d
��E
 : (B.4)Using this identity, we obtain the following relation between the un
lamped and the
lamped EO 
oeÆ
ients r�ij
 = r�ij
 + 3X�;�=1�ij��d
�� : (B.5)B.2 Mi
ros
opi
 approa
hIn order to derive the expressions of the 
lamped and un
lamped EO tensor of Se
.3.3.4, we use a Taylor expansion of the ele
tri
 enthalpy [194℄ F . Similar developmentshave already been applied to determine the latti
e 
ontribution of the stati
 diele
tri
tensor and of the piezoele
tri
 tensor [195, 196℄. They are based on an expansion ofF up to the se
ond order in the atomi
 
oordinates R��, the homogeneous strain ���and the ma
ros
opi
 ele
tri
 �eld E
 . In this se
tion, we extend these developments tothe third order.The ele
tri
 enthalpy of a solid in an ele
tri
 �eld is obtained by the minimizationF (E) = minR;� F (R; �;E) : (B.6)We denote R(E), �(E) the atomi
 positions and the strain that minimize F at 
onstantE and R0, �0 (= 0) their values at E = 0. For small �elds, we 
an expand the fun
tionF (R; �;E) in powers of E around E = 0:F (R; �; E) = F (R; �; 0)�
0 3Xi=1 Pi (R; �) Ei � 
08� 3Xi;j=1 "ij (R; �) EiEj�
03 3Xi;j;k=1�(2)ijk (R; �) EiEjEk + � � � (B.7)where 
0 is the volume of the primitive unit 
ell in real spa
e and P (R; �), "ij (R; �)and �(2)ijk (R; �) are the ma
ros
opi
 polarization, ele
troni
 diele
tri
 tensor and non-linear opti
al 
oeÆ
ients at zero ma
ros
opi
 ele
tri
 �eld and for a given 
on�guration(R, �). At non-zero �eld, these quantities are de�ned as partial derivatives of F with
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t to E . For example, the ele
tri
 �eld dependent ele
troni
 diele
tri
 tensor 
anbe 
omputed from the expression"ij (R(E); �(E); E) = � 4�
0 �2F�Ei�Ej ����R(E);�(E);E : (B.8)Let ��� = R�� � R0;�� be the displa
ement of atom � along dire
tion � and���� (����) the �rst-order modi�
ation of the atomi
 position (strain) indu
ed by aperturbation � ���� = ������ �����=0 ; ���� = ������ �����=0 : (B.9)In the dis
ussion that follows, we will study the e�e
t of an ele
tri
 �eld perturbationand a strain perturbation on the ele
tri
 enthalpy F in order to obtain the formulasto 
ompute the elasto-opti
 
oeÆ
ients as well as the 
lamped and the un
lamped EOtensors.B.2.1 Elasto-opti
 
oeÆ
ients (E = 0)The elasto-opti
 tensor 
an be 
omputed from the total derivative of the diele
tri
tensor with respe
t to ��� at zero ele
tri
 �eldd"ij (R; �; 0)d��� ����R0;�0 = �"ij (R; �)���� ����R0;�0 + 4�X�� ��(1)ij (R; �)���� �����R0;�0 ������ : (B.10)The derivative in the �rst term of the right-hand side is 
omputed 
onsidering theioni
 
ores as arti�
ially 
lamped at their equilibrium positions. The remaining termsrepresent the ioni
 
ontribution to the elasto-opti
 tensor. They involve derivatives ofthe linear diele
tri
 sus
eptibility �(1)ij with respe
t to the atomi
 positions that have tobe multiplied by the �rst-order strain indu
ed atomi
 displa
ements ������ [Eq. (B.9)℄.To 
ompute these quantities we use the fa
t that F is minimum at the equilibrium foran imposed strain �. This 
ondition implies�F (R; �)���� ����R(�);� = 0: (B.11)Sin
e we are interested in �rst-order atomi
 displa
ements we 
an write ���(�) =P3�;�=1 ������ ��� +O(�2): Solving the extremum equation (B.11) to the linear order in�, we obtain X�0;�0 �2F (R; �)�������0�0 ����R0;�0 �����0�0 = � �2F (R; �)�������� ����R0;�0 : (B.12)The se
ond derivatives on the left side of Eq. (B.12) de�ne the matrix of interatomi
for
e 
onstants at zero ma
ros
opi
 ele
tri
 �eld whi
h enables the 
omputation of the
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ies !m and eigendispla
ements Um(��). By de
omposing������ in the basis of the zone-
enter phonon-mode eigendispla
ements������ =Xm ����m Um(��) (B.13)and using Eqs. (3.20), (3.21) we derive the following expression for the �rst-orderstrain indu
ed atomi
 displa
ements����m = �1!2m �2F (R; �)������m ����R0;�0 ; (B.14)where �2F (R; �)������m ����R0;�0 =X�;� �2F (R; �)�������� ����R0;�0 Um(��): (B.15)If we introdu
e Eqs. (B.13) and (B.14) into Eq. (B.10) and use the de�nition of theRaman sus
eptibility Eq. (3.24) and the transformation Eq. (3.33), we �nally obtainthe formula to 
ompute the elasto-opti
 tensor�ij�� = �1n2in2j �"ij (R; �)���� ����R0;�0+ 4�n2in2jp
0 Xm �mij!2m �2F (R; �)������m ����R0;�0 : (B.16)To simplify, we write Eq. (B.16) in the prin
ipal axes of the 
rystal under investigation.A more general expression 
an be obtained from Eq. (3.33).Eq. (B.16) is di�erent from the approa
h used previously by Detraux and Gonzeto study the elasto-opti
 tensor in �-quartz [86℄. The authors of Ref. [86℄ used �nitedi�eren
es with respe
t to strains to 
ompute the the total derivative of "ij . In theirapproa
h, the atoms where relaxed to their equilibrium positions in the strained 
on-�gurations. In 
ase of Eq. (B.16), the �rst term of the right-hand side is 
omputed at
lamped atomi
 positions while the e�e
t of the strain-indu
ed atomi
 relaxations istaken into a

ount by the se
ond term.B.2.2 Clamped EO 
oeÆ
ients (� = 0)The 
lamped EO tensor 
an be 
omputed from the total derivative of the ele
tri
 �elddependent diele
tri
 tensor Eq. (B.8) with respe
t to Ed"ij (R; �0;E)dE
 ����R0;E=0 = �"ij (R0; �0;E)�E
 ����E=0 + 4�X�� ��(1)ij (R; �0)���� �����R0 �E
��: (B.17)



B.2. MICROSCOPIC APPROACH 135The derivative in the �rst term is 
omputed 
onsidering the ioni
 
ores as arti�
ially
lamped at their equilibrium positions. This term represents the bare ele
troni
 
ontri-bution to the EO tensor that 
an be 
omputed from the nonlinear opti
al 
oeÆ
ients�"ij (R0; �0;E)�E
 ����E=0 = 8��(2)ijk���k=
 (B.18)related to a third-order partial derivative of F�(2)ijk = �(2)ijk (R0; �0) = �12
0 �3F (R0; �0;E)�Ei�Ej�Ek ����E=0 : (B.19)The remaining terms in Eq. (B.17) represent the ioni
 
ontribution to the EO tensor.They involve derivatives of the linear diele
tri
 sus
eptibility �(1)ij with respe
t to theatomi
 positions that have to be multiplied by the �rst-order ele
tri
 �eld indu
edatomi
 displa
ements �E
�� [Eq. (B.9)℄. To obtain these quantities, we pro
eed the sameway as in 
ase of the elasto-opti
 tensor. Using the equilibrium 
ondition�F���� = 0 = �F (R; �0; 0)���� ����R(E) � 
0 3Xi=1 �Pi (R; �0)���� �����R(E) Ei� 
08� 3Xi;j=1 �"ij (R; �0)���� ������R(E) EiEj + � � � (B.20)and expanding ��� to the �rst-order in the ele
tri
 �eld, we obtainX�0;�0 �2F (R; �0; 0)�������0�0 ����R0 �E
�0�0 = 
0 �P
 (R; �0)���� ����R0 : (B.21)This expression is similar to Eq. (B.12). The se
ond-order derivatives of F on the leftside are the interatomi
 for
e 
onstants and the derivative of the zero �eld polarizationwith respe
t to ��� on the right side is the Born e�e
tive 
harge tensor Z��;
� of atom �.De
omposing �E
�� in the basis of the zone-
enter phonon-mode eigendispla
ements [Eq.(B.13)℄ and using the orthononormality 
onstraint Eq. (3.21) we derive the followingexpression for the �rst-order ele
tri
 �eld indu
ed atomi
 displa
ements�E
m = 1!2mX�;� Z��;
�Um(��): (B.22)If we introdu
e Eqs. (B.18) and (B.22) into Eq. (B.17) we �nally obtain the formulato 
ompute the total derivative of the diele
tri
 tensord"ij (R; E)dE
 ����R0;E=0 = 8��(2)ijk���k=




136 APPENDIX B. CLAMPED & UNCLAMPED EO TENSOR+4�Xm 1!2m  X�;� ��(1)ij (R)���� Um(��)!�0�X�0;�Z��0;
�Um(�0�)1A : (B.23)Using the de�nition of the Raman sus
eptibility [Eq. (3.24)℄, the mode polarity [Eq.(3.37)℄ and the transformation [Eq. (3.33)℄ we obtain the expression of the 
lampedEO tensor r�ij
 = �8�n2in2j �(2)ijl �����l=
 � 4�n2in2jp
0 Xm �mij pm
!2m (B.24)As in 
ase of the elasto-opti
 tensor [Eq. (B.16)℄, we have written Eq. (B.24) in theprin
ipal axes of the 
rystal under investigation.B.2.3 Un
lamped EO tensor (� = 0)In order to 
ompute the un
lamped EO tensor, we have to take into a

ount both theele
tri
 �eld indu
ed atomi
 displa
ements �E
�� and the ele
tri
 �eld indu
ed strain �E
��when 
omputing the total derivative of "ijd"ij (R; �;E)dE
 ����R0;�0;E=0 = �"ij (R0; �0;E)�E
 ����E=0 + 4�X�� ��(1)ij (R; �0)���� �����R0 �E
��+4� 3X�;�=1 ��(1)ij (R0; �)���� ������0 �E
�� : (B.25)The ele
troni
 
ontribution [�rst term of Eq. (B.25)℄ is the same as for the 
lampedEO tensor. It 
an be 
omputed from the nonlinear opti
al 
oeÆ
ients [Eq. (B.18)℄. To
ompute �E
�� and �E
�� , we 
an use an equilibrium 
ondition similar to Eq. (B.20) wherewe require that the �rst-order derivatives of F with respe
t to ��� and ��� vanish.Expanding ��� and ��� to the �rst-order in the ele
tri
 �eld, we obtain the system of
oupled equations [see also Ref. [140℄℄X�0;�0 �2F (R; �; 0)�������0�0 ����R0;�0 �E
�0�0 +X�;� �2F (R; �; 0)�������� ����R0;�0 �E
�� = 
0 �P
 (R; �)���� ����R0;�0(B.26)X�0;�0 �2F (R; �; 0)�������0�0 ����R0;�0 �E
�0�0 + X�0;�0 �2F (R; �; 0)���0�0���� ����R0;�0 �E
�0�0 = 
0 �P
 (R; �)���� ����R0;�0(B.27)Be
ause of the 
oupling between �E
�� and �E
�� , de�ned by the mixed se
ond-orderderivatives �2F������� ; the se
ond term of the right-hand side of Eq. (B.25) is di�erentfrom that of Eq. (B.17). That means that the sum of the �rst and se
ond term of Eq.
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al to the 
lamped EO 
oeÆ
ients r�ij
 . Moreover, the third termof Eq. (B.25) is di�erent from the piezoele
tri
 
ontribution of Se
. B.1.In order to obtain the de
omposition of r�ij
 into ele
troni
, ioni
 and piezoele
tri

ontributions de�ned previously, we 
an solve Eq. (B.26) for �E
��. In the basis of thezone-
enter phonon mode eigendispla
ements we 
an write�E
n = pn
!2n � 1!2n X�� �2F (R; �; 0)��n���� ����R0;�0 �E
�� : (B.28)If we insert this relation into Eq. (B.25) and use the transformation Eq. (3.33) weobtain the following expression of the un
lamped EO tensor in the prin
ipal axesr�ij
 = �8�n2in2j �(2)ijl �����l=
 � 4�n2in2jp
0 Xm �mij pm
!2m� 4�n2in2j X�;� ��� ��(1)ij (R; �;E)���� �����R0;�0;E=0� 1p
0 Xm �mij!2m �2F (R; �; 0)��m���� ����R0;�0;E=0����E
�� : (B.29)The sum of the �rst and se
ond term of the right-hand side of Eq. (B.29) is equalto the 
lamped EO 
oeÆ
ient r�ij
 . The produ
t of the 
onversion fa
tor times thebra
ket in the third term of Eq. (B.29) is equal to the elasto-opti
 
oeÆ
ient �ij��[Eq. (B.16)℄. Finally, by de�nition of the 
onverse piezoele
tri
 e�e
t, �E
�� is equalto the piezoele
tri
 strain 
oeÆ
ient d
�� . We obtain thus the following expression ofthe un
lamped EO 
oeÆ
ients that is equal to the one derived in Se
. B.1 from purema
ros
opi
 arguments r�ij
 = r�ij
 + 3X�;�=1�ij��d
�� : (B.30)It is worth noting that the so-
alled piezoele
tri
 
ontribution not only takes into a
-
ount the 
hange of the linear opti
al sus
eptibility with strain (third term of theright-hand side of Eq. (B.25)) but also in
ludes the modi�
ation of the ioni
 
ontri-bution, with respe
t to the 
lamped 
ase, that is asso
iated to the modi�
ation of theioni
 relaxation indu
ed by the strain.
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GlossaryAbbreviationsBZ Brillouin zoneDAPE Dis
retization after perturbation expansionDFT Density fun
tional theoryDFPT Density fun
tional perturbation theoryEO Ele
tro-opti
FEF Finite ele
tri
 �eldsGGA Generalized gradiend approximationLDA Lo
al density approximationPEAD Perturbation expansion after dis
retizationNotation for 
rystalsai basis ve
tor of the real spa
e 
rystal latti
eGi basis ve
tor of the re
ipro
al latti
e
0 volume of the primitif unit 
ellL size of the Born- von Karman super
ellNotation for ele
troni
 propertiesk waveve
tor of the Blo
h fun
tionsGi group of bands nk(r) ele
troni
 Blo
h fun
tionunk(r) periodi
 part of the Blo
h fun
tionWn(r�R) ele
troni
 Wannier fun
tionjRni Dira
 notation of the ele
troni
 Wannier fun
tion Wn(r�R)e 
harge of the protonme mass of an ele
tronE Kohn-Sham energy at zero ele
tri
 �eldF ele
tri
 �eld dependent energy fun
tionalEg ele
troni
 band gap at zero ele
tri
 �eld
 spread of Wannier fun
tions: 
 = 
I + e
139



140 GLOSSARY
I gauge invariant part of 
e
 gauge dependent part of 
hr�r�i
 element of the lo
alization tensorNotation for dynami
 properties��� displa
ement of atom � along the Cartesian dire
tion �C��;�0�0 interatomi
 for
e 
onstantsUm(��) normalized phonon mode eigendispla
ementspm� mode polarities�i amplitude of the displa
ement along the latti
e Wannier fun
tion in 
ell iZ� mode e�e
tive 
harge of the soft mode in the 
ubi
 phase of BaTiO3V angle of 
olle
tion in a Raman s
attering experimentGeneral physi
al quantitiesT
 phase transition temperature of a ferroele
tri
E ma
ros
opi
 ele
tri
 �eldP ma
ros
opi
 polarizationPs spontaneous polarization of a ferroele
tri
f�� for
e on atom � along the Cartesian dire
tion ���� elements of the stress tensor��� elements of the (homogeneous) strain tensor
���0�0 elasti
 
onstantsd
�� piezoele
tri
 strain 
oeÆ
ientse
�� piezoele
tri
 stress 
oeÆ
ients"ij elements of the opti
al diele
tri
 tensor�(1)ij elements of the opti
al diele
tri
 sus
eptibility tensor"�� elements of the stati
 diele
tri
 tensor�(1)�� elements of the stati
 diele
tri
 sus
eptibility tensor�(2)ijl elements of the nonlinear opti
al sus
eptibility tensorr�ij
 elements of the stress-free (un
lamped) EO tensorr�ij
 elements of the strain-free (
lamped) EO tensor�ij�� elasto-opti
 (strain-opti
) 
oeÆ
ients}ij�� piezo-opti
 (stress-opti
) 
oeÆ
ients
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