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IntrodutionSine their disovery in 1920, ferroeletris have attrated joined sienti� and indus-trial interest. Within this lass of materials, the ABO3 ompounds are probably themost intensively studied. Their simple struture ombined with their wide range ofappliability in tehnologial devies, make them attrative to both theoretial andexperimental studies [1{4℄.During the last deade, several theoretial advanes ombined with a giganti jumpof omputational power lead to an intensive study of ferroeletri oxides from �rst-priniples density funtional theory (DFT) [5,6℄ and greatly improved our understand-ing of these materials. These tehniques have been applied suessfully to a largenumber of systems and provided insightful information on their eletroni and stru-tural properties as well as on their responses to perturbations suh as eletri �elds,atomi displaements and strains.A �rst ruial advane onerns the emergene of the modern theory of polarization[7{9℄. Until the early 1990s, the formulation of a proper quantum mehanial approahfor the alulation of the eletroni polarization in periodi solids had remained a trikyand hallenging problem. The modern theory of polarization o�ered an elegant solutionto this problem by assoiating the polarization of ontinuous periodi harge densitiesto a Berry phase of the Bloh funtions. The modern theory of polarization was alsoat the origin of the theory of eletron loalization [10{14℄ and of the reently proposed�nite eletri �eld tehniques [15, 16℄.A seond advane is the �rst-priniples e�etive Hamiltonian approah [17, 18℄ forferroeletris. This formalism makes it possible to study the strutural phase transi-tions of ferroeletris and the temperature dependene of their dieletri and piezo-eletri properties [19,20℄ that are inaessible from standard DFT tehniques. In thisformalism, the soft mode is onsidered as the driving mehanism of the phase transi-tion. The Hamiltonian is onstruted from a Taylor expansion of the energy aroundthe paraeletri phase. All parameters that appear in this expansion are determinedfrom DFT total energy and linear response alulations. Sine its development in1994, this formalism has been applied suessfully to numerous ABO3 ferroeletrisand ferroeletri alloys [21{27℄.A third advane is the development of a tehnique to ompute maximally loalizedWannier funtions [28{31℄. These Wannier funtions provide an insightful piture ofthe nature of the hemial bonds in solids that is missing in the Bloh piture of ex-7



8 INTRODUCTIONtended orbitals. Moreover, maximally loalized Wannier funtions provide a physiallyappealing interpretation of the modern theory of polarization and of the theory of ele-tron loalization. They an also be used as basis funtions in order-N methods [32℄ orfor the onstrution of model Hamiltonians allowing to study the transport propertiesof nanostrutures [33℄.Finally, the development of density funtional perturbation theory [34{38℄ madeaessible from �rst-priniples an inreasing number of important physial propertiessuh as phonon frequenies, infrared intensities, dieletri, piezoeletri and elastionstants ....Nowadays, the inreasing apabilities of �rst-priniples tehniques to predit witha good auray properties of omplex materials meet the requirements of experimen-talists for helpful theoretial data. These tehniques an guide the experimental workand help to interpret the experimental results sine they allow to relate the measuredproperties to the mirosopi struture of the materials. In the reent studies on fer-roeletris, we have to distinguish whether the experiments are performed on bulkrystals or on nanostrutures in whih ase �nite size e�ets inuene the propertiesof the materials.During the last deade, bulk ferroeletri oxides have been intensively studied be-ause of their unusual dieletri and piezoeletri responses. For example, solid so-lutions of PbTiO3 and PbZrO3 (PZT) are widely used in piezoeletri appliationsbeause of their exellent eletromehanial properties [2℄. In addition, a new genera-tion of mixed relaxor and ferroeletri ABO3-type rystals suh as Pb(Mg1=3Nb2=3)O3-PbTiO3 (PMN-PT) or Pb(Zn1=3Nb2=3)O3-PbTiO3 (PZN-PT) have been found to ex-hibit ultrahigh piezoeletri oeÆients that may revolutionize appliations in medialimaging, teleommuniations and ultrasoni devies. Theoretial studies showed thatthe large piezoeletri responses of these materials are driven by polarization rotationindued by an external eletri �eld [39℄. Moreover, they emphasized that atomi orderstrongly a�ets the properties of these materials so that properly oriented ompoundsan be used to tune their eletromehanial responses [25, 40℄.More reently, nano-sized ferroeletris have attrated a lot of interest. Espeiallythe properties of thin ferroeletri �lms and their ompatibility with urrent silion-based tehnologies have been intensively studied by both theorists and experimentalists[41{44℄. In addition, there is presently an inreasing interest in other ferroeletrinanostrutures suh as nanowires and nanopartiles [45, 46℄. In these strutures, theproperties of the materials are modi�ed by e�ets that are usually negligible at the bulklevel. For example, in ase of epitaxial �lms, the lattie mismath between the substrateand the ferroeletri may a�et the struture and other properties of the materials sothat strain engineering o�ers new possibilities to tune the properties of nanosaledferroeletris [47, 48℄. Moreover, ferroeletriity is a olletive phenomenon driven bylong-range eletrostati interations. It is therefore believed that ferroeletriity isaltered in nanosaled strutures. Reent theoretial studies revealed the existene ofa ritial thikness for ferroeletriity in thin ferroeletri �lms between ondutingeletrodes due to the imperfet sreening of the depolarizing �eld [49℄. It has also



INTRODUCTION 9beome possible to make heterostrutures in whih single rystalline perovskite-oxide�lms of thiknesses down to 1 to 2 lattie onstants an be epitaxially mathed atatomially sharp interfaes [41, 50℄. The properties of these strutures an be tunedby varying the superlattie period and the onstituents. Moreover, it is possible toombine ferroeletris with other funtional materials suh as ferromagneti materialsor superondutors to obtain materials with new multifuntional properties.Multiferrois [51℄ form another lass of multifuntional materials. These ompoundshave oupled eletri, magneti and strutural order parameters that result in simulta-neous ferroeletriity, ferromagnetism and ferroelastiity. They present opportunitiesfor potential appliations in information storage or the emerging �eld of spintronis.There has been reent researh interest in a number of prototypial magneti ferro-eletris, inluding YMnO3 [52℄, TbMn2O5 [53℄ and BiFeO3 [54℄.In spite of the large ativity in the �eld of ferroeletri oxides and of the exeptionaloptial properties of these ompounds, only few �rst-priniples studies of their non-linear optial properties have been performed [15, 55, 56℄. The purpose of the presentwork was to develop theoretial methods to study the nonlinear responses of insulatorsto eletri �elds in order to determine nonlinear optial properties of ferroeletris. Inthis manusript, we will fous on bulk rystals and study both the amplitude of theseproperties at 0 K as obtained from standard �rst-priniples tehniques and on theirtemperature dependene in the framework of an e�etive Hamiltonian approah. Wewill pay a partiular attention to the ontribution of the soft mode to nonlinear optialproperties suh as the eletro-opti oeÆients.The nonlinear response of insulators to eletri �elds is interesting for both funda-mental and pratial reasons. On the one hand, the response of insulators to eletri�elds is a diÆult problem that has only beome tratable reently. On the otherhand, these nonlinearities determine many interesting properties suh as the nonlinearoptial suseptibilities or the eletro-opti oeÆients that are urrently used in vari-ous devie appliations. In ontrast to the linear response formalism that is nowadaysroutinely applied to various systems (see for example Ref. [34℄), the appliations ofthe nonlinear response formalism in ondensed matter physis have foused on rathersimple ases [56{63℄.Our work has been done in the framework of the abinit projet [64℄. abinit is aplane wave, pseudopotential density funtional theory ode. It has been developed asan international ollaboration between several universities in Europe, North Ameriaand Asia. We implemented the formalism developed in this work in the abinit ode sothat it is freely aessible and an now systematially be applied to study the nonlinearresponses of insulators to eletri �elds.This thesis is organized as follows. Chapter 1 serves as a general introdution inwhih we summarize the physial and theoretial bakground of our work. We �rstdisuss the basi aspets of three ferroeletri oxides and of the nonlinear responseproperties that will be studied in the following Chapters. We then reintrodue sev-eral theoretial onepts suh as density funtional theory and the modern theory ofpolarization.



10 INTRODUCTIONIn Chapter 2, we introdue a physial quantity that makes it possible to quantifythe degree of eletron loalization in insulating rystals and we show, how this quantityan be deomposed into ontributions of individual groups of bands. We then applythis formalism to seleted oxides and we study the hange of eletron loalization atthe phase transitions of BaTiO3 and LiNbO3.In Chapter 3, we develop a formalism to study the nonlinear responses of insulatorsto eletri �elds. This formalism uses either density funtional perturbation theory or�nite eletri �eld tehniques. In partiular, we disuss the omputation of nonlinearoptial suseptibilities, Raman sattering eÆienies and the eletro-opti oeÆients.In Chapter 4, we apply the tehniques developed in Chapter 3 to seleted ferro-eletris and semiondutors. We �rst ompare the performane of density funtionalperturbation theory to the performane of the �nite eletri �eld tehnique. We thendisuss the Raman spetrum and eletro-opti oeÆients of various ferroeletris.In Chapter 5, we develop an e�etive Hamiltonian approah to study the tempera-ture dependene of the eletro-opti oeÆients and refrative indexes of ferroeletrisand we apply it to BaTiO3 in its tetragonal phase.Finally, we provide a summary of our main results and some perspetives.



Chapter 1Bakground
1.1 IntrodutionThe physial properties of marosopi solids an nowadays be predited auratelyfrom �rst-priniples density funtional theory (DFT). This method makes it possible tostudy the ground-state of omplex systems suh as ferroeletri oxides as well as theirlinear and nonlinear responses to external perturbations. The aim of this work is todevelop several methods to determine the nonlinear responses of insulators to eletri�elds in order to study nonlinear optial properties of ferroeletris. This introdutoryChapter is intended to prepare the ground for this work.Ferroeletri oxides are an important lass of multifuntional materials harater-ized by unusual dieletri, piezoeletri and optial properties. In Se. 1.2, we desribethe basi aspets of these materials and we haraterize the struture and phase tran-sitions of three ompounds: barium titanate (BaTiO3), lead titanate (PbTiO3) andlithium niobate (LiNbO3).In Se. 1.3, we introdue several nonlinear optial properties. We reinvestigatethe de�nition of the nonlinear optial suseptibilities, the eletro-opti oeÆients andthe elasto-opti oeÆients and we summarize some appliations of these propertiesin tehnologial devies. We also disuss the physial mehanisms that determine theamplitude and frequeny dependene of the nonlinear oupling oeÆients.The rest of this Chapter is devoted to the desription of the theoretial frameworkof this work. We summarize the basi formalism of density funtional theory (Se.1.4.1), density funtional perturbation theory (DFPT) (Se. 1.4.2), the modern theoryof polarization (Se. 1.4.3) and Wannier funtions (Se. 1.4.4). In Se. 1.4.5, weintrodue the eletri �eld perturbation in extended solids and in Se. 1.4.6, we show,how the response properties of insulators are related to derivatives of their energy.11



12 CHAPTER 1. BACKGROUND1.2 Ferroeletri oxides: an important lass of mul-tifuntional materialsA rystal is said to be ferroeletri when (i) it has two or more orientational statesin the absene of an eletri �eld and (ii) it an be shifted from one to another stateby an eletri �eld [1℄. Eah of these orientational states is haraterized by a zero-�eld spontaneous polarization, Ps, and two states only di�er in the diretion (andamplitude) of Ps. The dependene of the polarization on the eletri �eld an berepresented by an hysteresis loop suh as the one shown in Figure 1.1.Figure 1.1: Hysteresis loop of a ferroeletri.
ε

P

A ferroeletri may have several phases: in most ases a prototype paraeletriphase stable at high temperature and one or more ferroeletri phases stable at lowertemperature. The paraeletri phase is haraterized by a high degree of symmetryand a vanishing spontaneous polarization. As the temperature is lowered below aritial temperature, T, the rystal undergoes a transition to a ferroeletri phaseharaterized by a polar distortion of the unit ell and the appearane of a spontaneouspolarization.Ferroeletriity was disovered in 1920 by Valasek who observed that the polariza-tion of Rohelle Salt an be reversed by the appliation of an external eletri �eld.Sine then, ferroeletriity has been observed in many di�erent systems [1, 2℄ suh ashydrogen bonded rystals (f.ex. KH2PO4 (KDP)), narrow gap semiondutors (f. ex.GeTe) or polymers. In this setion, we fous on (partially) ioni rystals with the gen-eral formula ABO3. We onsider two strutures: the perovskite struture of BaTiO3and PbTiO3 and the trigonal struture of LiNbO3.1.2.1 Crystal strutureThe ABO3 ompounds an rystallize in various strutures. The simplest is the per-ovskite struture of barium titanate (BaTiO3) or lead titanate (PbTiO3) shown in



1.2. FERROELECTRIC OXIDES 13Figure 1.2. Above T, the symmetry of these materials is ubi (Pm3m) with 5 atomsper unit ell. As the temperature is lowered, BaTiO3 undergoes a sequene of threeferroeletri phase transitions. Around 403 K, it transforms to a tetragonal struture(P4mm) with a spontaneous polarization along the h100i diretion [Figure 1.2 (b)℄.This phase is stable until about 278 K where there is a transformation to a phase oforthorhombi symmetry (Pmm2) with Ps along the ubi h110i diretion. The lastphase transition arises around 183 K. The low temperature struture of BaTiO3 isrhombohedral (P3m1) and the polarization of this phase is aligned along the ubih111i diretion. In ontrast to BaTiO3, PbTiO3 undergoes a single phase transitionaround 763 K to a tetragonal P4mm phase as shown in Figure 1.2 (b).Figure 1.2: Primitive unit ell of BaTiO3 and PbTiO3 in the paraeletri phase (a)and atomi displaements at the transition to the tetragonal phase (b).

In Chapter 4, we study the nonlinear optial properties of the tetragonal phaseof BaTiO3 and PbTiO3. Following Ref. [65℄, these alulations have been performedat the experimental lattie parameters. In ontrast, the atomi positions have beenrelaxed until the residual fores on the atoms are smaller than 10�5 hartree/bohr. Theatomi positions in redued oordinates are reported in Table 1.1 and the results ofthe optimizations are reported in Table 1.2.Another struture adopted by ABO3 ompounds is the trigonal struture of LiNbO3 1shown in Figure 1.3. Above T, LiNbO3 is in a entrosymmetri R3 phase with 10atoms per ell (Figure 1.3 (a)). Around 1480 K, it undergoes a ferroeletri phasetransition to a struture of R3 symmetry as shown in Figure 1.3 (b). The alulationsof the nonlinear optial properties of the ferroeletri phase of LiNbO3 presented inChapter 4 have been performed at the theoretial lattie onstants and atomi po-sitions. In Table 1.3, we de�ne the parameters that determine the atomi positionsin the ferroeletri phase by reporting the hexagonal oordinates of �ve atoms of the1See Ref. [68℄ for a more detailed disussion of the struture of LiNbO3.
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Table 1.1: Atomi positions (in redue oordinates) in the tetragonal phase of BaTiO3and PbTiO3. Atom PositionBa/Pb (0; 0; 0)Ti ( 12 ; 12 ; 12 + ÆTi)O1 ( 12 ; 12 ; 0 + ÆO1)O2 ( 12 ; 0; 12 + ÆO2)O3 (0; 12 ; 12 + ÆO2)

Table 1.2: Lattie onstants and atomi position parameters (see notations of Table1.1) in the tetragonal phase of BaTiO3 and PbTiO3.BaTiO3 PbTiO3Present Exp. [66℄ Present Exp. [67℄a (�A) 3.994 3.904 (�A) 4.036 4.152ÆTi 0.0136 0.0215 -0.0478 -0.040ÆO1 -0.0273 -0.0233 -0.1205 -0.112ÆO2 -0.0167 -0.0100 -0.1278 -0.112



1.2. FERROELECTRIC OXIDES 15Figure 1.3: Primitive unit ell of LiNbO3 in the paraeletri phase (a) and atomidisplaements during the phase transition (b).

rhombohedral unit ell. The oordinates of the other atoms an easily be obtained byusing the symmetry operations of the spae groups R3. The results of the struturaloptimizations are summarized in Table 1.4 (see also Ref. [69℄).To disuss the eletro-opti (EO) tensor of LiNbO3 in Chapter 4, we have to de�nea set of mutually orthogonal x, y and z axes. In this work, we follow the I. R. E.Piezoeletri standards [70℄. The x axis is taken orthogonal to a mirror plane of therystal, and the z axis parallel to the threefold symmetry  axis. The positive end ofthe y axis is the end that beomes eletrially negative, due to the piezoeletri e�et,when the rystal is ompressed along the y axis. Similarly, the positive end of the zaxis beomes negatively harged under ompression along z.1.2.2 Ferroeletri instabilitiesThe ferroeletri phase transition in BaTiO3, PbTiO3 and LiNbO3 an be assoiatedto an unstable zone-enter phonon mode in the paraeletri phase. If the atoms aredisplaed from their high symmetry positions of Figures 1.2 (a) or 1.3 (a) along theeigenvetor of a stable phonon mode the energy inreases and the atoms feel a forethat tends to bring them bak to their equilibrium positions. In ontrast, if the atomsare displaed along the eigenvetor of an unstable mode, the energy dereases. Thepotential energy projeted along the soft-mode eigenvetor has the shape of a double



16 CHAPTER 1. BACKGROUNDTable 1.3: Atomi positions (in hexagonal oordinates) in the ferroeletri phase ofLiNbO3. Atom PositionNb1 (0; 0; 0)Li1 (0; 0; 14 + z)O1 (� 13 � u;� 13 + v; 712 � w)O2 ( 13 � v;�u� v; 712 � w)O3 (u+ v; 13 + u; 712 � w)Table 1.4: Lattie onstants and atomi position parameters (see notations of Table1.3) in the ferroeletri phase of LiNbO3.a (�A)  (�A) z u v wExp. [71℄ 5.151 13.876 0.0329 0.00947 0.0383 0.0192Present 5.067 13.721 0.0337 0.01250 0.0302 0.0183well with a negative urvature at the origin 2. In the harmoni approximation, thisnegative urvature orresponds to an imaginary phonon frequeny.The origin of the instabilities in BaTiO3 and LiNbO3 has been explained from amodel based on a seminal idea of Cohran [72℄. The interatomi fores in a rystalan be deomposed into short-range fores (ovalent interations and repulsions be-tween ioni ores) and long-range Coulomb (dipole-dipole) interations. A struturalinstability an appear from the anellation of both ontributions. As disussed inRefs. [65,69℄, the ovalent interations between O 2p and Ti/Nb d atomi orbitals areresponsible for the giant Born e�etive harges in BaTiO3 and LiNbO3. These e�etiveharges ouple together for the spei� displaement pattern assoiated with the softmode, in order to generate a giant dipolar interation that leads to the ferroeletriinstability.As an illustration, we show in Figure 1.4 the phonon dispersion urves of LiNbO3omputed for a struture in whih all atoms oupy the high symmetry positions ofFigure 1.3 (a) (see also Ref. [73℄). The orresponding dispersion urves of BaTiO3and PbTiO3 an be found in Ref. [74℄. At the �-point, LiNbO3 has three unstable2Stritly speaking, the number of equivalent minima of the multi-well potential depends on thenumber of equivalent diretions for the spontaneous polarization. For example, there are only twoequivalent minima in ase of LiNbO3 where the polarization an only have two diretions. In ontrast,in BaTiO3, there are 6, 12 and 8 equivalent minima that orrespond respetively to the equivalentdiretions of the polarization in the tetragonal, orthorhombi and rhombohedral phases.



1.2. FERROELECTRIC OXIDES 17Figure 1.4: Phonon band struture in the paraeletri phase of LiNbO3.
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modes. The eigenvetor of the transverse A2u mode has an overlap of 0.99 with thevetor representing the atomi displaements at the phase transition shown in Figure1.3 (b) [69℄.The soft mode is not only responsible for the phase transition of ferroeletris. Itis also the origin of their unusual dieletri properties. This an be understood asfollows: as mentioned above, the soft mode in the paraeletri phase is highly polar 3.In the ferroeletri phase it transforms into a highly polar (usually stable) mode of lowfrequeny that an strongly interat with an eletri �eld and generate a huge dieletriresponse.In Chapter 4, we study the EO oeÆients of the three materials disussed abovein order to eluidate the ontribution of the soft mode to these quantities.1.2.3 Multifuntional materialsFerroeletri oxides ombine many interesting properties suh as high dieletri, piezo-eletri and pyroeletri onstants and nonlinear optial oeÆients (see f. ex. Refs.3Roughly speaking, we an say that the polarity or mode e�etive harge of the soft mode is atthe origin of the spontaneous polarization in the ferroeletri phase.



18 CHAPTER 1. BACKGROUND[1, 75, 76℄). Some examples of their appliability in tehnologial devies are sum-marized in Figure 1.5. Their high dieletri onstants make ferroeletris attrativefor apaitors as they an be used in dynami random aess memories (DRAMs) oras gate oxides for metal-oxide-silion �eld-e�et transistors (MOSFETs). Their highpiezoeletri oeÆients are exploited in appliations where mehanial energy has tobe onverted into eletrial energy (transduers) and vie versa (atuators). Suh de-vies are urrently used in medial imaging, for the generation of sonar or ultrasoniwaves or to displae the tips of atomi fore mirosopes and sanning tunneling miro-sopes. The temperature dependene of the spontaneous polarization of ferroeletrisis used to build pyroeletri detetors of infrared radiation and the possibility to swiththe polarization by an eletri �eld is potentially interesting to build nonvolatile fer-roeletri random aess memories. Finally, ferroeletri oxides have good nonlinearoptial properties as will be disussed in Se. 1.3.Figure 1.5: Summary of the most important properties of ferroeletri oxides and theirappliations in tehnologial devies.
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1.3 Nonlinear optial propertiesIn this Setion, we present di�erent nonlinear optial properties and we disuss thephysial mehanisms, whih are at their origin. To simplify, we only disuss the basiaspets of the nonlinear response properties. In partiular, we neglet any anisotropyin the response of the rystals and we suppose that the relation between the responseand the applied perturbation is given by a salar equation.



1.3. NONLINEAR OPTICAL PROPERTIES 191.3.1 Nonlinear optial suseptibilitiesThe dieletri polarization, P , indued by a marosopi eletri �eld, E , is given bythe relation P = �(E)E ; (1.1)where �(E) is the dieletri suseptibility. For weak eletri �elds, the eletri �elddependene of �(E) an be negleted to a good approximation and the relation betweenP and E is linear. For strong eletri �elds, this linear relation is no more valid andwe an write P as a power series of the eletri �eldP = �(1)E + �(2)EE + �(3)EEE + :::; (1.2)where �(1), �(2) and �(3) are respetively the linear optial suseptibility and theseond- and third-order nonlinear optial suseptibilities.In the present work, we are mainly interested in the seond-order nonlinear optialsuseptibilities. These quantities vanish in systems with a enter of inversion suh asthe ferroeletri oxides disussed in Se. 1.2 in their paraeletri phase. In order toillustrate how �(2) a�ets the optial properties of a rystal, let us onsider an eletri�eld of frequeny !: E = E0 os(!t): (1.3)The seond-order nonlinear polarization, PNL, indued by this �eld has a frequenydependene of 2!: PNL = �(2)E20 os2(!t) = 12�(2)E20 [1 + os(2!t)℄: (1.4)PNL an at as a soure of radiation and generate an eletromagneti wave of frequeny2!. This phenomenon is alled seond-harmoni generation. It is notably applied forthe frequeny doubling of laser [77℄.Another seond-order nonlinear phenomenon is the optial parametri proess [78℄.It desribes the breakdown of a pump photon into a signal and an idler photon. Energyonservation requires that the sum of the frequenies of the signal and idler photonequals the frequeny of the pump photon. This phenomenon is notably used in para-metri osillators, whih are soures of oherent radiation that are ontinuously tunableover a wide range of frequenies.Ferroeletri oxides are partiularly interesting for this kind of appliations. Onthe one hand, their nonlinear optial suseptibilities are unusually high. On the otherhand, they an be quasi phase mathed by periodially inverting their spontaneouspolarization, whih allows to obtain high onversion eÆienies in the seond-harmonigeneration proess [79℄.1.3.2 Eletro-opti oeÆientsThe optial properties of a rystal an be desribed by its index ellipsoid. Applyingan eletri �eld, this index ellipsoid an be distorted, whih allows to inuene the



20 CHAPTER 1. BACKGROUNDFigure 1.6: EO modulator build from an epitaxial �lm of BaTiO3 (BTO) grown on aMgO substrate. From Petraru et al. [84℄.

propagation of a light wave inside the rystal. In nonentrosymmetri systems, thishange is given by a linear relation �� 1n2� = rE ; (1.5)where r is the linear eletro-opti (EO) oeÆient.This e�et is important for several tehnologial appliations. For example, pho-torefrative materials used for holographi appliations [80,81℄ are required to exhibitlarge EO oeÆients in addition to other properties suh as good photoondutivityand low dark ondutivity [78℄. This e�et is also exploited to build EO modula-tors [78, 82, 83℄ that are used in integrated optis and �ber-opti ommuniations sys-tems to modulate the amplitude of a light wave in a wave guide. Reently, there hasbeen an inreasing interest to build EO modulators from thin ferroeletri �lms. Figure1.6 shows an intensity modulator build from a thin �lm of BaTiO3 epitaxially grownon a MgO substrate [84℄. This devie uses a Mah-Zehnder interferometer to modulatethe intensity of a light wave in a wave guide. By varying the potential applied to theentral eletrode while keeping onstant the potential of the two outer eletrodes, itis possible to indue a phase shift between the light waves in the two branhes and tomodulate the output of the interferometer.1.3.3 Elasto-opti oeÆientsThe elasto-opti e�et desribes hanges in the refrative index of a ompound induedby a strain, �. It is de�ned by a similar relation as the EO e�et�� 1n2� = ��; (1.6)



1.3. NONLINEAR OPTICAL PROPERTIES 21where � is the elasto-opti oeÆient of the medium. In ontrast to the EO oeÆientsand nonlinear optial suseptibilities, whih vanish in entrosymmetri rystals, theelasto-opti oeÆients are nonzero in all rystals as well as amorphous solids.This e�et is interesting for several reasons. First, as we will see in Se. 3.3.4, itdetermines the piezoeletri ontribution to the EO oeÆients. Seond, this e�et isused for appliations suh as aousto-opti modulators or deetors where an aoustiwave interats with an eletromagneti wave to hange its diretion or intensity [78℄.Third, in miroeletronis, there is an inreasing use of UV laser soures in preisionoptial appliations suh as lithography. These energeti beams indue a loal densi�-ation of the SiO2 optial lenses, whih auses an inrease of the absolute value of therefrative index and a loss of resolution due to birefringene [85, 86℄.1.3.4 Frequeny dependeneThe amplitude of the nonlinear oeÆients disussed above depends on several physialmehanisms. Eah mehanism has a harateristi response time and its ontributionto these oeÆients depends on the frequenies of the eletri �elds involved in theproess. In this work, we distinguish between (i) pure eletroni ontributions, (ii)ioni ontributions due to eletri �eld indued atomi displaements and (iii) piezo-eletri ontributions due to homogeneous deformations of the rystal4. Moreover, forspei� frequenies, the nonlinear oupling oeÆients an present a resonane, dueto eletroni exitations, exitations of phonon modes or mehanial resonanes of thewhole rystal5.In the disussion that follows, we suppose that the frequenies of the eletri �eldsare always far away from any resonane. In this ase, we an distinguish three hara-teristi regions6:� Optial frequenies, i.e. frequenies higher than the frequenies of the optialphonons but lower than the fundamental absorption gap. In this ase, only theeletrons ontribute to the linear and nonlinear suseptibilities while the atomipositions and the unit ell shape are lamped to their equilibrium values.� Frequenies higher than the highest mehanial resonane of the rystal but lowerthan the frequenies of the optial phonons (typially between 102 and 106 MHz).In this ase, the atoms in the unit ell are able to respond to the eletri �eldwhile the shape of the ell remains �xed. The linear and nonlinear suseptibilitiesare the sum of the eletroni and ioni ontributions.� Frequenies lower than the frequeny of the �rst mehanial resonane of the4In this work, we onsider only intrinsi ontributions to the nonlinear oeÆients. We do not takeinto aount extrinsi e�ets that may eventually inuene the nonlinear response of ferroeletris toeletri �elds suh as the reorientation of ferroeletri domains.5These mehanial resonanes usually depend on the shape and dimension of the rystal.6In addition, the linear and nonlinear suseptibilities present a frequeny dependene inside eahregion. This dependene is usually quite weak and will be negleted in this work.



22 CHAPTER 1. BACKGROUNDFigure 1.7: Shemati illustration of the dependene of the EO oeÆients on thefrequeny of the modulating eletri �eld. From Wemple et al. [87℄.
clamped EO
coefficients

electronic EO
coefficients

piezoelectric
contribution

ionic
contribution

electronic
contribution

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

O
pt

ic
 m

od
e 

ex
ci

ta
tio

ns

unclamped EO
coefficients

Frequency (Hz)
10 10 10 10 10

0 4 8 12 16

E
O

 c
oe

ffi
ci

en
ts

E
le

ct
ro

ni
c 

ex
ci

ta
tio

ns

A
co

us
tic

 m
od

e 
ex

ci
ta

tio
ns

sample (for example stati eletri �elds). In this ase, the eletrons, the ionsand the strain ontribute to the linear and nonlinear suseptibilities.The disussion presented above is general an applies to most phenomena related tothe response of insulators to eletri �elds. We now partiularize it to the spei� aseof the EO oeÆients. Figure 1.7 shows the typial dependene of the EO oeÆientson the frequeny of the modulating �eld. For high-frequeny �elds, the ions an beonsidered to be lamped to their equilibrium positions. As a onsequene, the EOoeÆients are determined by pure eletroni proesses. For frequenies higher thanthe mehanial resonane frequenies but lower than the frequenies of the optialphonons, the ions are able to respond to the eletri �eld. This is the region of the so-alled lamped (strain-free) EO oeÆients that are the sum of the eletroni and ioniontributions. Finally, for low frequenies, the shape of the unit ell is modi�ed by theeletri �eld. This is the region of the so-alled unlamped (stress-free) EO oeÆientsthat are the sum of the eletroni, ioni and piezoeletri ontributions. In Se. 3.3.4,we will give expliit expressions of the three ontributions to the EO oeÆients.1.4 Theoretial BakgroundIn this setion, we summarize the formalisms that are the basis of the theoretialdevelopments and alulations of this work. We �rst reinvestigate the basi aspets



1.4. THEORETICAL BACKGROUND 23of density funtional theory and density funtional perturbation theory that make itpossible to ompute most of the ground-state and response properties of solids andmoleules with an auray of a few perent. We then summarize the formalism ofthe modern theory of polarization, the theory of Wannier funtions and the eletri�eld perturbation in extended systems. Finally, we show how the response properties ofsolids are related to derivatives of their energy. We fous on periodi systems desribedwithin Born- von Karman boundary onditions.1.4.1 Density funtional theoryFrom a quantum mehanial point of view, a solid (or a moleule) an be desribedas a system of eletrons and nulei in interation. The ground-state of this systeman, in priniple, be determined by solving the orresponding many-body Shr�odingerequation. Unfortunately, the diret solution of this equation is not possible exeptfor a few simple systems. In order to study the properties of omplex systems from�rst-priniples we have to make some approximations and simpli�ations.A �rst simpli�ation is obtained from the Born and Oppenheimer approximationthat allows to deouple the dynamis of eletrons and nulei and to study properties ofthe eletrons in some frozen in on�guration of the nulei. To determine the eletroniground-state we use the Kohn-Sham density funtional theory (DFT) [5, 6, 32, 88, 89℄.This tehnique allows one, in priniple, to map exatly the problem of a stronglyinterating eletron gas onto that of independent partiles moving in an e�etive po-tential v(r). The ground-state energy of this system an be derived by minimizing thefollowing expression with respet to the (single-partile) Kohn-Sham orbitals  �(r)E[ �℄ = oX� h �jT + vextj �i+EHx[n℄: (1.7)The sum in Eq. (1.7) runs over all oupied states. T is the kineti energy operator,vext(r) the (nulear) potential external to the eletroni system, EHx[n℄ the sum ofthe Hartree (EH [n℄) and exhange-orrelation (Ex[n℄) energy funtionals and n(r) theground-state density n(r) = oX� j �(r)j2: (1.8)The oupied Kohn-Sham orbitals are subjet to the orthonormalization onstraintsh �j �i = Æ�� : (1.9)The minimization of Eq. (1.7) under the onstraints (1.9) an be ahieved usingthe Lagrange multiplier method. The problem turns into the minimization ofF [ �℄ = E[ �℄� oX�;� ���(h �j �i � Æ��); (1.10)



24 CHAPTER 1. BACKGROUNDwhere ��� are the Lagrange multipliers. The orresponding Euler-Lagrange equationis H j �i =X� ���j �i; (1.11)where the Hamiltonian H = T + v = T + vext + vHx (1.12)has to be determined self-onsistently sine it depends on the Hartree and exhange-orrelation potential vHx(r) that is a funtional of the ground-state densityvHx(r) = ÆEHx[n℄Æn(r) : (1.13)The Lagrange multipliers ��� are the matrix elements of the Hamiltonian between theorresponding wave funtions ��� = h � jH j �i: (1.14)The solution of Eq. (1.11) is not unique. In fat, we an always apply a unitarytransformation U to the wave funtions of the oupied statesj �i �! oX� U��j �i (1.15)without a�eting the energy or the density. Suh a transformation is alled a gaugetransformation. Sine the Hamiltonian is a hermitian operator, it is possible to workin the so-alled diagonal gauge where the Lagrange multiplier matrix (1.14) is diagonalh � jH j �i = "�Æ��: (1.16)In this work, we onsider periodi rystals where the wave funtions  �(r) are Blohfuntions haraterized by their wave vetor k and a band-index n nk(r) = eik�runk(r) (1.17)with unk(r) a periodi funtion that has the same periodiity as the rystal lattie.The self-onsistent solution of Eq. (1.11) allows to determine the exat ground-stateenergy and harge density. Unfortunately, the expression of the exhange-orrelationenergy funtional is not known and we have to use an approximation for this term. Inthis work, we onsider two kinds of approximations: the loal density approximation(LDA) and the generalized gradient approximation (GGA).1.4.2 Density funtional perturbation theoryHaving de�ned the DFT equations in Se. 1.4.1, we investigate in the present se-tion the response of a quantum mehanial system to a perturbation of the external



1.4. THEORETICAL BACKGROUND 25potential. As will be shown in Se. 1.4.6, many interesting properties of a solid anbe haraterized by the derivatives of its energy or thermodynami potentials. In thissetion, we fous to the response to in�nitesimal perturbations. In this ontext, theenergy derivatives are obtained from perturbation theory.Let us expand all perturbed quantities, X , in terms of a small parameter, �, aroundtheir unperturbed values, X(0):X(�) = X(0) +X(1)�+X(2)�2 +X(3)�3:::; (1.18)where X(n) = 1n! dnXd�n �����=0 : (1.19)X an be one of the quantities E,  �(r), n(r), H , ���, vHx(r) or vext(r). Beause Esatis�es a variational priniple, it is possible to derive two major theorems [35,36℄:1. A variational priniple an be established for the even order perturbations. Itstates that E(2n) = min (n)� (E(�) " nXi=0 �i (i)� #)(2n) : (1.20)This theorem establishes that the nth-order derivatives of the wave funtions anbe obtained by minimizing the funtional expression of E(2n) with respet to (n)� . For example, in this work we deal with the �rst-order derivatives of thewave funtions that are omputed by minimizing the variational expression ofthe seond-order energy derivatives E(2).2. A 2n+ 1 theorem an be demonstrated for the odd order perturbations:E(2n+1) = (E(�) " nXi=0 �i (i)� #)(2n+1) : (1.21)It states that the derivatives of the energy up to the order 2n+1 an be omputedfrom the derivatives of the wave funtions up to the order n. For example, inthis work, we fous on third-order energy derivatives that are omputed from theground-state and �rst-order derivatives of the wave funtions.More expliit expressions of even and odd order energy derivatives an be found inRefs. [35, 36℄. In Chapter 3, we partiularize Eq. (1.21) to the ase of third-orderenergy derivatives with respet to at least two eletri �elds.1.4.3 The modern theory of polarizationIn Se. 1.2, we de�ned a ferroeletri as a material whih exhibits a spontaneouspolarization, Ps, that an be swithed by an eletri �eld. In this setion, we give arigorous de�nition of Ps and we show how this quantity an be omputed in pratie.



26 CHAPTER 1. BACKGROUNDLet us onsider �rst a �nite piee of matter of volume V . The polarization of thissystem an be omputed as the dipole moment per unit volumeP = 1V "eX� Z�R� � e ZV dr rn(r)# ; (1.22)where Z� and R� are the atomi number and position, e the absolute value of theeletroni harge and n(r) the eletroni harge density de�ned in Eq. (1.8). Althoughsuh a dipole moment is in priniple well de�ned, it is not a bulk property sine itdepends upon trunation and shape of the sample. In ontrast, the variations of Pare measured as bulk properties in several irumstanes. In fat, most marosopiproperties suh as the dieletri tensor, the piezoeletri tensor or the nonlinear optialsuseptibilities are just derivatives of P with respet to suitably hosen perturbations.Moreover, the spontaneous polarization of a ferroeletri { measured via hysteresisyles (see Figure 1.1) { is usually obtained as the di�erene, �P , between two statesof the rystal.In in�nite solids, desribed in the framework of periodi Born- von Karman bound-ary onditions, Eq. (1.22) an no more be used to ompute the polarization as a dipolemoment per unit volume. In fat, the position operator, r, is not ompatible withBorn- von Karman boundary onditions. Consider a superell of size Li = Miai (i =1, 2, 3) where ai is a lattie vetor. The Hilbert spae of a single-partile wave funtion (r) is de�ned by the ondition  (r) =  (r+Miai). An operator maps a funtion ofthis Hilbert spae into a funtion belonging to the same spae. The position operator ris therefore not a legitimate operator when periodi boundary onditions are adoptedsine r (r) is not a periodi funtion when  (r) is suh.For rystalline dieletris, the problem of the polarization was solved by King-Smith, Vanderbilt and Resta in Refs. [7{9℄: P is a manifestation of a Berry phase [90℄,i.e. it is an observable whih annot be ast as the expetation value of any operator,being instead a gauge invariant phase of the wave funtions.In the disussions that follow, we onsider an insulating rystal with N doublyoupied bands separated from the unoupied bands by a �nite gap Eg . Let usonsider a ontinuous adiabati transformation of the rystalline potential onnetingtwo states of the rystal. We parameterize this transformation by a variable � and wenote �1 and �2 its values in the initial and �nal states. The hange in polarizationindued by this transformation an be expressed as�P = Z �2�1 d��P�� = P(�2)�P(�1): (1.23)The polarization P(�) an be deomposed as the sum of a bare ioni and an eletronipolarization P(�) = P ion(�) +Pel(�): (1.24)The ioni polarization an be omputed through an expression similar to the �rst term



1.4. THEORETICAL BACKGROUND 27of the right hand side of Eq. (1.22)P ion(�) = e
0 ellX� Z�R� (1.25)where the sum runs over all atoms in the unit ell. The eletroni polarization an beomputed as a Berry phase of the oupied bands [7℄Pel(�) = � 2ie(2�)3 NXn=1 ZBZ dkhunkjrkjunki (1.26)where BZ is the Brillouin zone, unk(r) is the periodi part of the Bloh funtions andthe fator of 2 aounts for spin degeneray. The Bloh funtions are hosen to satisfythe periodi gauge ondition eiG�runk+G(r) = unk(r) (1.27)where G is a reiproal lattie vetor. With this hoie of gauge, the polarizationhanges given by Eq. (1.23) are given to within a fator (e=
0)R where R is a lattievetor. Using Eq. (1.23), the spontaneous polarization of a ferroeletri, Ps, an bede�ned as the hange in polarization, �P , when the rystal is transformed from thehigh-symmetri paraeletri struture to a ferroeletri one.In order to use Eq. (1.26) in pratial alulations, the integration over the BZ, aswell as the di�erentiation with respet to k, have to be performed on a disrete mesh ofMk =M1 �M2 �M3 k-points. The standard approah is to build strings of k-pointsparallel to a vetor of the reiproal spaeGi. The projetion of the polarization alongthat diretion an then be omputed as the sum of the string-averaged eletroni Berryphase, 'el, and the ioni phase, 'ion,P(�) �Gi = e
0 ('(i)el + '(i)ion) (1.28)with '(i)el = 2M (i)? M(i)?Xl=1 = lnMi�1Yj=0 det[S(k(i)j ;k(i)j+1)℄ (1.29)'(i)ion = 2� ellX� Z�R�i (1.30)In these expressions,M (1)? =M2�M3 is the number of strings along G1, eah ontain-ing M1 points7 k(1)j = k(l)? + jG1=M1, S the overlap matrix between Bloh funtionsSn;m(k;k0) = hunkjumk0i: (1.31)and R�i the redued oordinates of atom � in the unit ell.7M(2)? and M(3)? are given by similar expressions.



28 CHAPTER 1. BACKGROUND1.4.4 Wannier funtionsWannier funtionsWn(r�R) (=hrjRni) are orthonormal funtions that span the samespae as the Bloh funtions  nk(r) of a band or group of bands [91, 92℄. They areharaterized by two quantum numbers: a band index, n, and a lattie vetor, R.Wannier funtions are an interesting tool in the study of the eletroni struture anddieletri properties of materials. They are the solid state equivalent of "loalizedmoleular orbitals" [10, 12, 93℄ and thus provide an insightful piture of the nature ofthe hemial bonding, otherwise missing from the Bloh piture of extended orbitals.Moreover, Wannier funtions are used as a very aurate minimal basis in "order-N"methods [32℄, the onstrution of e�etive Hamiltonians for the study of transportproperties of nanostrutures [33℄, strongly orrelated eletrons [94℄ and other systems.Wannier funtions are Fourier transforms of the Bloh eigenstatesWn(r�R) = 
0(2�)3 ZBZ dkeik�(r�R)unk(r): (1.32)They allow an interesting interpretation of the Berry phase formalism presented in Se.1.4.3. Inserting Eq. (1.32) into Eq. (1.26), we obtainPel(�) = �2e
0 NXn=1 Z dr r jWn(r)j2: (1.33)Physially, Eqs.(1.23) and (1.33) state that the hange in polarization of the solid isproportional to the displaement of the enter of harge of the Wannier funtions ofthe oupied bands indued by the adiabati hange in the Hamiltonian.One of the most serious drawbaks of the Wannier representation is that the fun-tions are not uniquely de�ned but that they an vary strongly in shape and range.This is a onsequene of the phase indeterminay of the Bloh orbitals at every wavevetor k. In addition, Bloh orbitals belonging to an isolated group of bands, Gi, (i.e.,a set of bands that are onneted between themselves by degeneraies, but separatedfrom others by energy gaps) an undergo arbitrary unitary (gauge) transformationsbetween themselves at every kunk(r)! Xm2GiU (k)mn umk(r): (1.34)Marzari and Vanderbilt developed a method to onstrut Wannier funtions thatare maximally loalized around their enters [28, 30, 31℄. For eah group of bands, Gi,they proposed to minimize the spread funtional
 = Xn2Gi �h0njr2j0ni � h0njrj0ni2� = Xn2Gi �hr2in � hri2n� (1.35)with respet to the unitary transformations U (k)mn . Eq. (1.35) an be deomposed intotwo terms, 
 = 
I + e
 (1.36)



1.4. THEORETICAL BACKGROUND 29where 
I = Xn2Gi 24hr2in � Xm2GiXR jhRmjrj0nij235 (1.37)and e
 = Xn2Gi Xm2GiXR 0 jhRmjrj0nij2 : (1.38)The prime in Eq. (1.38) indiates that the terms Rm = 0n have to be omitted. It anbe shown that 
I and e
 are positive de�nite. Moreover, 
I is also gauge-invariant,i.e. it is invariant under any unitary transformation (1.34) among the Bloh orbitals.The minimization of Eq. (1.35) therefore orresponds to the minimization of e
 and
I orresponds to a lower bound of the spread funtional 
.In a one-dimensional rystal this lower bound an be realized by hoosing an ad-equate phase fator for the Bloh funtions. In fat, the Wannier funtions an behosen to be eigenfuntions of the position operator projeted onto the group of bandsunder onsideration, PxP . In this ase, it is straightforward to show that e
 vanishesso that 
 = 
I [28℄. In a three-dimensional rystal, it is no more possible to diagonal-ize PxP , PyP and PzP simultaneously. As a onsequene, e
 > 0 and 
 will alwaysbe larger than 
I . The problem is therefore to �nd a set of Wannier funtions thatmakes the best possible ompromise in the attempt to diagonalize all three operatorssimultaneously 8.1.4.5 The eletri �eld perturbation in extended systemsIn this setion, we disuss the main diÆulties related to the eletri �eld perturbationin extended systems and show, how they an be overome in pratie. In the salar-potential gauge, the interation between the eletrons and a homogeneous eletri�eld, E , is desribed by the potential V (r) = eE � r, where e is the absolute value ofthe eletroni harge. Although this potential is widely used to study the responseof on�ned systems suh as moleules to eletri �elds, its appliation to extendedsystems suh as solids is not straightforward. The main diÆulty is the nature of thesalar potential whih, is non-periodi and unbound from below.The non-periodiity of V (r) is related to the position operator r. As it is disussedin Se. 1.4.3 this operator is not ompatible with periodi boundary onditions so thatit annot be applied in a straightforward way in extended solids.The unboundness of the salar potential an be explained as follows. Figure 1.8shows the eletroni bands of an insulating rystal in the presene of an eletri �eld.As an be seen, the �eld "bends" the energy bands so that the potential energy of theeletrons is lower on the right side of the �gure than on the left side. It is therefore8Another approah onsists in the minimization of the spread of the Wannier funtions in one givendiretion as realized for the so-alled hermaphrodite orbitals introdued in Ref. [12℄: these partiularfuntions are loalized (Wannier-like) in a given diretion and deloalized (Bloh-like) in the twoothers.



30 CHAPTER 1. BACKGROUNDFigure 1.8: Potential energy of an eletron, e�, in an eletri �eld, E . Eg is the energyof the band gap at zero eletri �eld.
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possible to lower the energy of the system by transferring harge from the valenebands (Ev) in one region to the ondution bands (E) in a distant region. Beauseof this interband (Zener) tunneling, an in�nite rystal in an eletri �eld has no trueground-state.However, for suÆiently small �elds, the tunneling urrent through the band gapan be negleted and the system is well desribed by a set of eletri �eld dependentWannier funtions. As shown by Nunes and Vanderbilt [95℄, these Wannier funtionsminimize the energy funtionalF [Wn;E ℄ = E [Wn℄�
0E �P (1.39)where E is the Kohn-Sham energy under zero �eld and P the marosopi polarizationthat an be omputed from the Wannier funtion enters (Eq. (1.33), see also Ref. [96℄).It is important to note that these Wannier funtions do not orrespond to the trueground-state of the system but rather to a long lived metastable state.In pratial appliations, it is not mandatory to evaluate the funtional Eq. (1.39)in a Wannier basis. It an equivalently be expressed using Bloh funtions unk(r)related to Wn(r) by Eq. (1.32). In this ase, the polarization an be omputed as aBerry phase of the oupied bands using Eq. (1.28). This approah is disussed morein detail in Chapter 4.1.4.6 Energy derivatives and multifuntional propertiesThe linear and nonlinear responses of insulators to seleted perturbations an be har-aterized by the derivatives of its energy and other thermodynami potentials. In this



1.5. CONCLUSIONS 31Table 1.5: Physial quantities related (within a fator of normalization) to �rst- andseond-order derivatives of F .F 1st-order derivatives 2nd-order derivatives��� ��� ��E��� f C  Z���� �  0 e0��E Ps Z� e0 "work, we onsider three kinds of perturbations: atomi displaements, ��� (the index� labels an atom and � a Cartesian diretion), marosopi strains, ��� , and homo-geneous eletri �elds, E . The orresponding thermodynami potential is the energyfuntional, F , de�ned in Eq. (1.39). To simplify the notations, we represent the threeperturbations by a single parameter, �, de�ned as� = (� ;�;E): (1.40)The funtional, F , an be expressed as a Taylor series around the zero-�eld equi-librium strutureF(�) = F(0) +Xi �F��i ����0 �i + 12Xi;j �2F��i��j ����0 �i�j + 16Xi;j;k �3F��i��j��k ����0 �i�j�k + ::::(1.41)The derivatives of F in Eq. (1.41) have a well de�ned physial meaning. As an be seenin Table 1.5, the �rst-order derivatives are related to the fores on the atoms, f , thestress-tensor, � and the spontaneous polarization, Ps. The seond-order derivativesharaterize the linear response of the solid. They are related to the interatomi foreonstants, C, the optial dieletri onstants, ", the rigid-atom elasti onstants, 0, theBorn e�etive harges, Z�, the rigid-atom piezoeletri onstants, e0 and the internalstrain oupling parameters, . Finally, the third-order derivatives of F haraterizethe nonlinear response of the solid. In this work, we do not onsider the whole set ofthird-order derivatives. We will fous on third-order derivatives of F with respet tothree eletri �elds and third-order derivatives of F with respet to two eletri �eldsand one atomi displaement that are related to the nonlinear optial suseptibilities,�(2) and the �rst-order derivatives of the linear optial suseptibilities with respet toatomi displaements, ��(1)�� .1.5 ConlusionsIn this Chapter, we �rst disussed the struture and phase transitions of three ferro-eletri oxides: BaTiO3, PbTiO3 and LiNbO3. We then de�ned the nonlinear optial



32 CHAPTER 1. BACKGROUNDsuseptibilities, the EO oeÆients and the elasto-opti oeÆients of insulators and weshowed that we an distinguish three ontributions to the EO oeÆients: an eletroniontribution, an ioni ontribution and a piezoeletri ontribution.To de�ne the theoretial framework of this work, we summarized the main aspetsof density funtional theory, density funtional perturbation theory, the modern theoryof polarization, Wannier funtions, the eletri �eld perturbation in extended systemsand we showed, how linear and nonlinear response properties of insulators are relatedto their energy derivatives.1.6 ReferenesIn addition to the referenes expliitly mentioned in the text, this Chapter was essen-tially drawn from the following reviews:� M. E. Lines and A. M. Glass, Priniples and Appliations of Ferroeletris andRelated Materials, (Oxford Classis Series, 2001).� M. Veithen and Ph. Ghosez, First-Priniples study of the dieletri and dynam-ial properties of lithium niobate, Phys. Rev. B 65, 214302 (2002).� M. Veithen, First-Priniples study of lithium niobate, Physialia Magazine 24,161 (2002).� Ph. Ghosez, First-priniples study of the dieletri and dynamial properties ofbarium titanate, PhD thesis, Universit�e Catholique de Louvain, 1997.� M. Bass, ed., Handbook of Optis, vol. II (MGraw-Hill, 1995).� R. Resta, Marosopi polarization in rystalline dieletri: the geometri phaseapproah, Rev. Mod. Phys. 66, 899 (1994).� N. Marzari and D. Vanderbilt,Maximally loalized generalized Wannier funtionsfor omposite energy bands, Phys. Rev. B 56, 12847 (1997).



Chapter 2The eletron loalizationtensor2.1 IntrodutionOur qualitative understanding of eletron loalization in solids is often based on ap-proximate pitures. The ore eletrons are tightly bound and loalized around thenulei. In insulators, the valene eletrons are on�ned to the hemial bonds (ova-lent rystals) or to partiular atomi sites (ioni rystals) while they are "free to move"and deloalized in metals. In order to quantify the degree of eletron loalization, thissimple desription is no more suÆient and we have to adopt a rigorous formalismbased on quantum mehanis. However, in this ontext, even a qualitative desriptionof eletron loalization is not lear. In periodi solids, desribed within Born- von Kar-man periodi boundary onditions, the eletroni wave funtions are Bloh funtions.As a onsequene, ore and valene eletrons appear as deloalized over the wholerystal sine the Bloh funtions are periodi over the Born- von Karman superell.Alternatively, we an hoose a Wannier representation of the eletroni ground-state. Wannier funtions are loalized orbitals that an be omputed from a unitarytransformation of the Bloh funtions. But even in the Wannier representation, arigorous quanti�ation of eletron loalization is not straightforward. As disussed inSe. 1.4.4, the Wannier funtions are not unique so that their spatial extension annotdiretly be used to quantify the degree of eletron loalization.The basis of a quantitative haraterization of eletron loalization were formu-lated by Kohn in 1964 [97℄. Reently, this problemati was renewed thanks to thedevelopment of the modern theory of polarization [7{9℄. Polarization and loalizationare manifestations of the same phenomenon and they an be studied from essentiallythe same formalism. Following Resta and Sorella, we de�ne in Se. 2.2 a harateristieletron loalization length that is �nite in insulators and diverges in metals. In or-der to desribe anisotropi media, this onept is further generalized to a loalization33



34 CHAPTER 2. THE ELECTRON LOCALIZATION TENSORtensor. We also disuss the physial meaning and drawbaks of the de�nition of theeletron loalization tensor. In Se. 2.3, we propose a deomposition of the loaliza-tion tensor into ontributions originating from isolated sets of bands omposing theenergy spetrum of a solid. Using a simple model, we then illustrate the role of theovalent interations on the di�erent terms of the deomposition. We also make a on-netion between the loalization tensor and the Born e�etive harges and we disussthe relation between pseudopotential and all-eletron alulations. In Se. 2.4, we givethe tehnial details underlying our �rst-priniples alulations. In Ses. 2.5 and 2.6,we present the results obtained on three ferroeletri oxides (BaTiO3, PbTiO3 andLiNbO3) as well as on two binary oxides (BaO and �-PbO). We investigate the varia-tions of eletron loalization during the phase transitions of BaTiO3 and LiNbO3 andshow that the evolution is ompatible with the eletroni struture of these ompounds.2.2 The eletron loalization tensor2.2.1 De�nitionLet us onsider �rst a one-dimensional system of side a and a large Born- von Karmanell of side L = Ma. The loalization length is de�ned through the expetation valueof the many-body phase operator [98, 99℄z = �	 ����e(2i�=L)PNei=1 xi����	� (2.1)where Ne is the number of eletrons and 	 the many-body wave funtion de�ned asa Slater determinant of the one-partile orbitals. The phase of z orresponds to theground-state expetation value of the position operator, intrinsially onneted to themarosopi polarization, while its modulus provides an unambiguous de�nition of aloalization length hx2i = � 1Ne � L2��2 ln jzj2: (2.2)If the system is insulating with N (= Ne=2M) doubly oupied bands, z an be om-puted from the overlap matries between Bloh funtions de�ned in Eq. (1.31)pz = M�1Yj=0 detS(kj ; kj+1): (2.3)In the limit M !1, Eq. (2.2) an be expressed as an integral over the BZhx2i = aN2� ZBZ dk NXn=1(��unk�k ���� �unk�k �� NXn0=1 ��unk�k ����un0k��un0k �����unk�k �) :(2.4)



2.2. THE ELECTRON LOCALIZATION TENSOR 35Eq. (2.4) an be generalized to three-dimensional rystals [12℄ where the loalizationlength takes the form of a seond-order tensor, the so-alled loalization tensorhr�r�i = 
0N(2�)3 ZBZ dk NXn=1���� �unk�k� ���� �unk�k� �� NXn0=1��unk�k� ����un0k+�un0k �����unk�k� ����: (2.5)2.2.2 Physial interpretationsThe loalization tensor in Eq. (2.5) may look like an abstrat mathematial onept.In this setion, we see that it has a well-de�ned physial meaning and that it an berelated to various physial quantities.Maximally loalized Wannier funtionsFirst, the diagonal elements of the loalization tensor give a lower bound of the averagespread of the Wannier funtions build from the Bloh orbitals of all oupied bands.Indeed, it is straightforward to show [12, 13, 28℄ that these elements are related to 
Ide�ned in Eq. (1.37) by 
I = N 3X�=1hr�r�i: (2.6)Geometri quantum distane and quantum metriSeond, let us onsider a general quantum mehanial Hamiltonian that has a para-metri dependene H(�)j (�)i = E(�)j (�)i: For example, H(�) ould be identi�edto the eletroni Hamiltonian of a moleule or a solid in the Born and Oppenheimerapproximation and � to the nulear oordinates or j (�)i ould be identi�ed to theell-periodi part of the Bloh funtions and � to their wave vetor. The geometridistane D12 between two eigenstates j (�1)i and j (�2)i an be de�ned as [10℄D212 = 1� jh (�1)j (�2)ij2: (2.7)For an in�nitesimal separation d� between the two states, we an writeD2�;�+d� = 1� jh (�)j (� + d�)ij2 =X�;� g��(�)d��d�� (2.8)where g��(�) is the metri tensorg��(�) = <� � (�)��� ���� � (�)��� ��� � (�)��� ���� (�)�� (�) ����� (�)��� � : (2.9)



36 CHAPTER 2. THE ELECTRON LOCALIZATION TENSORThe form of the metri tensor is similar to the argument of the integral in Eq. (2.5).If we identify  to the ell periodi part of the Bloh funtions and � to their wavevetor, k, we an de�ne a metri to determine the \quantum distane" along a givenpath in k-spae. Generalizing Eq. (2.9) to a system omposed of N doubly oupiedbands, we obtain [28℄g��(k) = NXn=1(� �unk�k� ���� �unk�k� �� NXn0=1 ��unk�k� ����un0k��un0k �����unk�k� �) : (2.10)The elements of the loalization tensor are the BZ average of the metri tensor g��[13, 28℄ hr�r�i = 
0N(2�)3 ZBZ dkg��(k): (2.11)Flutuations of the polarization and optial ondutivityFinally, let us onsider an extended solid subjeted to periodi boundary onditionsover a large superell ontainingM unit ells. The Cartesian omponents of the polar-ization undergo quantum utuations related to the elements of the loalization tensor.In the thermodynami limit we an write [13℄hr�r�i = limM!1 
20Me2 h�Pel� �Pel� i: (2.12)This equation is partiularly interesting sine it shows that the loalization tensor ismore than a mathematial onept. It is a measurable quantity. Using the utuation-dissipation theorem [100℄ we obtain the following relation between the loalizationtensor and the optial ondutivity (imaginary part of the eletroni dieletri tensor)Z 10 "00��(!) d! = 8�2e2N�h
0 hr�r�i : (2.13)Relation to the optial gapIn a ubi rystal, we an use the sum rule for osillator strengths [101℄ together withEq. (2.13) to obtain the following relation between the loalization tensor and theband gap Eg hr2�i � �h22meEg ; (2.14)where me is the eletroni mass. This inequality shows that the polarization utu-ations are ontrolled by the optial gap, lending support to the intuitive notion thatthe larger the gap, the more loalized the eletrons.



2.3. BAND-BY-BAND DECOMPOSITION 372.2.3 DrawbaksThe loalization tensor as it is de�ned in Eq. (2.5) is a global quantity that har-aterizes the oupied Kohn-Sham manifold as a whole (all k-points and all bands).This statement alls for two omments. First, appliations of DFT to solids oftenmake use of the frozen-ore and pseudopotential approximations, while Eq.(2.5) re-quires an all-eletron alulation. Seond, the behavior of ore and valene eletrons istreated globally while both kinds of eletrons are expeted to exhibit strongly di�erentloalization properties interesting to identify independently.As it has been disussed in the preeding setions, the loalization tensor gives alower bound for the spread of maximally loalized Wannier funtions as de�ned byMarzari and Vanderbilt. In order to get some insight into the physis of the hemialbonds in moleules and solids, suhWannier funtions are usually onstruted onsider-ing only a restrited number of eletroni bands lose to the Fermi level. The spread ofthe resulting Wannier funtions is strongly dependent on the eletroni states inludedin the minimization proess. In this ontext, it seems interesting to try to identify theintrinsi loalization of the eletrons in a spei� set of bands and to understand howthis quantity is a�eted when inluding other bands. This would allow to solve theproblem assoiated to the use of pseudopotentials and to haraterize separately thebehavior of ore and valene eletrons.2.3 Band-by-band deomposition of the loalizationtensor2.3.1 FormalismContrary to the polarization and the Born e�etive harges, for whih band-by-banddeompositions have been previously reported [102{105℄, the loalization tensor [Eq.(2.5)℄ involves salar produts between Bloh funtions of di�erent bands, making theidenti�ation of the ontribution of isolated sets of bands less straightforward. Inorder to explain this fat, we have to remember that the loalization tensor is relatedto the seond moment of Wannier funtions while the Born e�etive harges and thespontaneous polarization are linked to their �rst moment. From standard statistis, it iswell known that �rst and seond moments do not add the same way: when onsideringtwo random variables x1 and x2, the mean value of the sum x1+ x2 is simply the sumof the mean values while the variane of the sum is the sum of the varianes plus anadditional term, the ovariane.These onsiderations an be transposed in the simple ontext of a on�ned modelsystem made of two orthonormalized states  1(x) and  2(x). The total many-bodywave funtion 	(x1; x2) is a Slater determinant onstruted on the one-partile or-bitals. The enter of mass is given by the expetation value of the position operator



38 CHAPTER 2. THE ELECTRON LOCALIZATION TENSORX = Pi=1;2 xi X = h	jX j	i = Xi=1;2h ijxj ii (2.15)while the total spread (two times the loalization tensor) is related to X2,�2 = h	jX2j	i � h	jX j	i2= Xi=1;2[h ijx2j ii � h ijxj ii2℄� 2h 1jxj 2ih 2jxj 1i: (2.16)We see that the �rst moments of the one-partile orbitals add to form the total dipoleof the many-body wave funtion. In ontrast, the total spread is not equal to the sumof the individual spreads of  1 and  2 but involves also matrix elements of the one-partile position operator x between  1 and  2. The additional term would be absentif the many-body wave funtion was a simple produt of the one-partile orbitals. Itarises from the anti-symmetry requirement. In analogy with the language of statistis,we will name it the ovariane.Based on the previous arguments, we an now de�ne a band-by-band deompositionof Eq. (2.5). Suppose that the band struture is formed of Ng groups labeled Gi, eahof them omposed of ni bands (i = 1; :::; Ng). The variane of a partiular group Gi isde�ned as hr�r�i(Gi) = 
0ni(2�)3 ZBZ dk(Xn2Gi��unk�k� ���� �unk�k� �� Xn;n02Gi ��unk�k� ����un0k��un0k �����unk�k� �9=; (2.17)where the sums have to be taken over the bands of group Gi. The ovariane of twogroups Gi and Gj (i 6= j) is given by the following relationship:hr�r�i(Gi;Gj) = �
0ninj(2�)3 ZBZ dk Xn2Gi Xn02Gj ��unk�k� ����un0k��un0k �����unk�k� � :(2.18)Using these de�nitions, the total tensor, assoiated to the whole set of oupied bands,an be written ashr�r�i = 1N NgXi=1 ni8<:hr�r�i(Gi) + NgXj 6=i njhr�r�i(Gi;Gj)9=; : (2.19)The variane hr�r�i(Gi) is intrinsi to an isolated set of bands. As disussed insetion 2.2.2, it is related to the quantity 
I introdued by Marzari and Vanderbiltthrough Eq. (2.6). hr�r�i(Gi) is thus the lower bound of the average spread [Eq.



2.3. BAND-BY-BAND DECOMPOSITION 39(1.35)℄ 1ni Pn2Gi [hr2�in�hr�i2n℄ where the sum is taken over all Wannier-like funtions inthe unit ell belonging to group Gi. This lower bound is reahed for Wannier funtionsthat are maximally loalized in diretion �. The variane therefore gives some insighton the loalization of the eletrons within a spei� set of bands taken independently.This loalization is a�eted by the hybridizations between atomi orbitals giving rise tothe formation of the onsidered eletroni bands within the solid so that the varianean at as a probe to haraterize these hybridizations.The ovariane is no more related to an isolated set of bands. It teahes us how theonstrution of Wannier funtions inluding other bands an improve the loalization.As disussed in Ref. [28℄, the de�nition of groups of bands in a solid is not unique andsometimes there is a doubt about whih bands have to be onsidered together. If weonsider two sets of bands Gi and Gj as one single group, its total variane is the sumof the individual varianes and ovarianes, that have to be resaled by the number ofbands in eah grouphr�r�i = 1ni + nj fni [hr�r�i(Gi) + njhr�r�i(Gi;Gj)℄+ nj [hr�r�i(Gj) + nihr�r�i(Gj ;Gi)℄g : (2.20)Until now, we onsidered separately the two Cartesian diretions � and �. Strongerresults an be obtained when diagonal elements of the loalization tensor are onsid-ered, or when this loalization tensor is diagonalized, and the eigenvalues are onsid-ered. Di�erent inequalities an be derived. In partiular, from Eq. (2.18), it appearsthat the ovarianes for � = � are always negative. This means that the diagonalelements of the full tensor are always smaller than those obtained by the sum of thediagonal varianes. In other words, it is always possible to obtain more strongly lo-alized orbitals by onstruting Wannier funtions onsidering more than one group ofbands. As a onsequene the ovariane appears as a tool to identify whih bands haveto be onsidered together in the onstrution of Wannier funtions in order to improvetheir loalization.In appendix A, we give an interpretation of the variane and ovariane in termsof the optial ondutivity. It illustrates from a di�erent viewpoint the inuene ofthe fermioni nature of the eletrons on the loalization tensor: the appearane of theovariane in Eq. (2.19) is a diret onsequene of the Pauli priniple.2.3.2 Simple modelIn this setion we will investigate a one-dimensional model system. This will help usto understand the role of the ovalent interations on the eletron loalization lengthand related quantities suh as the Born e�etive harges. We will deal with a on�nedsystem for whih the loalization tensor an be omputed from matrix elements of theposition operator and its square as desribed in Refs. [10, 12℄.Let us onsider a diatomi moleule XY. In order to desribe the hemial bondsof this model system we adopt a tight-binding sheme [106℄ de�ned by the hopping



40 CHAPTER 2. THE ELECTRON LOCALIZATION TENSORintegral, t, and the on-site terms � and ��. We will all a the interatomi distane and X ,  Y the s-like atomi orbitals that are used as basis funtions. The Hamiltonian anbe resaled by � (A=t/�) in order to beome a one parameter Hamiltonian de�nedby H = � �1 AA 1 � : (2.21)We further assume that  X is entered at the origin,  Y in a and that these twofuntions do not overlap at any x X(x) Y (x� a) = 0: (2.22)The eigenfuntions of the Hamiltonian orrespond to�1;2(x) = u1;2 X (x) + v1;2 Y (x� a) (2.23)where the oeÆients u1;2 and v1;2 an be expressed in terms of the bond polarity [106℄�p (�p = 1p1+A2 ): u1 =q 1+�p2 ; v1 =q 1��p2u2 =q 1��p2 ; v2 = �q 1+�p2 : (2.24)In order to see the meaning of the di�erent terms appearing in the band-by-banddeomposition of the loalization tensor and the Born e�etive harges let us �rstonsider the moleular orbitals independently.The variane of state �1 an be omputed from the oeÆients u1 and v1. It writeshx2i(1) = �2X 1 + �p2 + �2Y 1� �p2 + a2A24(1 +A2) (2.25)where �2X and �2Y are the seond entral moments of  X and  Y . The variane of�2 is given by a similar expression. This quantity is omposed of three positive termsthat summarize the mehanisms that are able to deloalize the eletrons with respetto the atomi orbitals. On one hand, the eletroni loud on a partiular atom is nota delta-Dira funtion but presents a degree of deloalization related to �2X and �2Y(�rst and seond term). When the state �1 is made entirely of  X , that is, when �pequals one, the loalization length is orretly equal to �2X (�rst term). Inorporatingmore  Y hanges the loalization length in proportion of �p (the balane between �rstand seond terms). On the other hand, the eletrons an oupy two sites X and Ythat are separated by a distane a (third term). This term sales as a2. Even a smallovalent interation is thus able to indue an important deloalization if it ats on asuÆiently large distane.The Born e�etive harge of atom X is de�ned as the derivative of the dipolemoment p with respet to a. This dipole moment is the sum of the nulear and statieletroni harges multiplied by the interatomi distane. The ontribution omingfrom the eletrons oupying state �1 is equal top1 = �2eu21a = �e(1 + �p)a (2.26)



2.3. BAND-BY-BAND DECOMPOSITION 41where e is the module of the eletroni harge. The derivative of Eq. (2.26) withrespet to a gives the ontribution of these eletrons to the total e�etive hargeZ�X;1 = �p1�a = �e(1 + �p) + ea A(1 +A2)3=2 �A�a : (2.27)The �rst term is the (stati) e�etive atomi harge [106℄ of atom X while the seondterm represents an additional dynamial ontribution due to a transfer on eletronsbetween X and Y during a relative atomi displaement. The ontribution of theeletrons oupying state �2 is given by a similar expressionZ�X;2 = �p2�a = �e(1� �p)� ea A(1 +A2)3=2 �A�a : (2.28)This simple model illustrates how both the variane of the loalization tensor andthe Born e�etive harges depend on the ovalent interations de�ned by the parameterA. The variane is a stati quantity depending on the amplitude of the ovalentinterations only while the Born e�etive harges are dynamial quantities that alsodepend on the variations of these interations during a relative atomi displaement.If we now onsider the states �1 and �2 as a single group we have to add theirvarianes and ovarianes to get the whole loalization tensor. The ovariane reduesto hx2i(1; 2) = �a2A24(1 +A2) : (2.29)By adding this ovariane to the variane in Eq. (2.25), we remove in some sensethe deloalization indued by the ovalent interations. The total loalization tensorbeomes independent of the hopping A and the interatomi distane a. It redues tothe mean spread of the atomi orbitals  X and  Y :hx2i = �2X + �2Y2 : (2.30)Eq. (2.30) de�nes the mean spread of the Wannier funtion onstruted as linearombinations of �1 and �2 that minimize the spread funtional 
 (see Eq. (1.35)). Asshown in Ref. [28℄ (see also Se. 1.4.4), these orbitals diagonalize the position operatorx̂ projeted on the subspae of oupied states. They are thus equal to the atomiorbitals sine the hypothesis of zero overlap (Eq. (2.22)) implies h X jx̂j Y i = 0.The total Born e�etive harge of atom X an be obtained by adding the nulearharge Z�ore = 2e to the terms (2.27) and (2.28). It is easy to hek that for thismodel Z�X is equal to zero. This result an be interpreted in two ways. The pointof view usually adopted is to say that the two moleular orbitals are of the oppositepolarity so that the total dipole of the moleule vanishes. Based on the results ofthe preeding paragraph, we an also aÆrm that eah maximally loalized Wannierfuntion is on�ned on a single atom so that no interatomi harge transfer an takeplae.



42 CHAPTER 2. THE ELECTRON LOCALIZATION TENSORThis result suggests that the variane gives more information about the loalizationof eletrons of partiular hemial bonds than the total loalization tensor. It alsoillustrates the observation of Ghosez et al. [102, 103℄ that anomalous e�etive hargesmainly ome from hybridizations between oupied and unoupied states. In fat,the di�erent hemial bonds generate opposite e�ets so that a net harge transfer ispossible only if some of them are unoupied.In summary, we have illustrated the mehanisms that govern the variane of theloalization tensor and the Born e�etive harges in the partiular ase of a one di-mensional model system. The observations made in this setion give us an intuitiveunderstanding of how deloalized eletrons an generate anomalous e�etive harges.Hybridizations between oupied states generate opposite e�ets that tend to anelout when they are summed. Beause of the simpliity of the above adopted piture,we have however to be areful when we apply this model to real materials. First, weonsidered only hybridizations between two types of atomi orbitals, while the hem-ial bonds in real systems generally result from more ompliated interations. Inpartiular, we negleted on-site hybridizations that are also able to generate anoma-lous e�etive harges but that indue a stronger loalization on the eletroni loud.Seond, the hypothesis of zero overlap (2.22) is not always ful�lled so that maximallyloalized Wannier funtions onstruted on the whole set of oupied states generallynot redue to the atomi orbitals. Nevertheless, this simple model will allow us tointerpret some results in Ses. 2.5 and 2.6.2.3.3 PseudopotentialsAs mentioned in Se. 2.2.3, there is a fundamental problem in the omputation of thetotal loalization tensor when pseudopotentials are used. This is due to the fat thatthe loalization tensor is related to the bands of the system as a whole : �rst, there is noanellation between the ore eletrons and the nulear harge, as it is the ase in theomputation of the total polarization; seond, the loalization tensor is a kind of meanover all bands, that ombines strongly loalized (ore) states, and weakly loalized(valene) states. This is learly seen in Eq.(2.5), where the number of bands expliitlyappears both in the denominator of the prefator and in the two summations. Theband-by-band deomposition allows us to overome this problem partly, by fousingonly on the varianes of isolated groups of bands. Thanks to Eq. (2.20) it is alsopossible to get some insight into the physis of the all-eletron loalization tensorwhen pseudopotentials are used. In this setion, we fous on the diagonal elements ofthe eletron loalization tensor � = � (of ourse, any diretion an be hosen as �).In an all-eletron alulation, let us onsider separately two sets of bands: orebands (labeled as 'o'), and valene bands (labeled as 'va'). The total loalizationtensor an be obtained from the loalization tensors of eah group of bands, ombinedwith the ovariane between the two groups of bands:hr�r�i = 1no + nva fnohr�r�i(o) + nvahr�r�i(va) + 2nonvahr�r�i(o; va)g :(2.31)



2.4. METHOD AND IMPLEMENTATION 43Both varianes hr�r�i(o) and hr�r�i(va) are positive quantities. The ovarianetimes the produt of the number of bands nonvahr�r�i(o; va), a negative quantity,must always be smaller in magnitude than eah of the related varianes multipliedby the orresponding number of bands. This translates to bounds on the diagonalelements of the total loalization tensor:jnvahr�r�i(va)� nohr�r�i(o)jno + nva � hr�r�i � nvahr�r�i(va) + nohr�r�i(o)no + nva :(2.32)In the frozen-ore approximation, hr�r�i(o) an be obtained from separate all-eletron alulations for eah atom of the system. The loalization tensor of the va-lene bands is (likely) omputed aurately in the pseudopotential approximation : thespread of the Wannier funtions should be quite similar if estimated from all-eletronvalene wave funtions or from pseudo-wave funtions.2.4 Method and implementationIn the remaining part of this Chapter, we apply the previous formalism to variousoxides. The eletroni wave funtions are obtained within DFT [5, 6℄ and the loaldensity approximation (LDA) thanks to the abinit [64℄ pakage. At variane witha previous work on semiondutors [12℄, the �rst derivatives of the wave funtionswith respet to their wave vetor are not omputed from �nite di�erenes but from alinear-response approah [37℄ within the parallel-transport gauge. The wave funtionsare further transformed to the diagonal gauge [105℄. In all ompounds, the ground-state and �rst-order wave funtions are expanded in plane waves up to a kineti-energyuto� of 45 Hartree. We use a 8�8�8 mesh of speial k-points [107℄ for BaO, �-PbO,BaTiO3 and PbTiO3 and a 6� 6� 6 mesh of speial k-points for LiNbO3. With theseparameters, the onvergene of the loalization tensor for the investigated ompounds isbetter than 10�3 Bohr2. In BaO, �-PbO, BaTiO3 and PbTiO3, the ioni-ore eletronpotentials of the atoms are replaed by ab initio, separable, extended norm-onservingpseudopotentials, as proposed by M. Teter [108℄. Ba 5s, 5p and 6s eletrons, Pb 6s,5d and 6p eletrons, Ti 3s, 3p and 3d eletrons, O 2s and 2p eletrons are onsideredas valene states. In LiNbO3, we use the same norm-onserving pseudopotentials asin Ref. [69℄. Nb 4s, 4p, 4d and 5s eletrons, Li 1s and 2s eletrons as well as O 2sand 2p eletrons are onsidered as valene states. Besides alulating the loalizationtensor on bulk-materials, we also omputed it on the isolated atomi systems Ba2+,Pb2+, Li+, Nb5+ and O by plaing eah atom at the origin of a periodi superell of20 Bohrs.As shown by Sgiarovello et al. [12℄, the loalization tensor and thus the varianesand ovarianes, are real. Moreover, they are obviously symmetri in � and �. Con-sequently there exists a set of Cartesian axes where they are diagonal and their eigen-values are also real numbers. In the disussion of our results we will always work inthis partiular frame so that we do not need to onsider the o�-diagonal elements ofthe loalization tensor.



44 CHAPTER 2. THE ELECTRON LOCALIZATION TENSOR2.5 Results2.5.1 Strutural and eletroni propertiesWe will onsider the two binary oxides BaO and �-PbO, the ferroeletri perovskitesBaTiO3 and PbTiO3 as well as the trigonal ferroeletri LiNbO3. BaO has a roksaltstruture while the tetragonal � phase of lead oxide is formed of parallel layers of Pband O atoms. As disussed in Se. 1.2, BaTiO3 and PbTiO3 have a high-temperatureubi perovskite struture with �ve atoms per unit ell. As the temperature is lowered,the former ompound undergoes a sequene of three ferroeletri phase transitionstransforming to tetragonal, orthorhombi and rhombohedral strutures while the latterompound undergoes one single transition from the ubi to the tetragonal phase.Finally, LiNbO3 has a trigonal symmetry with 10 atoms per unit ell. It undergoesa single transition from a entrosymmetri paraeletri R3 phase to a ferroeletriR3 ground state. We will onsider expliitly the ubi, tetragonal and rhombohedralphases of BaTiO3, the ubi phase of PbTiO3 as well as the two phases of LiNbO3.The eletroni strutures of these ompounds have been previously studied [69,104,109{111℄ and are illustrated in Figs. 2.1 and 2.2. They are formed of well-separatedgroups of bands. Eah of them has a marked dominant orbital harater and anbe labeled by the name of the atomi orbital that mainly omposes the energy statein the solid. In all ompounds, the bands at the Fermi level are mainly omposedof O 2p states that show signi�ant interations with other atomi orbitals suh asthe well known O 2p-Ti 3d hybridization in BaTiO3 and PbTiO3 or the O 2p-Nb 5dhybridization in LiNbO3. The band strutures in the ferroeletri phases of BaTiO3and LiNbO3 are similar to those in their paraeletri phases. The phase transitionsprinipally a�et the band gap and the spread of the O 2p bands while the positionsof the deeper lying bands remain quite onstant. The main di�erene in the eletronistrutures of BaO and BaTiO3 on one hand and PbO and PbTiO3 on the other handomes from the presene or absene of Pb 6s eletrons (that form the so alled lone-pair in PbO). These eletrons show a strong hybridization with the O 2p states. Asa onsequene, the O 2p and Pb 6s bands are degenerate at the R point in PbTiO3and around the Z point in PbO. Consequently, we have to onsider them as one singlegroup of bands in the deomposition of the loalization tensor.2.5.2 Loalization tensor and Born e�etive hargesAs the total loalization tensor is meaningless in pseudopotential alulations that donot inlude ovarianes with the ore states, we fous on the varianes of the di�erentgroups of bands. The values an be found in the Tables 2.1, 2.2 and 2.3 where theyare ompared to the varianes of the dominant atomi orbitals. We do not report anyvalues assoiated to the deepest lying Ti 3s and Ti 3p bands although they have beeninluded in our pseudopotential alulation. Their varianes are in fat lose to theatomi ones and they do not show any sizeable ovariane with other bands in BaTiO3and PbTiO3.



2.5. RESULTS 45
Figure 2.1: Band strutures of BaO, ubi BaTiO3, ubi PbTiO3 and �-PbO.
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Figure 2.2: Band struture in the paraeletri phase of LiNbO3.
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46 CHAPTER 2. THE ELECTRON LOCALIZATION TENSORTable 2.1: Varianes (Bohr2) of the Ba 5s, O 2s, Ba 5p and O 2p bands for the isolatedatomi systems Ba2+ and O, BaO and the ubi (C), tetragonal (T) and rhombohedral(R) phases of BaTiO3.System Str. Element BandBa 5s O 2s Ba 5p O 2pAtom � hr2i 1.011 0.929 1.370 �BaO � hr2i 1.065 1.552 2.023 2.199BaTiO3 C hr2i 1.091 0.950 2.189 1.875T hr2?i 1.091 0.945 2.180 1.852hr2ki 1.088 0.965 2.175 1.842R hr2?i 1.092 0.963 2.196 1.862hr2ki 1.092 0.949 2.189 1.804Table 2.2: Varianes (Bohr2) of the O 2s, Pb 5d and Pb 6s +O 2p bands in PbTiO3,�-PbO and for the isolated atomi systems Pb2+ and O.System Element BandO 2s Pb 5d Pb 6s + O 2pAtom hr2i 0.929 0.657 �PbTiO3 hr2i 1.874 1.490 1.749PbO hr2?i 2.234 1.142 2.178hr2ki 1.724 0.990 1.968In the ubi rystals BaO, BaTiO3 and PbTiO3 as well as in the atomi systems, thereported tensors are isotropi so that we only mention their prinipal values hr2i. Thisis no more true in the ferroeletri phases of BaTiO3 and the two phases of LiNbO3where a weak anisotropy an be observed. The tensors have an uniaxial harater asthe orresponding dieletri ones: they are diagonal when expressed in the prinipalaxes and the elements hr2?i and hr2ki refer to Cartesian diretions perpendiular andparallel to the optial axis (that has the diretion of the spontaneous polarization).A muh stronger anisotropy is observed in �-PbO where the loalization tensor hasthe same symmetry as in the ferroeletri phases of BaTiO3. Due to its partiularstruture formed of atomi Pb-O planes the eletrons of eah group of bands are moredeloalized in a diretion parallel (hr2?i) to the atomi planes1 than perpendiular(hr2ki) to them. This observation agrees with our intuitive piture that the ovalentinterations between atoms inside a layer are stronger than between atoms of di�erent1In �-PbO, the optial axis is perpendiular to the atomi layers.



2.5. RESULTS 47Table 2.3: Varianes (Bohr2) in the two phases of LiNbO3 and for the inner orbitalsof Nb5+, Li+ and O.Band Atom Paraeletri phase Ferroeletri phasehr2i hr2?i hr2ki hr2?i hr2kiNb 4s 0.479 0.514 0.514 0.516 0.514Li 1s 0.158 0.167 0.164 0.166 0.165Nb 4p 0.576 0.721 0.719 0.728 0.714O 2s 0.892 0.879 0.870 0.893 0.848O 2p 1.488 1.515 1.483 1.418Tot. variane 1.110 1.123 1.111 1.066Tot. ovariane -0.388 -0.384 -0.395 -0.377Tot. tensor 0.722 0.738 0.716 0.689layers.Examining the varianes of the di�erent groups of bands we see that the Ba 5seletrons show a similar degree of loalization both in BaO and BaTiO3 also equivalentto that of the orresponding atomi orbital. In ontrast, the O 2s eletrons behavedi�erently in the materials under investigation: in BaTiO3 and LiNbO3, their varianeis lose to the atomi one while they show a signi�ant larger deloalization in thethree other ompounds. It is in fat surprising to see the degree of deloalization ofthe inner bands suh as the O 2s, Ba 5p, Nb 4p or Pb 5d bands. In some ases suhas BaTiO3, the eletrons of these bands are even more strongly deloalized than thoseof the bands at the Fermi level. These results suggest that the orresponding atomiorbitals are hemially not inert but present non-negligible ovalent interations. Aninteresting observation an be made for the O 2s and Pb 5d bands in PbTiO3 and�-PbO. The deloalization indued by the ovalent interations that generate thesebands tends to disappear when we onsider them as one single group. In order toompute the variane of the whole O 2s and Pb 5d bands, we have to use Eq. (2.20).As an example let us onsider PbTiO3. The di�erent elements an be summarized ina matrix where the diagonal elements are the varianes (Bohr2) and the o�-diagonalelements the ovarianes (Bohr2) of the individual groups� 1:874 �0:240�0:240 1:490 � :The total variane of the (O 2s + Pb 5d) group onsidered as a whole redues to 0.734Bohr2. For �-PbO, we obtain similar values of 0.732 Bohr2 for hr2?i and 0.701 Bohr2for hr2ki. These values an be ompared to the mean spread of the atomi orbitals16 (0:929+ 5� 0:657) = 0:702 Bohr2:The results presented above show that inner orbitals suh as O 2s, Ba 5p, Nb 4p orPb 5d are hemially not inert in the materials under investigation. This observation



48 CHAPTER 2. THE ELECTRON LOCALIZATION TENSORTable 2.4: Band-by-band deomposition of the Born e�etive harges (a. u. of harge)in PbTiO3 and �-PbO. The ontributions have been separated into a referene nominalvalue and an anomalous harge. PbTiO3 �-PbOBand Z�Pb Z�Pb? Z�PbkCore 14.00 14.00 14.00O 2s 0 + 3.47 0 + 1.89 0 + 0.26Pb 5d -10 - 3.36 -10 - 1.80 -10 - 0.40Pb 6s + O 2p -2 + 1.78 -2 + 1.06 -2 + 0.48Tot. 2 + 1.89 2 + 1.15 2 + 0.34seems in ontradition with the onlusions drawn from partial density of states anal-ysis [110℄ that these states are rather inert. Nevertheless the inspetion of the Borne�etive harges in BaO, BaTiO3 or LiNbO3 [69, 102, 104℄ on�rms our observationsthat will now be illustrated for �-PbO and PbTiO3. This points out that the globalshape of the band struture is less sensitive to the underlying ovalent interationsthan the variane of the loalization tensor or the Born e�etive harges.In order to investigate the onnetion between the loalization tensor and the Borne�etive harges we report in Table 2.4 the band-by-band deomposition of Z�Pb inPbTiO3 and �-PbO. In the perovskite, this tensor is isotropi while in �-PbO it hasthe same symmetry as the loalization tensor. The ontribution of eah group ofbands has been separated into a referene nominal value and an anomalous harge 2.For �-PbO, we observe the same anisotropy as for the loalization tensor: the ovalentinterations inside an atomi layer (Z�Pb?) generate larger anomalous ontributionsthan the interations involving atoms of di�erent layers (Z�Pbk). By looking at theO 2s and Pb 5d bands we see that they generate important anomalous harges thaton�rm our observations onerning the varianes of these bands. Interestingly, in bothmaterials these ontributions anel out when they are summed. We observe thus thesame tendenies for the Born e�etive harges and the loalization tensor: the e�etsindued by the ovalent interations between inner orbitals tend to disappear when theresulting bands are onsidered together.2.6 DisussionsBased on the simple model exposed in Se. 2.3.2 we an suggest the following meh-anism to explain the results presented in the preeding setion. The atomi orbitals2The Born e�etive harges are usually ompared to an isotropi nominal value that is the hargeexpeted in a purely ioni ompound. All deviations with respet to this referene nominal value arereferred to as anomalous.



2.6. DISCUSSIONS 49O 2s and Pb 5d (for whih the hypothesis of zero overlap (2.22) is reasonable) presentweak ovalent interations that generate the orresponding energy bands in PbTiO3and �-PbO. When we onstrut maximally loalized Wannier funtions for eah indi-vidual group, the resulting orbitals are deloalized on Pb and O atoms so that duringan atomi displaement an interatomi transfer of harges � generating anomalousBorn e�etive harges � is possible. The fat that the variane of the global (O 2s+ Pb 5d) group of bands is lose to the mean spread of the atomi orbitals suggeststhat the maximally loalized Wannier funtions onstruted on these bands are similarto the original atomi orbitals. In other words, they are on�ned on a single atom.This on�nement also suppresses the interatomi harge transfer so that the anomalousharges disappear. We an make similar observations for the Ba 5p and O 2s bandsin BaO and BaTiO3, although, in the latter ompound, the anellation in the Borne�etive harges and the variane is not as omplete as in the three remaining ones.This suggests that in the lead oxides as well as in BaO, the inner bands Pb 5d and O2s (respetively Ba 5p and O 2s) mainly result from hybridizations between two typesof atomi orbitals. In ontrast, in BaTiO3 the Ba 5p and O 2s bands are formed ofmore than two types of atomi orbitals.Looking now at the bands at the Fermi level, we see that their variane is sig-ni�antly larger in BaO and �-PbO than in the orresponding perovskites and thatit remains nearly onstant in the di�erent phases of BaTiO3 and LiNbO3. This lat-ter observation seems surprising for two reasons. (i) In BaTiO3, the LDA band gappresents drasti hanges when passing from the ubi (1.72 eV) to the rhombohedral(2.29 eV) phase. In LiNbO3, we observe a similar strong variation when passing fromthe paraeletri (2.60 eV) to the ferroeletri (3.48 eV) phase. These inreases suggestmuh stronger loalization of the O 2p eletrons in the ferroeletri phases. (ii) Thegiant Born e�etive harges observed in the paraeletri phases [69,102,103℄ imply animportant reorganization of the eletroni loud during an atomi displaement. Itappears surprising that this reorganization has suh small e�ets on the loalizationtensor.Considering point (i), we note that the orrelation between the band gap and theloalization tensor is not as tight as one might think. The variane of the O 2p bandsfor instane is signi�antly larger in BaO than in BaTiO3 in spite of the fat that itsLDA band gap (1.69 eV) is lose to the gap in the ubi phase of BaTiO3.Considering point (ii), we note that it is possible to have an important reorgani-zation of the eletroni harge without a�eting the loalization tensor signi�antly.Following the ideas of the Harrison model [106℄, the giant e�etive harges in ferro-eletris result from dynamial orbital hybridizations hanges generating interatomitransfers of harges. In Figure 2.3 (a) we have drawn shematially an O enteredWannier funtion in the ubi phase of BaTiO3 along a Ti - O hain. Due to the O2p - Ti 3d hybridization, this Wannier funtion has a �nite probability on the neigh-boring Ti1 and Ti2 atoms. Aording to the Harrison model, a fration of eletronsis transferred from Ti1 to Ti2 during a displaement d� of the O atom (Figure 2.3(b)). Even if the quantity of harges involved in this proess is small, the large saleon whih this transfer takes plae (of the order of the lattie parameter) implies a shift
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Figure 2.3: Oxygen entered Wannier funtions in the ubi phase (solid line) ofBaTiO3 (a) and its variation during the transition to the tetragonal phase (dashedline) (b).of the Wannier funtion enter larger than the underlying atomi displaement andexplains the anomalous e�etive harges. During the transition from the ubi to thetetragonal phase, the entral O atom is displaed by few perent of the lattie onstanta (d�a = 0:045) with respet to Ti1 and Ti2. The resulting shift of the Wannier funtionenter generates the spontaneous polarization in the ferroeletri phase.Based on this simple piture the origin of the small variations of the O 2p varianeduring the phase transitions beomes more obvious: when the eletrons are transferredfrom Ti1 to Ti2 their distane to the initial Wannier funtion enter remains una�etedand their distane to the displaed Wannier funtion enter slightly dereases due toits shift towards Ti2. Mathematially speaking, due to the fat that the variations donot depend on the diretion of the atomi displaement, they are of the seond orderin d�a .In order to get a numerial estimate of the harges transferred during this proessand its impat on the loalization tensor we an onsider a one dimensional modelWannier funtion whose square is the sum of three delta-Dira funtionsjWn(x)j2 = 12 �2� Z 0O2 [Æ(x� a) + Æ(x+ a)℄ + Z 0OÆ(x)� : (2.33)This model only takes into aount the deloalization of the eletrons on di�erentatoms (third term of Eq. (2.25)) while it ompletely neglets the deloalization of theeletroni loud on the individual atoms (�rst and seond term of Eq. (2.25)). Inthis partiular ase we an identify the loalization tensor to the seond moment ofthe Wannier funtion. This is no more ompletely true in a real, three-dimensionalrystal. In BaTiO3 for instane, the O 2p group ontains 9 di�erent Wannier funtions



2.6. DISCUSSIONS 51per unit ell loated on three di�erent O atoms. These orbitals extend in di�erentspatial diretions so that their average spread in the x-diretion is lower than thespread of one single Wannier funtion as the one shown in Figure 2.3.In Eq. (2.33), Z 0O represents the probability of the eletrons to be found on the Oatom. It an be omputed from the value of the O 2p variane in the paraeletri phaseof BaTiO3 and the lattie onstant a using the relation R x2jWn(x)j2dx = hr2i;O2p:This yields Z 0O = 1:73. This quantity allows an estimate of the stati harge of theO atom in BaTiO3 by subtrating three times Z 0O from the harge due to the nuleusand the ore eletrons O 1s and O 2s. This yields ZO;st = 4� 3 � 1:73 = �1:19 e.When the O atom is displaed, the shift of the Wannier funtion enter is diretlyrelated to the quantity of harges " transferred from Ti1 to Ti2. The value of " anbe omputed from the value of the e�etive harge generated by the O 2p eletrons(Z�O2p = �9:31) in the ubi phase [103℄ by taking into aount that the anomalousharges are generated by three Wannier funtions loated on the same O atom [29℄. Toget the polarization due to one single Wannier funtion, we have to divide this quantityby 3 sine eah of them brings a similar ontribution to Z�O2p. In the tetragonal phase,the model Wannier funtion writesjWn(x)j2 = 12 �2� Z 0O � "2 Æ(x+ a) + Z 0OÆ(x� d�) + 2� Z 0O + "2 Æ(x� a)� : (2.34)By identifying twie its �rst moment to Z�O2pd�=3 one gets " = 0:0614 at the transitionfrom the ubi to the tetragonal state. It implies a derease in the spread of the modelWannier funtion of 0.18 Bohr2.This variation is larger than the observed one (0.023 Bohr2). Part of the disrepanyis probably due to the fat that we onsidered Z�O2p to be onstant along the path ofatomi displaement from the paraeletri to the ferroeletri phase. Using the valueof Z�O2p in the tetragonal phase we obtain a value of 0.0467 for " while the varianedereases of 0.12 Bohr2. Moreover, one has to bear in mind that the loalization tensorin BaTiO3 is an average value that has to be taken over 9 Wannier funtions. Six ofthem are entered on O atoms that lie in a plane perpendiular to the diretion of thespontaneous polarization. They are probably less a�eted by the phase transition. Asa onsequene, the variation of the Wannier funtion loated on the remaining O atom(the one represented on Figure 2.3) is expeted to be larger than the variation of theloalization tensor.In summary, even if there is no formal onnetion between the real Wannier fun-tions in BaTiO3 or LiNbO3 and Eq. (2.33), this simple model shows that small vari-ations of the loalization tensor are ompatible with giant e�etive harges and theirinterpretation in terms of the Harrison model. As illustrated with the model Wannierfuntion, the transfer of harges along the Ti�O hains only implies a slight dereasein the spread of one single Wannier funtion. This derease is expeted to be largerthan the derease in the variane beause this latter quantity is an average value over 9Wannier funtions that are not modi�ed to the same extent during the phase transition.



52 CHAPTER 2. THE ELECTRON LOCALIZATION TENSOR2.7 ConlusionsThe haraterization of eletron loalization in extended systems had been a halleng-ing problem that was only solved reently. Thanks to the modern theory of polariza-tion, it is now possible to study the eletroni polarization and loalization length froma uni�ed formalism. In this Chapter, we used a plane-wave-pseudopotential approahto DFT to ompute the eletron loalization tensor for various oxides. Our study wasbased on the work on semiondutors performed by Sgiarovello and o-workers butused linear-response tehniques to ompute the �rst-order wave funtions.In order to investigate the properties of eletrons oupying individual groups ofbands independently, we �rst set-up a band-by-band deomposition of the loalizationtensor. In analogy with the �eld of statistis we had to distinguish between variane andovariane in this deomposition. The signi�ane of these new onepts was illustratedin terms of Wannier funtions and explained on a simple model. The variane allowsto get some insight into the hybridizations of atomi orbitals. The ovariane an beuseful to help onstruting maximally loalized Wannier funtions: it identi�es thebands that have to be onsidered together in order to improve their loalization. Wealso made a onnetion between the loalization tensor and the Born e�etive hargesand we disussed the di�erene between all-eletron and pseudopotential alulations.We applied these tehniques to binary oxides (BaO and �-PbO) and ferroeletrioxides (BaTiO3, PbTiO3 and LiNbO3). By onsidering �rst the eletrons of the innerbands we showed that some of them present a strong deloalization with respet to thesituation in an isolated atom. This observation suggests that the underlying atomiorbitals are hemially not inert but present non-negligible ovalent interations. Thisfat had been on�rmed from an inspetion of the Born e�etive harges.Finally, the variations of the O 2p variane during the ferroeletri phase transi-tions of BaTiO3 and LiNbO3 were found to be very small. This surprising result wasexplained in terms of the eletroni struture of these ompounds as it is interpretedin the Harrison model.We think that, when ombined with Born e�etive harges, the band-by-band de-omposition of the loalization tensor ould provide a powerful tool for the qualitativeharaterization of bonds in solids. However, more studies are needed, for di�erentlasses of materials [112℄, in order to make it fully e�etive.2.8 ReferenesThe formalism and results presented in this Chapter have been partly disussed in thefollowing papers:� M. Veithen, X. Gonze and Ph. Ghosez, Eletron loalization: Band-by-banddeomposition and appliation to oxides, Phys. Rev. B 66, 235113 (2002).� M. Veithen and Ph. Ghosez, Eletron loalization in lithium niobate, AIP Con-ferene Proeedings 626, 208 (2002).
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Chapter 3Nonlinear response ofinsulators to eletri �elds:theory3.1 IntrodutionHaving disussed the eletri �eld perturbation in Se. 1.4.5, we present in this Chaptertwo methodologies to study the nonlinear response of insulators to eletri �elds. The�rst tehnique uses density funtional perturbation theory (DFPT) and the seondone uses �nite eletri �elds. We report the expressions that we implemented in theabinit ode [64℄. In the following Chapter, these tehniques will be applied to varioussemiondutors and ferroeletris.Our interest in the nonlinear response of insulators to eletri �elds lies in thefat that many interesting properties are determined by this behavior. In partiular,the nonlinear optial suseptibilities, Raman sattering eÆienies and eletro-optioeÆients are related to third-order derivatives of the energy with respet to two ormore eletri �elds. In ontrast to the linear response formalism that is nowadaysroutinely applied to various systems (see for example Ref. [34℄), the nonlinear responseformalism has been mostly restrited to quantum hemistry problems. Although thehyperpolarizabilities of a huge number of moleules have been omputed, taking intoaount both eletroni and vibrational (ioni) ontributions [113,114℄, appliations inondensed matter physis have foused on rather simple ases [56{63℄.The formalism we desribe in this Chapter takes advantage of several reent theoret-ial developments. Nunes and Gonze [115℄ used Eq. (1.39) as an ansatz for a periodienergy funtional. In their formalism, the polarization was omputed as a Berry phaseof �eld polarized Bloh funtions (Eqs. (1.26) and (1.28)). This ansatz was justi�edlater by Souza and o-workers [116℄ who showed that the minima of the funtional of55



56 CHAPTER 3. ELECTRIC FIELDS: THEORYNunes and Gonze are stationary solutions of the time dependent Shr�odinger equationfor suÆiently weak �elds. Using perturbation theory, Nunes and Gonze showed thatit is possible to obtain analyti expressions of the derivatives of the energy with respetto eletri �elds up to any order. In partiular, at the lowest order, they reoveredthe same expressions of energy derivatives as given by more onventional perturbationmethods [37, 117℄. While Nunes and Gonze onsidered the response of extended sys-tems to in�nitesimal �elds, Souza and o-workers [15℄ and Umari and o-workers [16℄studied the response of extended systems to �nite eletri �elds (FEF) by minimizingthe energy funtional in Eq. (1.39) with respet to the �eld polarized Bloh funtions.In this Chapter, we �rst partiularize the formalism of Nunes and Gonze to the om-putation of seleted third-order energy derivatives. We report the loal density approx-imation (LDA) expressions of the nonlinear optial suseptibilities and the derivativesof the linear optial suseptibilities with respet to atomi displaements. We thenshow how these quantities an be used to ompute the Raman sattering eÆieniesof transverse and longitudinal optial phonons and the EO oeÆients under di�erentmehanial boundary onditions. Finally, we disuss the �nite eletri �eld method ofSouza and o-workers [15℄.3.2 Third-order density funtional perturbation the-ory3.2.1 Mixed third-order energy derivativesIn this setion, we present the general framework of the omputation of third orderenergy derivatives based on the 2n + 1 theorem [35, 36, 118℄. Using the notations ofSe. 1.4.6 (see also Refs. [37, 38℄), we onsider three Hermitian perturbations labeled�1, �2 and �3. The mixed third-order derivatives of the Kohn-Sham energy Eq. (1.7)E�1�2�3 = 16 �3E��1��2��3 �����1=0;�2=0;�3=0 (3.1)an be omputed from the ground-state and �rst-order wave funtionsE�1�2�3 = 16 � eE�1�2�3 + eE�1�3�2 + eE�2�1�3 + eE�2�3�1 + eE�3�2�1 + eE�3�1�2� (3.2)witheE�1�2�3 = X� [h �1� j(T + vext)�2�3 j (0)� i+ h �1� j(T + vext + vHx)�2 j �3� i+h (0)� j(T + vext)�1�2�3 j (0)� i+ h (0)� j(T + vext)�1�2 j �3� i℄�X�;� ��2��h �1� j �3� i



3.2. THIRD-ORDER DENSITY FUNCTIONAL PERTURBATION THEORY 57+16 Z drdr0dr00 Æ3EHx[n(0)℄Æn(r)Æn(r0)Æn(r00)n�1(r)n�2(r0)n�3(r00)+12 Z drdr0 dd�2 Æ2EHx[n(0)℄Æn(r)Æn(r0) �����=0 n�1(r)n�3(r0)+12 Z dr d2d�1d�3 ÆEHx[n(0)℄Æn(r) �����=0 n�2(r) + 16 d3EHx[n(0)℄d�1d�2d�3 �����=0 :(3.3)T is the kineti energy and EHx (vHx) is the sum of the Hartree and exhange-orrelation energy (potential). The �rst-order potential v�2Hx an be omputed as aseond-order funtional derivative of EHx [36℄:v�2Hx = Z Æ2EHx[n(0)℄Æn(r)Æn(r0) n�2(r0) dr0 + dd�2 ÆEHx[n(0)℄Æn(r) �����=0 : (3.4)Within the parallel gauge, the �rst-order Lagrange multipliers are given by��2�� = h (0)� j(T + vext + vHx)�2 j (0)� i: (3.5)As a onsequene of the 2n + 1 theorem, the evaluation of Eq. (3.3) requires nohigher order derivative of the wave funtions than the �rst one. These �rst-orderwave funtions are nowadays available in several �rst-priniples odes. They an beomputed from linear response by minimizing a stationary expression of the seond-order energy as desribed in Se. 1.4.2 or equivalently by solving the orrespondingSternheimer equation [119℄. It follows that the omputation of third-order energyderivatives does not require additional quantities other than the alulation of seond-order energy derivatives.Eq. (3.3) is the general expression of the third-order energy derivatives. In ase atleast one of the perturbations does not a�et the expliit form of the kineti energy orthe Hartree and exhange-orrelation energy, it an be simpli�ed: some of the termsmay be zero. This is the ase for the eletri �eld perturbations treated in this workas well as for phonon type perturbations. Further simpli�ations an be made in asepseudopotentials without nonlinear exhange-orrelation ore-orretion are used.3.2.2 The eletri �eld perturbationAs disussed in Se. 1.4.5, in ase one of the perturbations �j is a marosopi eletri�eld E , we an no more use the Kohn-Sham energy as it is de�ned in Eq. (1.7).Instead, we have to onsider the eletri �eld dependent energy funtional, F , de�nedin Eq. (1.39) where the polarization is omputed as a Berry phase of the �eld-polarizedBloh funtions [Eq. (1.26)℄. In order to use Eq. (1.26) in pratial alulations, theintegration over the BZ and the di�erentiation with respet to k have to be performedon a disrete mesh of Mk k-points. As disussed in Se. 1.4.3, in ase of the ground-state polarization, the standard approah is to build strings of k-points parallel to avetor of the reiproal spae, Gk. The polarization an then be omputed as a string-averaged Berry phase [Eq. (1.28)℄. Unfortunately, the adaptation of this method to



58 CHAPTER 3. ELECTRIC FIELDS: THEORYthe omputation of the energy derivatives is plagued with several tehnial diÆulties,like the following. The general form of the nonlinear optial suseptibility tensor of aompound is imposed by its symmetry. For example, in zin-blende semiondutors,this tensor, expressed in Cartesian oordinates redues to �(2)ijl = �(2)j�ijlj, where �is the Levi-Civita tensor. It follows that the redued oordinate formulation of �(2)ijlsatis�es the relation ������(2)ijl�(2)iii ����� = 13 ; (3.6)where at least one of the three indies i, j and l are di�erent from the two others.When we tried to use strings of k-points to ompute �(2)ijl , Eq. (3.6) was not satis�ed.However, we were able to avoid these problems, by using the �nite di�erene formulaof Marzari and Vanderbilt [28℄ on a regular grid of speial k-points (instead of strings)rf(k) =Xb wbb [f(k+ b)� f(k)℄ ; (3.7)where b is a vetor onneting a k-point to one of its nearest neighbors and wb isa weight fator. The sum in Eq. (3.7) inludes as many shells of �rst neighbors asneessary to satisfy the onditionXb wbb�b� = g��(2�)2 ; (3.8)where b� are the redued oordinates of b and g�� is the metri tensor assoiated withthe real spae rystal lattie.In the ase of the ground-state polarization, we annot apply the disretization Eq.(3.7) diretly to Eq. (1.26). As shown by Marzari and Vanderbilt, the disretizationof Eq. (1.26) does not transform orretly under the gauge transformationunk(r)! e�ik�Runk(r): (3.9)Sine Eq. (3.9) is equivalent to a shift of the origin by one lattie vetor R, P musthange aordingly by one polarization quantum. In order to obtain a disrete expres-sion that mathes this requirement, we must ombine Eq. (3.7) with the King-Smithand Vanderbilt formula [7, 8℄P = 2eMk
0 Xk Xb wbb= ln det [S(k;k+ b)℄ ; (3.10)where S is the overlap matrix between Bloh funtions at k and k+ b de�ned in Eq.(1.31).As disussed by Nunes and Gonze [115℄, when we apply the perturbation expansionof the preeding setion to the energy funtional Eq. (1.39), we an adopt two equiv-alent approahes. The �rst possibility is the use of Eq. (1.26) for the polarization and



3.2. THIRD-ORDER DENSITY FUNCTIONAL PERTURBATION THEORY 59a disretization after having performed the perturbation expansion. The seond possi-bility is to apply the 2n+1 theorem diretly to Eq. (3.10) in whih ase no additionaldisretization is needed. Using the notations of Nunes and Gonze, we will refer to the�rst ase as the DAPE (disretization after perturbation expansion) formulation and tothe seond one as the PEAD (perturbation expansion after disretization) formulationof the third-order energy. In the following setions, we will disuss both expressions. Inaddition, in Se. 4.3.1, we will ompare their onvergene with respet to the k-pointsampling to the onvergene of the �nite eletri �eld tehnique disussed in Se. 3.4.The perturbation expansion of the �rst term (E) of Eq. (1.39) an easily be performedas it is desribed in the Se. 3.2.1. In ontrast, the expansion of the seond term(�
0E � P) is more triky sine it expliitly depends on the polarization. In the twosetions that follow, we will fous on the �
0E � P term of Eq. (1.39). It will bereferred to as Epol.3.2.3 DAPE expressionAording to the formalism of the preeding setion, the E �P term ats as an additionalexternal potential that has to be added to the ioni one. The E � P perturbation islinear in the eletri �eld and does not depend expliitly on other variables suh as theatomi positions. It just enters the terms of Eq. (3.3) that involve the �rst derivativeof vext with respet to E . In other words, the only terms in Eq. (3.2) that involvethe expansion of P are of the form eE�1Ei�3 where �1 and �3 represent an arbitraryperturbation suh as an eletri �eld or an atomi displaement.The DAPE expression of the third-order derivative of Epol is written as followseE�1Ei�3pol = 2ie
0(2�)3 ZBZ dk oXn hu�1nkj ��ki oXm ju�3mkihu(0)mkj! ju(0)nki; (3.11)where u�jnk are the projetion of the �rst-order wave funtions on the ondution bands.The omplete expression of various third-order energy derivatives, taking into aountthe expansion of both E and Epol, are reported in Se. 3.3. Eq. (3.11) was derived�rst by Dal Corso and Mauri [117℄ in a slightly di�erent ontext: they performed theperturbation expansion of the energy funtional Eq. (1.39) using a Wannier basis.The resulting expression of the third-order energy derivatives was expressed in termsof Bloh funtions by applying a unitary transform to the Wannier orbitals.Using the �nite di�erene expression of Marzari and Vanderbilt Eq. (3.7), Eq.(3.11) beomes eE�1Ei�3pol = 2ieMk Xk Xb oXn;mwb(b �Gi)�nhu�1nkju�3mk+bihu(0)mk+bju(0)nki� hu�1nkju�3mkiÆn;mo ; (3.12)



60 CHAPTER 3. ELECTRIC FIELDS: THEORYwhere Gi is a basis vetor of the reiproal lattie.3.2.4 PEAD expressionApplying diretly the 2n + 1 theorem to Eq. (3.10) we obtain the alternative PEADformulation of the third-order energy derivatives:eE�1Ei�3pol = �eMk=Xk Xb wb(b �Gi)�"""2 oXn;mhu�1nkju�3mk+biQmn(k;k+ b)� oXn;m;l;l0 S�1mn(k;k+ b)Qnl(k;k+ b)�S�3ll0 (k;k+ b)Ql0m(k;k+ b)###; (3.13)where Q is the inverse of the overlap matrix S and S�j its �rst-order perturbationexpansion S�jnm(k;k+ b) = hu�jnkju(0)mk+bi+ hu(0)nkju�jmk+bi: (3.14)3.3 Computation of nonlinear optial propertiesIn the preeding setion we have disussed the general expressions of third-order en-ergy derivatives. We now partiularize them to the omputation of seleted nonlinearproperties.3.3.1 Nonlinear optial suseptibilitiesAs shown in Se. 1.3.1, in an insulator the polarization an be expressed as a Taylorexpansion of the marosopi eletri �eldPi = Psi + 3Xj=1 �(1)ij Ej + 3Xj;l=1�(2)ijl EjEl + � � � ; (3.15)where Psi is the zero-�eld (spontaneous) polarization, �(1)ij the linear optial susepti-bility (seond rank tensor) and �(2)ijl the seond-order nonlinear optial suseptibility(third rank tensor). In the literature on nonlinear optis, one often �nds another de�-nition of the nonlinear optial suseptibility: instead of �(2)ijl , it is more onvenient torely on the d tensor de�ned as dijl = 12�(2)ijl : (3.16)



3.3. COMPUTATION OF NONLINEAR OPTICAL PROPERTIES 61In general, the polarization depends on valene eletrons as well as on ions. In thepresent setion, we deal only with the eletroni ontribution: we will onsider theioni ores as lamped to their equilibrium positions. This onstraint will be relaxedin the following setions where we allow for ioni displaements.Experimentally, the eletroni ontribution to the linear and nonlinear suseptibil-ities orresponds to measurements for eletri �elds at frequenies high enough to getrid of the ioni relaxation but low enough to avoid eletroni exitations. In ase ofthe seond-order suseptibilities, this onstraint implies that both the frequeny of E ,and its seond harmoni, are lower than the fundamental absorption gap.The general expression of the eletroni nonlinear optial suseptibility depends onthe frequenies of the optial eletri �elds [see for example Ref. [120℄℄. In the presentontext of the 2n + 1 theorem applied within the LDA to (stati) DFT, we negletthe dispersion of �(2)ijl . As a onsequene, �(2)ijl satis�es Kleinman's [121℄ symmetryondition whih means that it is symmetri under a permutation of i, j and l. In orderto be able to investigate its frequeny dependene, one would need either to apply theformalism of time-dependent DFT [56℄ or to use expressions that involve sums overexited states [55, 122{125℄.Following the work of Dal Corso and o-workers [56,117℄ we an relate the nonlinearoptial suseptibilities to a third-order derivative of the energy funtional de�ned inEq. (1.39) with respet to an eletri �eld�(2)ijl = � 3
0FEiEjEl (3.17)where FEiEjEl is de�ned as the sum over the permutations of the three perturbationseFEiEjEl (3.2). Using the PEAD formulation of Se. 3.2.2 we an express these termsas follows:eFEiEjEl = �eMk=Xk Xb wb(b �Gj)"""2 oXn;mhuEinkjuElmk+biQmn(k;k+ b)� oXn;m;n0;m0 SEimn(k;k+ b)Qnn0(k;k+ b)SEln0m0(k;k+ b)Qm0m(k;k+ b)###+ 2Mk Xk oXn;m"""Æm;nhuEinkjvEjhxjuElmki � hu(0)mkjvEjhxju(0)nkihuEinkjuElmki###+16 Z drdr0dr00 Æ3Ex[n0℄Æn(r)Æn(r0)Æn(r00)nEi(r)nEj (r0)nEl(r00): (3.18)3.3.2 Raman suseptibilities of zone-enter optial phononsWe now onsider the omputation of Raman sattering eÆienies of zone-enter optialphonons. In the limit q ! 0, the matrix of interatomi fore onstants eC an be



62 CHAPTER 3. ELECTRIC FIELDS: THEORYexpressed as the sum of an analytial part and a non-analytial term [38℄eC��;�0�(q ! 0) = eCAN��;�0�(q = 0) + eCNA��;�0�(q ! 0): (3.19)The analytial part orresponds to the seond-order derivative of the energy with re-spet to an atomi displaement at q = 0 under the ondition of vanishing marosopieletri �eld. The seond term is due to the long-range eletrostati interations in po-lar rystals. It is at the origin of the so-alled LO-TO splitting and an be omputedfrom the knowledge of the Born e�etive harges, Z���� ; and the eletroni dieletritensor [38℄ "ij . The phonon frequenies, !m, and eigendisplaements, Um(��), aresolutions of the following generalized eigenvalue problemX�0;� eC��;�0�Um(�0�) =M�!2mUm(��); (3.20)where M� is the mass of atom �. As a onvention, we hoose the eigendisplaementsto be normalized as X�;�M�Um(��)Un(��) = Æm;n: (3.21)In what follows we onsider non-resonant Raman sattering where an inomingphoton of frequeny !0 and polarization e0 is sattered to an outgoing photon offrequeny (!0�!m) and polarization eS by reating a phonon of frequeny !m (Stokesproess). The sattering eÆieny [126,127℄ (gs units) orresponds todSdV = jeS �Rm � e0j2= (!0 � !m)44 jeS ��m � e0j2 �h2!m (nm + 1) (3.22)where  is the speed of light in vauum and nm the boson fatornm = 1exp(�h!m=kBT )� 1 : (3.23)The Raman suseptibility �m is de�ned as�mij =p
0X�;� ��(1)ij���� Um(��); (3.24)where �(1)ij is the eletroni linear dieletri suseptibility tensor. V is the angle ofolletion in whih the outgoing photon is sattered. Due to Snell's law, V is modi�edat the interfae between the sample and the surrounding medium. Experimentally, thesattering eÆienies are measured with respet to the solid angle of the medium whileEq. (3.22) refers to the solid angle inside the sample. In order to relate theory andexperiment, one has to take into aount the di�erent refrative indies of the sample



3.3. COMPUTATION OF NONLINEAR OPTICAL PROPERTIES 63and medium. For example, in the isotropi ase, Eq. (3.22) has to be multiplied [126℄by (n0=n)2 where n and n0 are, respetively, the refrative indies of the sample andthe medium.For pure transverse optial phonons, ��(1)ij =���� an be omputed as a mixed third-order derivative of the energy with respet to an eletri �eld, twie, and to an atomidisplaement under the ondition of zero eletri �eld��(1)ij���� �����E=0 = � 6
0F���EiEj : (3.25)In ase of longitudinal optial phonons with wave vetor q ! 0 in a polar rystal,Eq. (3.24) must take into aount the e�et of the marosopi eletri �eld gener-ated by the lattie polar vibration. This �eld enters the omputation of the Ramansuseptibilities at two levels. On one hand, it gives rise to the non-analytial part ofthe matrix of interatomi fore onstants Eq. (3.19) that modi�es the frequenies andeigenvetors with respet to pure transverse phonons. On the other hand, the eletri�eld indues an additional hange in the dieletri suseptibility tensor related to thenonlinear optial oeÆients �(2)ijk . For longitudinal optial phonons, Eq. (3.25) has tobe modi�ed as follows [128℄:��ij���� = ��ij���� ����E=0 � 8�
0 Pl Z���lqlPl;l0 ql"ll0ql0 Xl �(2)ijl ql: (3.26)The mixed third-order derivatives (3.25) an be omputed from various tehniquesinluding �nite di�erenes of the dieletri tensor [129{131℄ or the seond derivative ofthe eletroni density matrix [132,133℄. Here, we follow an approah similar to Deinzerand Strauh [60℄ based on the 2n+1 theorem. The third-order energy derivatives anbe omputed as the sum over the 6 permutations Eq. (3.2) of ���, Ei and Ej . Aordingto the disussion of Se. 3.2.2, we have to distinguish between the terms that involvethe disretization of the polarization suh as eF���EiEj or eFEjEi��� and those that anbe omputed from a straightforward appliation of the 2n+1 theorem suh as eFEi���Ej .The former ones show an eletri �eld as seond perturbation. They an be omputedfrom an expression analogous to Eq. (3.18):eF���EiEj = �eMk=Xk Xb wb(b �Gi)"""2 oXn;mhu���nk juEjmk+biQmn(k;k+ b)� oXn;m;l;l0 S���mn (k;k+ b)Qnl(k;k+ b)SEjll0 (k;k+ b)Ql0m(k;k+ b)###+ 2Mk Xk oXn;m"""Æm;nhu���nk jvEihxjuEjmki � hu(0)mkjvEihxju(0)nkihu���nk juEjmki###+16 Z drdr0dr00 Æ3Ex[n0℄Æn(r)Æn(r0)Æn(r00)n���(r)nEi(r0)nEj (r00): (3.27)



64 CHAPTER 3. ELECTRIC FIELDS: THEORYWe obtain a similar expression for eFEjEi��� . The remaining terms do not require anydi�erentiation with respet to k. They an be omputed from the �rst-order hangeof the ioni (pseudo-) potential with respet to an atomi displaement v���exteFEi���Ej = 2Mk Xk oXn;m"""huEinkjv���ext + v���hxjuEjmkiÆn;m�hu(0)nkjv���ext + v���hxju(0)mkihuEimkjuEjnki###+12 Z drdr0 dd��� Æ2EHxÆn(r)Æn(r0) ����n(0) nEi(r)nEj (r0)+16 Z drdr0dr00 Æ3Ex[n0℄Æn(r)Æn(r0)Æn(r00)n���(r)nEi(r0)nEj (r00): (3.28)In pseudopotential alulations, the omputation of the �rst-order ioni potential v���extrequires the derivative of loal and non-loal (usually separable) operators. Theseoperations an be performed easily without any additional workload as desribed inRef. [37℄.In spite of the similarities between Eqs. (3.27) and (3.28) and the expression pro-posed by Deinzer and Strauh we an quote few di�erenes. First, our expression of thethird-order energy derivatives makes use of the PEAD fomulation for the expansion ofthe polarization. Moreover, Eq. (3.28) is more general sine it allows the use of pseu-dopotentials with nonlinear ore orretion through the derivative of the seond-orderexhange-orrelation energy with respet to ��� (third term).3.3.3 Sum ruleAs in the ases of the Born e�etive harges and of the dynamial matrix [134℄, theoeÆients ��(1)ij =���� must vanish when they are summed over all atoms in the unitell. X� ��(1)ij���� = 0: (3.29)Physially, this sum rule guarantees that the marosopi dieletri suseptibility re-mains invariant under a rigid translation of the rystal. In pratial alulations, it isnot always satis�ed although the violation is generally less severe than in ase of eCor Z�. Even in alulations that present a low degree of onvergene, the deviationsfrom this law an be quite weak. They an be orreted using similar tehniques as inase of the Born e�etive harges [38℄. For example, we an de�ne the mean exess of��(1)ij =���� per atom ��(1)ij��� = 1Nat X� ��(1)ij���� (3.30)



3.3. COMPUTATION OF NONLINEAR OPTICAL PROPERTIES 65and redistribute it equally between the atoms��(1)ij���� ! ��(1)ij���� � ��(1)ij��� : (3.31)3.3.4 Eletro-opti tensorThe optial properties of a ompound usually depend on external parameters suhas the temperature, eletri �elds or mehanial onstraints (stress, strain). In thepresent setion we onsider the variations of the refrative index indued by a stati orlow-frequeny eletri �eld E . At linear order, these variations are desribed by thelinear EO oeÆients (Pokels e�et)� �"�1�ij = 3X=1 rijE ; (3.32)where ("�1)ij is the inverse of the eletroni dieletri tensor and rij the EO tensor.As disussed in Se. 1.3.4, within the Born and Oppenheimer approximation, theEO tensor an be expressed as the sum of three ontributions: a bare eletroni partrelij , an ioni ontribution rionij and a piezoeletri ontribution rpiezoij .The eletroni part is due to an interation of E with the valene eletrons whenonsidering the ions arti�ially as lamped at their equilibrium positions. It an beomputed from the nonlinear optial oeÆients. As an be seen from Eq. (3.15), �(2)ijlde�nes the seond-order hange of the indued polarization with respet to E . Takingthe derivative of Eq. (3.15), we also see that �(2)ijl de�nes the �rst-order hange of thelinear dieletri suseptibility, whih is equal to 14��"ij : Sine the EO tensor dependson �("�1)ij rather than �"ij , we have to transform �"ij to �("�1)ij by the inverseof the zero �eld eletroni dieletri tensor [77℄�("�1)ij = � 3Xm;n=1 "�1im�"mn"�1nj : (3.33)Using Eq. (3.33) we obtain the following expression for the eletroni EO tensorrelij = �8� 3Xl;l0=1 ("�1)il�(2)ll0k("�1)l0j���k= : (3.34)Eq. (3.34) takes a simpler form when expressed in the prinipal axes of the rystalunder investigation 1 relij = �8�n2in2j �(2)ijk�����k= ; (3.35)1In some ases, the eletri �eld an indue a rotation of the prinipal axes. Eq. (3.35) is expressedin the prinipal axes of the rystal under zero eletri �eld.



66 CHAPTER 3. ELECTRIC FIELDS: THEORYwhere the ni oeÆients are the prinipal refrative indies.The origin of the ioni ontribution to the EO tensor is the relaxation of the atomipositions due to the applied eletri �eld E and the variations of "ij indued by thesedisplaements. It an be omputed from the Born e�etive harges Z��;�� and the ��ij����oeÆients introdued in Se. 3.3.2. As shown in appendix B [see also Refs. [128,135℄℄,the ioni EO tensor an be omputed as a sum over the transverse opti phonon modesat q = 0 rionij = � 4�p
0n2in2j Xm �mij pm!2m ; (3.36)where �m is the Raman suseptibility of mode m [Eq. (3.24)℄ and pm the modepolarity pm =X�;� Z��;�Um(��) (3.37)whih is diretly linked to the mode osillator strengthSm;�� = pm� � pm� : (3.38)For simpliity, we have expressed Eq. (3.36) in the prinipal axes while a more generalexpression an be derived from Eq. (3.33).Finally, the piezoeletri ontribution is due to a relaxation of the unit ell shapedue to the onverse piezoeletri e�et [87℄. As it is disussed in appendix B, it an beomputed from the elasto-opti oeÆients �ij�� and the piezoeletri strain oeÆientsd�� : rpiezoij = 3X�;�=1 �ij��d�� : (3.39)In the disussion of the EO e�et, we have to speify whether we are dealingwith strain-free (lamped) or stress-free (unlamped) mehanial boundary onditions.The lamped EO tensor r�ij takes into aount the eletroni and ioni ontributionsbut neglets any modi�ation of the unit ell shape due to the onverse piezoeletrie�et [87℄: r�ij = relij + rionij : (3.40)Experimentally, it an be measured for frequenies of E high enough to eliminate therelaxations of the rystal lattie but low enough to avoid exitations of optial phononmodes (usually above � 100 MHz). To ompute the unlamped EO tensor r�ij , wehave to add the piezoeletri ontribution to r�ij :r�ij = r�ij + rpiezoij : (3.41)Experimentally, r�ij an be measured for frequenies of E below the (geometry de-pendent) mehanial body resonanes of the sample [87℄ (usually below � 1 MHz).



3.4. FINITE ELECTRIC FIELD TECHNIQUES 673.4 Finite eletri �eld tehniquesThe 2n + 1 theorem is not the only formalism to study the nonlinear response ofinsulators to eletri �elds. An alternative approah onsists in the diret minimizationof the energy funtional, F , de�ned in Eq. (1.39) for a �nite eletri �eld E [15,16, 136, 137℄. Di�erent shemes to perform these alulations have been proposed inthe literature [15, 16, 138℄. Here, we desribe the method of Ref. [15℄ that has beenimplemented in the abinit ode.As explained in Se. 1.4.5, beause of the interband (Zener) tunneling, an insulatorin an eletri �eld has no true ground-state. In pratial alulations, the problem ofthe tunneling urrent an partially be overome by the use of a �nite grid of k-points. Inmost alulations, a disrete mesh of k-points is introdued for omputational reasons,to integrate quantities suh as the energy or the harge density. In the presene of a�nite eletri �eld however, the use of a �nite k-point grid plays the additional role toeliminate the possibility of runaway solutions, allowing for stable stationary solutionsof Eq. (1.39) to exist.To illustrate how the disretization proedure endows the energy funtional withminima, we onsider in Figure 3.1 a one dimensional system with periodi boundaryonditions over a superell of size L. Sine the number of k-points, M , is equal to thenumber of unit ells in the superell we have L =Ma where a is the lattie onstant.This system is an be visualized as a ring of perimeter L [139℄. For a given numberof k-points, the energy funtional will have minima only if E is small enough to avoidZener tunneling. This should happen as long as the distane aross whih the eletronshave to tunnel to lower their energy is larger than the ring perimeter L. Aording toFigure 1.8, the potential energy drop aross the superell, �E = eEL, must be smallerthan the band gap, Eg , of the system. In other words, the eletri �eld must be smallerthan the ritial �eld E = EgeMa: (3.42)Eq. (3.42) shows that E dereases as the number of k-points inreases. This behavioran impose some limitations on pratial alulations. One the one hand, we usuallyneed a large number of k-points to obtain well-onverged results. On the other hand,for large M , the ritial �eld an be quite low (depending on the band gap of thesystem) and we are limited to study the e�et of relatively weak �elds.For eletri �elds smaller than E, the minimization of the energy funtional, F , anbe performed using standard tehniques suh as a preonditioned onjugate-gradientalgorithm [15, 88℄. At the minimum Eq. (1.39) yields the energy and polarization ofan insulator in an eletri �eld. In addition, sine the �eld-polarized Bloh funtionsare stationary points of Eq. (1.39), we an use the Hellmann-Feynman argument [88℄to ompute fores and stresses at E 6= 0. The fore on an atom � along diretion �an be omputed as the sum of the standard Hellmann-Feynman expression at zeroeletri �eld plus a ontribution due to the ioni oresf�� = � �F���� = � �E���� + Z�E�; (3.43)



68 CHAPTER 3. ELECTRIC FIELDS: THEORYFigure 3.1: A one dimensional system with periodi boundary onditions over M unitells an be visualized as a ring with perimeter L =Ma where a is the lattie onstant.
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where Z� is the ioni harge of the nuleus and the ore eletrons.In ase of the stress tensor ��� = 1
0 �F���� ; (3.44)we have to speify the eletrial boundary onditions under whih the strain derivativesof F are omputed. Let us �rst use Eq. (1.28) to rewrite the �eld oupling term inEq. (1.39) in terms of the eletroni and ioni Berry phases
0E �P = 
02� 3Xi=1(E � ai)(P �Gi)= e2� 3Xi=1(E � ai)('(i)el + '(i)ion) (3.45)When a rystal is deformed by a homogeneous strain, �,ai �! (1+ �)ai (3.46)we an keep onstant either the eletri �eld, E , or the potential drop aross eah lattievetor, Vi = �E � ai. If we keep onstant the potential drop2, the strain derivatives ofthe eletri �eld oupling term Eq. (3.45) vanish beause 'el and 'ion do not expliitlydepend on �. The stress tensor at onstant potential an therefore be omputed as thestrain derivative of the zero �eld Kohn-Sham energy�(V )�� = 1
0 �E���� : (3.47)2This situation is often met in pratial experiments where a voltage is applied aross a samplebetween onduting eletrodes.



3.5. CONCLUSIONS 69In ontrast, if we keep onstant the eletri �eld, the derivatives of the �eld ouplingterm no more vanish. The stresses in the two ases are related by�(E)�� = �(V )�� � e2� 3Xi=1 E�[ai℄�('(i)el + '(i)ion): (3.48)The formalism presented in this setion o�ers an alternative approah to omputethe nonlinear response of insulators to eletri �elds. In fat, all quantities disussedin Se. 3.3 an be omputed from �nite di�erenes of the energy, the polarization orthe fores with respet to eletri �elds as will be illustrated in the following Chapter.Compared to the perturbative approah of Ses. 3.2 and 3.3, the �nite eletri �eldtehnique has the advantage to be very general and to be easily appliable to theomputation of physial quantities other than those of Se. 3.3 suh as the tunabilityof the dieletri onstant [140℄ or higher-order nonlinear optial responses. Moreover,this tehnique allows to use the funtionals for the exhange-orrelation energy that arealready available for zero-�eld ground-state alulations. In ontrast, in order to applythe perturbative approah of Ses. 3.2 and 3.3, all physial quantities and expressionsfor the exhange-orrelation energy must be implemented expliitly. However, whenthe additional oding is terminated, the perturbative approah o�ers a more systematiand elegant way to ompute nonlinear response funtions than the �nite eletri �eldtehnique. Moreover, in the perturbative approah, there are no problems related toritial �elds as it is the ase of the �nite eletri �eld tehnique.3.5 ConlusionsIn this Chapter, we presented two methodologies to study the nonlinear response ofinsulators to eletri �elds. The �rst tehnique is based on density funtional pertur-bation theory and the seond tehnique is based on �nite eletri �elds.Starting from the work of Nunes and Gonze, we reported the LDA expressions ofthe nonlinear optial suseptibilities and the derivatives of the linear optial susep-tibilities with respet to atomi displaements as we have implemented them in theabinit ode. We then showed how these quantities an be used to ompute the Ramansattering eÆienies of transverse and longitudinal optial phonons and the lampedand unlamped EO oeÆients. We �nally disussed how the �nite eletri �eld teh-nique of Souza and o-workers an be applied to ompute the energy of a solid in aneletri �eld as well as the fores on the atoms and the stress tensor under distinteletrial boundary onditions.In Chapter 4, the present formalism will be applied to seleted ferroeletris andsemiondutors.
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Chapter 4Nonlinear response ofinsulators to eletri �elds:results4.1 IntrodutionFerroeletri oxides are well known to exhibit unusual linear and nonlinear responseproperties and are urrently used in many devies. In order to �nd better materials forsuh appliations, it is important to understand the physial mehanisms that are atthe origin of these properties and to larify the role of the soft mode in the eletrome-hanial oupling of these materials. Unfortunately, the experimental haraterizationof ferroeletris is not always easy. In addition, experiments give no diret informationabout the mehanisms responsible for the observed results. For example, the measure-ments of nonlinear optial properties require high-quality single rystals that are notalways aessible nor easy to make. Moreover, the determination of phonon frequen-ies from Raman spetrosopy an be quite diÆult as it is the ase of the E-modes inLiNbO3.For suh reasons, aurate theoretial alulations of Raman sattering eÆieniesand EO oeÆients are highly desirable. On the one hand, these alulations an beused to predit the amplitude of the EO oeÆients in situations where no experimentaldata are available. On the other hand, the mirosopi quantities omputed from �rst-priniples help to identify the mehanisms responsible for the observed properties andto assign the peaks on an experimental Raman spetrum to spei� phonon modes.In this Chapter, we apply the formalism of Chapter 3 to seleted ferroeletris inorder to (i) identify the mehanisms responsible for their large EO responses and (ii) tolarify the assignation of the E-modes in LiNbO3. The theoretial study of the Ramanspetrum of ferroeletris has the additional bene�t that it will help us to understand71



72 CHAPTER 4. ELECTRIC FIELDS: RESULTSthe ioni ontribution to the EO oeÆients in these materials.To start, we illustrate in Se. 4.3 the formalism of the preeding Chapter by om-puting the nonlinear optial suseptibilities, Raman polarizabilities and EO oeÆientsof seleted semiondutors. In partiular, we ompare the onvergene of di�erent ex-pressions to ompute third-order energy derivatives with respet to the number of k-points and we disuss the e�et of the approximations used for the exhange-orrelationenergy.In Se. 4.4, we disuss some of the basi ingredients required to study the Ramanspetra and EO oeÆients in BaTiO3, PbTiO3 and LiNbO3. We report the nonlinearoptial suseptibilities and the derivatives of the linear optial suseptibilities withrespet to atomi displaements. As in ase of the semiondutors, we ompare theresults obtained from the 2n+1 theorem to the results obtained from the �nite eletri�eld tehnique.In Se. 4.5, we disuss the Raman spetra of PbTiO3 and LiNbO3. We �nd that thetheoretial Raman spetra are suÆiently aurate to be ompared to the experimentand that they an be helpful to interpret experimental Raman spetra. In partiular,we are able to larify some of the ambiguities in the assignation of the phonon modesin LiNbO3.Finally, in Se. 4.6, we study the EO tensor of the three ferroeletri oxides LiNbO3,BaTiO3 and PbTiO3. We �nd that �rst-priniples alulations are fully preditive andprovide signi�ant new insights into the mirosopi origin of the EO e�et in thesematerials. In partiular, we highlight the predominant role of the soft mode in the EOoupling in LiNbO3 and BaTiO3, in ontrast with its minor role in PbTiO3.4.2 Tehnial detailsAll results presented in this Chapter have been obtained with the abinit pakage [64℄.The onvergene study on AlAs in Se. 4.3.1 (Figure 4.2) has been performed atthe theoretial lattie onstant. We used the LDA for the exhange-orrelation energy,Troullier-Martins pseudopotentials [141℄ and a plane wave kineti energy uto� of 10hartree.For all other alulations on semiondutors, presented in Se. 4.3 we used eitherthe LDA or the GGA for the exhange-orrelation energy. In ase of the LDA, we hosethe parameterization of Perdew and Wang [142℄ and in ase of the GGA, we hose theparameterization of Perdew, Burke, Ernzerhof [143℄. In order to isolate the e�et ofthese approximations on the nonlinear optial properties from other e�ets, suh asthe dependene of these properties on the lattie onstants or the parameters of thepseudopotentials, we worked at the experimental lattie onstants. Moreover, we usedthe fhi98PP ode [144℄ to build norm-onserving pseudopotentials. For eah atom,the same parameters (uto� radius, nonlinear exhange-orrelation ore-orretion, ...)were used to build the LDA and GGA pseudopotentials. These alulations have beenperformed using a 16�16�16 grid of speial k-points and a plane-wave kineti energyuto� of 20 hartree.



4.3. NONLINEAR RESPONSE OF SEMICONDUCTORS 73For BaTiO3 and PbTiO3, we used extended norm-onserving pseudopotentials [108℄,a plane-wave kineti energy uto� of 45 hartree and a 10� 10� 10 k-point grid. Thetheoretial atomi positions relaxed at the experimental lattie onstants have been re-ported in Se. 1.2. For LiNbO3, we used the same norm-onserving pseudopotentialsas in Ref. [69℄ as well as the Born e�etive harges, phonon frequenies and eigenvetorsalready reported in that paper. For this ompound, a 8�8�8 k-point grid and a planewave kineti energy uto� of 35 hartree give onverged values for �(2)ijl and ��(1)ij =����.The theoretial lattie onstants and atomi positions have been reported in Se. 1.2.4.3 Nonlinear response of semiondutors to eletri�eldsIn order to illustrate the omputation of third-order energy derivatives desribed inChapter 3, we performed a series of alulations on various ubi AB semiondutorswhere A denotes the ation (f. ex. Al) and B the anion (f. ex. As). The aim ofthese alulations is to ompare the results obtained from the 2n+ 1 theorem to theresults obtained from the �nite eletri �eld tehnique and to study the e�et of theexhange-orrelation funtional on the nonlinear optial properties. We �rst disussthe omputation of nonlinear optial suseptibilities. In partiular, we ompare theonvergene of the PEAD and DAPE formulations to the onvergene of the �niteeletri �eld tehnique. We then disuss the omputation of Raman polarizabilitiesand EO oeÆients.4.3.1 Nonlinear optial suseptibilitiesIn ubi semiondutors, the seond-order nonlinear optial suseptibility tensor (Voigtnotations) has a very simple formd = 0� � � � d36 � �� � � � d36 �� � � � � d36 1A : (4.1)It has only one independent element1, d36 (= 12�(2)36 = 12�(2)321). The omputation of thiselement from the 2n+1 theorem has been desribed in Se. 3.3.1. In order to omputed36 from �nite eletri �elds, we have to apply an eletri �eld along two (or more)distint Cartesian diretions and to study the nonlinear evolution of the polarization,P , along the third diretion. This is illustrated in Figure 4.1 for an LDA alulationon AlAs. The eletri �eld is hosen along the (1,1,1) diretion with an amplitude, E ,de�ned as E = E(1; 1; 1): (4.2)1The elements of the nonlinear optial suseptibility tensor in these ompounds an also be de�nedas dijl = d36j�ijlj, where �ijl are the elements of the Levy-Civita tensor.



74 CHAPTER 4. ELECTRIC FIELDS: RESULTSThe polarization an be deomposed intoPi(E) = PLi (E) + PNLi (E) i = 1; 2; 3 (4.3)where PLi and PNLi are respetively the linear and nonlinear omponents of PiPLi (E) = Psi + �(1)E (4.4)PNLi (E) = 4d36E2 +O(E3): (4.5)The parameters Psi , �(1) and d36 have been determined by �tting the �rst-priniplesdata with Eq. (4.3). The seond term of the right-hand side of Eq. (4.5) is relatedto higher-order e�ets. It will not be disussed here 2 although it was inluded in the�t. Figure 4.1 shows the dependene of PNL1 on E . The points are the �rst-priniplesdata from whih we have subtrated the linear part, PL1 , and the line orresponds toEq. (4.5). The inset of Figure 4.1 shows the values of the total polarization for variouseletri �elds (points) and the �t of Eq. (4.3) (line) to the �rst-priniples data. For agiven �eld, the nonlinear polarization is about two orders of magnitude smaller thanthe total polarization. On the one hand, this result shows that the dependene ofP on E is dominated by linear e�ets. On the other hand, we need to ompute thepolarization with a high auray of j�P=Pj < 10�3 if we want to ompute nonlinearoptial suseptibilities. This requires a high degree of onvergene of the wave funtionsobtained from the minimization of Eq. (1.39). The value of d36 omputed from theurvature of PNL1 at the origin is 38 pm/V, in exellent agreement with the valueomputed from the 2n+ 1 theorem (see Table 4.1).The formalism of the 2n+1 theorem presented in Se. 3.2.2 involves an integrationover the Brillouin zone and a derivative with respet to k. In pratial alulations,these operations must be performed on a disrete mesh of speial k-points. As ex-plained in Se. 3.2.2, the disretization an either be performed before (PEAD) orafter (DAPE) the perturbation expansion of the energy funtional Eq. (1.39). Upuntil now, the appliations of the present formalism to real materials [56,60℄ made useof the DAPE formula of the third-order energy. The only appliation of the PEADformula has been reported by Nunes and Gonze [115℄ on a one-dimensional model sys-tem. These authors observed that the PEAD formula onverges better with respet tothe k-point sampling than the DAPE formula. In order to ompare the performaneof these two approahes for a realisti ase, we applied both of them to ompute thenonlinear optial suseptibility, d36, of AlAs. We performed a series of alulationson a n � n � n grid of speial k-points. In addition, we used the �nite eletri �eldtehnique (FEF) to ompute the nonlinear optial suseptibility for these grids. As2The fator of 4 in the �rst term of the right-hand side of Eq. (4.5) an be obtained from the thirdterm of the right-hand side of Eq. (3.15) and Eq. (3.16). For example, in ase of PNL1 we obtain:PNL1 = 3Xj;l=1�(2)1jlEjEl = 2 3Xj;l=1 d1jlEjEl = 2(d123E2E3 + d132E3E2) = 4d36E2:



4.3. NONLINEAR RESPONSE OF SEMICONDUCTORS 75
Figure 4.1: Dependene of the nonlinear polarization of AlAs on an eletri �eld alongthe (1,1,1) diretion. The amplitude of the eletri �eld, E , used as absissa is de�nedin Eq. (4.2). The inset shows the dependene of the total polarization on E .

 0

 0.01

 0.02

 0.03

 0.04

-6 -4 -2  0  2  4  6

P
ol

ar
iz

at
io

n 
(1

0-4
 a

.u
.)

Electric field (10-4 a.u.)

-4

-2

 0

 2

 4

-6 -4 -2  0  2  4  6

Figure 4.2: Nonlinear optial suseptibility d36 of AlAs omputed for various grids ofn� n� n speial k-points. The values have been omputed using the 2n+ 1 theorem(PEAD and DAPE expressions) and the �nite eletri �eld tehnique (FEF).
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76 CHAPTER 4. ELECTRIC FIELDS: RESULTSTable 4.1: Nonlinear optial suseptibilities d36 (pm/V) of the semiondutors AlAs,AlP and GaP omputed at the theoretial (T) and experimental (E) lattie onstants(LC). The values in the lines labeled "PEAD + SCI" and "SOS + SCI" have beenobtained using a sissors orretion. LDA GGAMethod LC AlAs AlP GaP AlAs AlP GaPPEAD (present) E 38 22 64FEF (present) E 38 22 65 36 20 57SOS [122℄ E 39 24 59PEAD (present) T 35 20 48DAPE [56℄ T 32 19 41FEF [15℄ T 32 19 33SOS [122℄ T 34 21 33PEAD + SCI (present) E 24 13 38SOS + SCI [122℄ E 24 15 35Exp. [145℄ 37Exp. [146℄ 41an be seen in Figure 4.2 the three approahes give the same value of d36 for large nfor large n3. However, the PEAD formula onverges faster than the DAPE formula orthe FEF approah. For this reason, the PEAD formula has been applied to obtain theresults presented in the following setions. It is the one that is atually available inthe abinit ode.In Table 4.1, we report the nonlinear optial suseptibilities of AlAs, AlP and GaPomputed at the experimental and theoretial lattie onstants (LC) using either thePEAD expression or the FEF tehnique. In ase of the FEF alulations, we used eitherthe LDA or the GGA for the exhange-orrelation energy. Our results are omparedto the results of Dal Corso and o-workers [56℄ who used the 2n+1 theorem within theDAPE formalism, the results of Souza and o-workers [15℄ who used a FEF tehnique,the results of Levine and Allan [122℄ who used a "sum over exited states" (SOS)tehnique and to the experiment. The values in the lines labeled "PEAD + SCI" and"SOS + SCI" have been obtained using a sissors orretion [147℄.The values omputed from the PEAD expression are in good agreement with thevalues obtained from the FEF tehnique and the values of Levine and Allan. The3The rossing between the values obtained from the PEAD expression and the values obtainedfrom the �nite eletri �eld tehnique and the small di�erene at large n an be related to the distint�nite di�erene expressions used in onnetion with the two tehniques. In ase of the �nite eletri�eld tehnique, we use strings of k-points whereas in ase of the 2n + 1 theorem (PEAD and DAPEexpressions) we use the �nite di�erene formula of Marzari and Vanderbilt Eq. (3.7). Nevertheless,this di�erene is small ompared to the errors introdued by the LDA or the pseudopotentials andwill not be disussed here.



4.3. NONLINEAR RESPONSE OF SEMICONDUCTORS 77di�erenes between the results reported in the top of Table 4.1 and the results ofRefs. [15, 56℄ an be related to the fat that the former ones have been obtained atthe experimental lattie onstants whereas the latter ones have been obtained at thetheoretial lattie onstants. Using the theoretial lattie onstants, we obtain valuesof 35, 20 and 48 pm/V for the nonlinear optial suseptibilities of AlAs, AlP and GaPin better agreement with the values obtained in Refs. [15, 56℄.The nonlinear optial suseptibilities omputed within the GGA are smaller thanthose omputed within the LDA. The sissors orretion dereases the values of the d36even further, in agreement with the disussion of Ref. [147℄ 4. To the authors' knowl-edge, no experimental data are available for AlAs and AlP. In ase of GaP, the valuesomputed within the LDA at the theoretial lattie onstant and the values omputedat the experimental lattie onstant making use of a sissors orretion are lose tothe experiment. However, it is not lear that the use of a sissors orretion alwaysimproves the agreement with the experiment. Moreover, it will even have a negativee�et in ase the LDA (or the GGA) underestimates the experimental nonlinear optialsuseptibilities. In addition, it is not straightforward to isolate the error of the LDA(or GGA) from other soures of errors. Other fators an have a similar strong inu-ene on the nonlinear optial suseptibilities. As disusses above, the dij are stronglya�eted by the error on the lattie onstants of the rystals. Another important soureof error an be the pseudopotentials used in the alulations as disussed in Ref. [56℄.4.3.2 Raman polarizabilitiesIn the ubi AB semiondutors, the derivatives of the linear optial suseptibilitieswith respet to atomi displaements are de�ned by a single number, ��(1)=�� . Makinguse of the Levy-Civita tensor, �ijk , we an write for the ation (A)��(1)ij��A;� = ��(1)�� j�ij�j (4.6)and for the anion (B) ��(1)ij��B;� = ���(1)�� j�ij�j: (4.7)The quantities ��(1)ij =���;� an be omputed from various tehniques. A �rst tehniquebased on the 2n+1 theorem is desribed in Se. 3.3.2. A seond tehnique onsists inomputing the derivatives ��(1)ij =���;� from frozen-phonon (FP) alulations by taking4Aording to the disussion of Ref. [147℄, we expet the LDA value of the nonlinear optialsuseptibility, dLDA, to be related to the value obtained making use of the LDA and a sissorsorretion, dSCI , by the relation dSCI � dLDA�1� �Eg�3 ;where Eg is the band gap and � the amplitude of the sissors orretion.



78 CHAPTER 4. ELECTRIC FIELDS: RESULTS
Figure 4.3: Dependene of the nonlinear omponent of the fore on Al along x in AlAson an eletri �eld along the (1,1,1) diretion. The amplitude of the eletri �eld, E ,used as absissa is de�ned in Eq. (4.2). The inset shows the dependene of the totalfore on E .

-0.01

-0.008

-0.006

-0.004

-0.002

 0

-6 -4 -2  0  2  4  6

F
or

ce
 (

10
-3

 a
.u

.)

Electric field (10-4 a.u.)

-1

-0.5

 0

 0.5

 1

-6 -4 -2  0  2  4  6

Table 4.2: Absolute values of the Raman polarizabilities (�A2) of the transverse optialphonon modes of some semiondutors. Our results have been omputed at the experi-mental lattie onstants using the 2n+1 theorem (PEAD expression), the �nite eletri�eld (FEF) tehnique and frozen phonon (FP) alulations. The three experimentalvalues for GaP have been obtained by distint experimental tehniques.LDA GGAMethod Si AlAs AlP GaP Si AlAs AlP GaPPEAD (present) 21.53 8.66 4.79 10.70FEF (present) 20.24 8.23 4.55 10.19 19.26 7.58 4.26 8.41FP (present) 21.81 8.69 4.79 10.79 20.69 7.99 4.47 8.83DAPE [60℄ 23.56 7.39 5.13 11.38FP [60℄ 20.44 5.64 4.44 9.48FP [129℄ 26.16Exp. [148,149℄ 23 � 4 19,16,23



4.3. NONLINEAR RESPONSE OF SEMICONDUCTORS 79�nite di�erenes of �(1)ij with respet to atomi displaements. Finally, we an use the�nite eletri �eld tehnique to ompute the �rst-order derivatives ��(1)ij =���;� as aseond-order derivative of the fore on atom �, f�;�, with respet to the eletri �eld��(1)ij���;� = 1
0 �2f�;��Ei�Ej : (4.8)The third method is illustrated in Figure 4.3 in ase of AlAs. The amplitude ofthe eletri �eld, E , is de�ned in Eq. (4.2). The fore on the ation along a Cartesiandiretion, �, an be expressed asfA;� = Z�A;��E +
0 ��(1)�� E2 (4.9)where Z�A;�� is the Born e�etive harge of the ation.The data omputed from �rst-priniples have been �tted with Eq. (4.9). The pointsin Figure 4.3 orrespond to the fore on Al along x omputed for di�erent amplitudesof the eletri �eld from whih we have subtrated the �rst term of the right-handside of Eq. (4.9). The line orresponds to the dependene of fAl;x on the eletri �eldomputed through the seond term of the right-hand side of Eq. (4.9). The inset showsthe dependene of the total fore on the eletri �eld (points) and the �t of Eq. (4.9)to the �rst-priniples data (line). As in ase of the polarization illustrated in Figure4.1, the nonlinear part of the fore is about two orders of magnitude smaller than thelinear part. As a onsequene, we need a high degree of onvergene of the eletroniwave funtions in order to obtain a preision of j�f=f j < 10�3 that is required toompute ��(1)=�� aurately.In Table 4.2, we report the Raman polarizabilities of Si, AlAs, AlP and GaP de�nedas a = 
0 ��(1)�� : (4.10)All values are found to be negative and we only report their absolute values. TheLDA values we obtained from the 2n + 1 theorem (PEAD expression), �nite eletri�eld (FEF) and frozen-phonon (FP) alulations are very similar. They are lose tothe theoretial values of Refs. [60, 129℄. We should note however that the Ramanpolarizabilities omputed in Ref. [60℄ from the 2n+1 theorem (DAPE expression) arein worse agreement with the values omputed from frozen-phonon alulations than inour ase. The absolute values of the Raman polarizabilities omputed within the GGAare signi�antly smaller than the orresponding LDA values. This behavior is similarto what we observed for the nonlinear optial suseptibilities in Se. 4.3.1.4.3.3 Clamped eletro-opti oeÆientsThe nonlinear optial suseptibilities and Raman polarizabilities disussed in Ses.4.3.2 and 4.3.1 are related to the nonlinear response of a ompound to optial eletri



80 CHAPTER 4. ELECTRIC FIELDS: RESULTSFigure 4.4: Graphial illustration of the (a) 7- and (b) 4-point formulas used to omputethe seond-order mixed derivatives of the polarization.
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�elds as de�ned in Se. 1.3. They have been omputed from the nonlinear dependeneof the polarization and the fores on the eletri �eld. In these alulation, the atomswere held �xed at their zero-�eld equilibrium positions. As a onsequene, the nonlinearoptial suseptibilities and Raman polarizabilities are determined by pure eletroniproesses. In addition to the eletroni ontribution, the lamped EO oeÆients aredetermined by an ioni ontribution due to eletri �eld indued atomi displaements.In ase we use the formalism of the 2n+ 1 theorem presented in Se. 3.3.4, the ioniontribution an be omputed from Eq. (3.36).In order to ompute the EO oeÆients from the �nite eletri �eld tehnique, wehave (i) to relax the atoms within the eletri �eld and (ii) to ompute the di�erenebetween the optial dieletri tensors of the zero-�eld equilibrium struture and thedistorted struture at non-zero eletri �eld. In this setion, we illustrate this proedurefor the ubi semiondutors AlAs, AlP and GaP. In Se. 4.6, we apply it to theperovskite ferroeletris BaTiO3 and PbTiO3.The form of the EO tensor in ubi semiondutors is given by the transpose oftheir nonlinear optial suseptibility tensor in Eq. (4.1). It only has one independentelement, r63. The omputation of this element is performed in two steps. First, westudy the dependene of the polarization on an eletri �eld that is the sum of a stati�eld, Est, and an optial eletri �eld, Eo. In analogy with the disussion of Se. 4.3.1,the urvature of P gives the nonlinear EO suseptibility dEO. Seond, we apply atransformation similar to Eq. (3.35) to transform dEO into the lamped EO oeÆientr�63 r�63 = �16�n4 dEO ; (4.11)where n is the refrative index of the ompound.The omputation of dEO is not straightforward. It has to be omputed as a seond-



4.3. NONLINEAR RESPONSE OF SEMICONDUCTORS 81order mixed derivative of the polarization with respet to Est and Eo. By analogy withEq. (4.2), we onsider an eletri �eld along the (1,1,1) diretion that is the sum ofEst and Eo. E = (Est + Eo)(1; 1; 1): (4.12)The nonlinear EO suseptibility an than be omputed asdEO = 18 �2Pk�Est�Eo k = 1; 2; 3: (4.13)In the disussions that follow, we hose Est and Eo equal to 0 or �E . To omputethe seond-order mixed derivative of P , we an either use a 7-point formula or a 4-point formula [150℄ as illustrated in Figure 4.4. The points labeled "(i; j)" represent apolarization Pk(i � E ; j � E) = Pk(Est = i � E ; Eo = j � E): (4.14)The expressions of dEO obtained from the 7- and 4-point formulas aredEO = �116E2���Pk(E ; 0) + Pk(�E ; 0) + Pk(0; E) + Pk(0;�E)�2Pk(0; 0)�Pk(E ; E)�Pk(�E ;�E)��� (4.15)dEO = 132E2���Pk(E ; E)� Pk(E ;�E)�Pk(�E ; E) + Pk(�E ;�E)���: (4.16)In order to use Eqs. (4.15) and (4.16) we have to apply di�erent ombinationsof stati and optial �elds to the ompound. In pratie, the hange in polarizationindued by an optial �eld is omputed at lamped atomi positions while the hangein polarization indued by a stati �eld is omputed by taking into aount the eletri�eld indued atomi displaements. In ase both stati and optial eletri �elds areapplied to the solid, we must (i) relax the atoms for an eletri �eld E1 equal to thestati omponent of the �eld and (ii) ompute the polarization for an eletri �eld E2equal to the sum of the stati and opti omponents of the �eld while keeping onstantthe atomi positions at the values obtained in (i). For example, in order to omputePk(E ; E), we �rst relax the atoms for an eletri �eld E1 = E(1; 1; 1). Then, we keeponstant the atomi positions and we ompute the polarization for an eletri �eldE2 = 2E(1; 1; 1). The values of E1 and E2 required to ompute the polarizations usedin Eqs. (4.15) and (4.16) are summarized in Table 4.3.The EO oeÆients of AlAs, AlP and GaP omputed from the 2n+1 theorem andfrom the �nite eletri �eld (FEF) tehnique are summarized in Table 4.4. In ase ofthe �nite eletri �eld alulations, the results obtained from the 4-point formula arelose to the results obtained from the 7-point formula. For example, using Eqs. (4.15)and (4.16) to ompute the lamped EO oeÆient of AlAs we obtained respetively-1.118 and -1.130 pm/V. The LDA values of r�63 omputed from the 2n+1 theorem andfrom �nite eletri �elds are very lose. Moreover, they are lose to the orrespondingGGA values. This behavior is opposite to the behavior observed for the nonlinear
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Table 4.3: Eletri �elds used to relax the atomi positions, E1, and eletri �elds usedto ompute the polarization, E2, for the values of i and j used in Figure 4.4.(i; j) E1 E2(0; 0) 0 0(1; 0) E(1; 1; 1) E(1; 1; 1)(�1; 0) �E(1; 1; 1) �E(1; 1; 1)(0; 1) 0 E(1; 1; 1)(0;�1) 0 �E(1; 1; 1)(1; 1) E(1; 1; 1) 2E(1; 1; 1)(�1; 1) �E(1; 1; 1) 0(1;�1) E(1; 1; 1) 0(�1;�1) �E(1; 1; 1) �2E(1; 1; 1)
Table 4.4: Clamped EO onstant r�63 (pm/V) of AlAs, AlP and GaP omputed at theexperimental lattie onstant using the 2n + 1 theorem (PEAD expression) and the�nite eletri �eld (FEF) tehnique. The values obtained from the 2n+1 theorem aresplit into the eletroni and ioni ontributions.Method XC Contribution AlAs AlP GaPPEAD LDA Eletroni -1.69 -1.25 -2.24Ioni 0.64 0.50 0.64Total -1.05 -0.75 -1.60FEF LDA Total -1.12 -0.81 -1.71FEF GGA Total -1.15 -0.84 -1.71Exp. [151℄ Total -0.97



4.4. NONLINEAR RESPONSE OF FERROELECTRICS 83optial suseptibilities and the Raman polarizabilities. In ase of these two quantities,we found the absolute GGA values to be signi�antly smaller than the orrespondingLDA values.The EO oeÆients omputed from the 2n+1 theorem are split into their eletroniand ioni ontributions. It is interesting to observe that both ontributions are of thesame magnitude and that they are of opposite sign. As a onsequene, they tend toderease the values of the EO oeÆients when we take their sum.4.4 Nonlinear response of ferroeletris to eletri�elds at lamped atomi positionsIn the present setion, we disuss the nonlinear optial suseptibilities, dij , the optialdieletri onstants, "ij , and the derivatives of the linear optial suseptibilities withrespet to atomi displaements, ��(1)ij =����, of BaTiO3 and PbTiO3 in their tetrag-onal phase and of LiNbO3 in its ferroeletri phase. In ase of BaTiO3 and PbTiO3,we also ompare the results obtained from the 2n+ 1 theorem to the results obtainedfrom �nite eletri �eld alulations. The quantities disussed in this setion will beused in Se. 4.5 and 4.6 to study the Raman spetrum and the EO oeÆients of thesematerials.In the perovskites, the nonlinear optial suseptibility tensor has the three inde-pendent elements d31, d33 and d15 (Voigt notations):d = 0� � � � � d15 �� � � d15 � �d31 d31 d33 � � � 1A : (4.17)In LiNbO3, this tensor has the 4 independent elements d31, d33, d15 and d22:d = 0� � � � � d15 �d22�d22 d22 � d15 � �d31 d31 d33 � � � 1A : (4.18)In ase Kleinman's symmetry rule an be applied, the number of independent elementsof these tensors is further dereased sine d31 = d15. As disussed in Se. 3.3.1, in aseof the 2n + 1 theorem, this rule is automatially satis�ed. In ase of a �nite eletri�eld alulation, we will see that it is not stritly satis�ed although the di�erenesbetween d31 and d15 are small and due to the numerial auray of the alulation.In BaTiO3 and PbTiO3, the ��(1)ij =���� oeÆients take a very simple form asshown in Table 4.5. For eah atom in the unit ell as de�ned in Table 1.1, theseoeÆients are determined by 5 numbers denoted a, b, , d and e. In ase of Ba, Pb, Tiand O1, the number of independent elements is even smaller beause a = b and  = d.In LiNbO3, the form of ��(1)ij =���� is more ompliated and we do not disuss theseoeÆients here. In Se. 4.5, we present instead a study of the Raman spetrum ofthis ompound.



84 CHAPTER 4. ELECTRIC FIELDS: RESULTSTable 4.5: ��(1)ij =���� oeÆients of Ba/Pb, Ti and O in the tetragonal phase ofBaTiO3 and PbTiO3. x, y and z denote the diretion of the atomi displaement, �.The rows and olumns of the matries orrespond to the indexes i and j.x y z0� � � a� � �a � � 1A 0� � � �� � b� b � 1A 0�  � �� d �� � e 1ATable 4.6: Nonlinear optial suseptibilities (pm/V) and eletroni dieletri onstantsof the perovskite ferroeletris BaTiO3 and PbTiO3 in their tetragonal phase. Re-ported are the theoretial values omputed from density funtional perturbation the-ory (DFPT, PEAD expression) and the �nite eletri �eld (FEF) tehnique as well asthe experimental values reported in Refs. [152{156℄ for BaTiO3 and Refs. [157{159℄ forPbTiO3. Material Method d15 d31 d33 "11 "33BaTiO3 DFPT -11.10 -11.10 -18.38 6.49 5.85FEF -10.74 -10.73 -17.60 6.31 5.72Exp. -17.0 -15.7 -6.8 5.19 5.05PbTiO3 DFPT -27.76 -27.76 -5.70 7.31 6.79FEF -26.42 -26.15 -5.35 7.12 6.67Exp. -37.9 -42.8 +8.5 6.64 6.63The results obtained from the 2n+1 theorem and from the �nite eletri �eld (FEF)tehnique are summarized in the Tables 4.6, 4.7 and 4.8. To ompute the nonlinear op-tial suseptibilities, the eletroni dieletri onstants and the ��(1)ij =���� oeÆientsfrom �nite eletri �elds, we used an approah similar to the one desribed in Se. 4.3,in whih we applied eletri �elds along the (1,0,0), (0,0,1) and (1,0,1) diretions. Asin ase of the semiondutors, the agreement between the results obtained from the2n+1 theorem and those obtained from the �nite eletri �eld tehnique is very good.The absolute values of the nonlinear optial suseptibilities are in reasonable agree-ment with the orresponding experimental values. All suseptibilities are found to benegative. In ase of BaTiO3, this result orresponds to what has been observed experi-mentally. In ontrast, the experimental values of d33 in PbTiO3 and d22 in LiNbO3 arepositive. We should note however that nonlinear optial suseptibilities are diÆultto measure aurately and that the values reported by di�erent authors are often insubstantial disagreement [87℄. It is therefore not easy to say whether this disrepanyis due to the theoretial alulation or to the experiment.
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Table 4.7: Nonlinear optial suseptibilities (pm/V) and eletroni dieletri onstantsof LiNbO3 omputed from density funtional perturbation theory (DFPT, PEAD ex-pression). Method d31 d22 d33 "11 "33DFPT -8.08 -1.30 -30.22 5.59 5.51Exp. [160℄ -4.64 +2.46 -41.7Exp. [128℄ -6.25 +3.6 -37.5Exp. [161℄ 5.0 4.6
Table 4.8: Independent elements of ��(1)ij =���� (Bohr�1) in BaTiO3 and PbTiO3 om-puted from the 2n+1 theorem (DFPT, PEAD expression) and the �nite eletri �eld(FEF) tehnique. BaTiO3 PbTiO3DFPT FEF DFPT FEFBa/Pb a,b -0.0038 -0.0043 -0.0265 -0.0259,d -0.0065 -0.0063 -0.0826 -0.0798e 0.0218 0.0213 -0.0486 -0.0477Ti a,b -0.0873 -0.0860 -0.1407 -0.1383,d -0.1290 -0.1235 -0.1563 -0.1495e -0.3100 -0.2983 -0.1276 -0.1222O1 a,b 0.0335 0.0332 0.0621 0.0613,d 0.1208 0.1153 0.1927 0.1849e 0.2468 0.2380 0.1786 0.1725O2 a -0.0029 -0.0027 -0.0240 -0.0236b 0.0606 0.0598 0.1291 0.1265 -0.0063 -0.0061 -0.0363 -0.0347d 0.0209 0.0207 0.0825 0.0791e 0.0207 0.0194 -0.0012 -0.0013



86 CHAPTER 4. ELECTRIC FIELDS: RESULTSIn ase of Ba or Pb, the absolute values of a,  and e are signi�antly smallerthan the orresponding values for Ti or O1. A similar behavior has been observed forthe Born e�etive harges [103℄, Z�: the anomalous e�etive harges of Ba or Pb aresmaller then the anomalous e�etive harges of Ti or O1. The amplitude of the Borne�etive harges in these ompounds an be explained from their eletroni strutureas interpreted within the bond orbital model of Harrison [106℄: the Ba atom in BaTiO3and, to a muh lower extent, the Pb atom in PbTiO3 are lose to a fully ionized on-�guration whereas there is a partly ovalent interation between Ti and O1. During anatomi displaement, the parameters that determine the ovalent interations betweenTi 3d and O1 2p atomi orbitals (the hopping integrals) vary. As disussed in Se.2.3.2, this variation produes a dynamial harge transfer between Ti and O1, whihis at the origin of the anomalous e�etive harges of these atoms. The derivatives ofthe linear optial suseptibility with respet to atomi displaements an be expressedas derivatives of the Born e�etive harges with respet to an eletri �eld:��(1)ij���� = 1
0 �Z��;�j�Ei : (4.19)The amplitude of these quantities therefore depends on the way the dynamial hargetransfer is a�eted by an eletri �eld. In ase of Ba and Pb, this transfer of harges islose to zero and, beause of the ioni on�guration of these atoms, it is only slightlya�eted by an eletri �eld. In ontrast, beause of the partly ovalent interationsbetween Ti and O1 the transfer of harges between these atoms is more sensitive to aneletri �eld. The amplitude of the ��(1)ij =���� oeÆients an therefore be interpretedfrom similar arguments as the amplitude of the Born e�etive harges.4.5 Raman spetra of ferroeletrisThe theoretial determination of Raman spetra is highly desirable sine it an be usedto assoiate Raman lines on an experimental spetrum to spei� phonon modes. Inthe present setion, we show that the Raman spetra obtained from �rst-priniples aresuÆiently aurate to be ompared to the experiment. We �rst illustrate the methodfor tetragonal PbTiO3. We then disuss the Raman spetra in the ferroeletri phaseof LiNbO3 and we try to larify some ambiguities in the assignation of the E-modes inthis ompound.4.5.1 Tetragonal PbTiO3In the P4mm phase of PbTiO3, the zone-enter optial phonons an be lassi�ed into3A1 +B1 + 4E:All modes are Raman ative. In addition, the A1 and E modes are infrared ative. Atthe �-point, they are split into transverse (TO) and longitudinal (LO) omponents.



4.5. RAMAN SPECTRA OF FERROELECTRICS 87Table 4.9: Frequenies (m�1) of the transverse and longitudinal optial phonon modesin the tetragonal phase of PbTiO3. Experimental data has been obtained by Raman(Ra) spetrosopy.Transverse modes Longitudinal modesPresent Ra [162℄ Ra [159℄ Present Ra [162℄ Ra [159℄A1 TO1 151 148 149 LO1 189 194TO2 357 362 359 LO2 442 465TO3 653 650 647 LO3 791 795E TO1 79 89 87 LO1 117 130 128TO2 202 220 219 LO2 269 290 289TO3 269 290 289 LO3 416 440 441TO4 484 508 505 LO4 656 720 687B1 283 289The theoretial frequenies of all zone-enter phonon modes are reported in Table 4.9where they are ompared to the experiment.As disussed in Se. 3.3.2, the Raman sattering eÆienies an be omputed fromthe projetion of the Raman suseptibility tensors, �m, on the polarization vetors ofthe inoming and sattered photons (3.22). For a given rystal, the form of �m dependson the symmetry and the polarization of the phonon mode eigenvetor [126,163℄. Forthe A1 modes in PbTiO3, polarized along z, we an writeA1(z) = 0� a � �� a �� � b 1A : (4.20)The E modes in PbTiO3 are polarized in the plane perpendiular to z. In ase theeigenvetors are polarized along x or y, the Raman suseptibilities an be expressed asE(x) = 0� � � e� � �e � � 1A ; E(y) = 0� � � �� � e� e � 1A : (4.21)Finally, the Raman suseptibility of the B1 modes an be written as5B1 = 0�  � ��  �� � � 1A : (4.22)The method presented in Se. 3.3.2 gives no information about the shape or thewidth of the Raman peaks. In order to draw a theoretial Raman spetrum, we use5Sine the B1 modes are infrared inative, it is not possible to de�ne a polarization for these modes.



88 CHAPTER 4. ELECTRIC FIELDS: RESULTSthe following onvention: for eah normal mode, we use a normalized Lorentzian en-tered around the theoretial phonon frequeny with a half width at half maximumof 5 m�1.6 These Lorentzians are then multiplied by the orresponding theoretialsattering eÆienies omputed from Eq. (3.22).Figure 4.5 shows two theoretial (a) and the orresponding experimental [162℄ (b)Raman spetra of PbTiO3. The bottom spetra have been obtained for a x(zz)ysattering on�guration in whih the inoming photon has its wave vetor, k0, alongx and its polarization, e0, along z while the sattered photon has its wave vetor, kS ,along y and its polarization, eS , along z. Projeting the Raman suseptibilities givenin Eqs. (4.20), (4.21) and (4.22) on e0 and eS , we see that (i) only the A1 modes anbe deteted in this on�guration and (ii) the intensity of the Raman peaks dependson the element b of their Raman suseptibility. Due to wave vetor onservation, thewave vetor of the phonons reated in a Stokes proess, q, an be omputed as thedi�erene q = k0 � kS : (4.23)It follows that the wave vetor of the phonons deteted in a x(zz)y sattering on�gu-ration is parallel to the (1,-1,0) diretion7. Beause the A1 modes are polarized alongz, the modes in the bottom spetrum of Figure 4.5 (a) are purely transverse.The spetra in the top of Figures 4.5 (a) and (b) have been obtained for a x(zx)yon�guration where the wave vetor and polarization of the inoming photon (satteredphoton) are along x and z (y and x). Projeting the Raman suseptibilities in Eqs.(4.20), (4.21) and (4.22) on e0 and eS , we see that only the E modes an be deteted inthis on�guration. Beause the E-modes are polarized in the xy plane, both transverseand longitudinal modes are visible in this on�guration8.The qualitative agreement between the theoretial and experimental spetra inFigure 4.5 is very good. In ase of the A1 modes, the TO3 mode has the strongestsattering eÆieny while the TO2 mode has the weakest sattering eÆieny. In aseof the E modes, the LO4 mode at 656 m�1 has the weakest sattering eÆieny. Itdoes not even appear on the experimental spetrum although it is reported in Ref. [162℄to be around this frequeny.6This value was arbitrarily hosen.7Here, we onsider the limit q! 0 along this diretion8The expression of the Raman suseptibilities in Eq. (4.21) is only valid for modes stritly polarizedalong x or y. In the x(zx)y on�guration, the phonon wave vetor is along (1,-1,0) and the trans-verse and longitudinal modes are respetively polarized along (1,1,0) and (1,-1,0). The orrespondingsuseptibility tensors an be expressed as linear ombinations of the tensors in Eq. (4.21)E(x; y) = 1p2 (E(x) +E(y))E(x;�y) = 1p2 (E(x)�E(y)):.
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Figure 4.5: Theoretial (a) and experimental [162℄ (b) Raman spetra of PbTiO3. Thetop spetra have been obtained for a x(zx)y sattering on�guration. They show thetransverse and longitudinal E modes. The bottom spetra have been obtained for ax(zz)y on�guration. They show the transverse A1 modes.
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90 CHAPTER 4. ELECTRIC FIELDS: RESULTSTable 4.10: Frequenies (m�1) of the transverse and longitudinal A1 modes in theferroeletri phase of LiNbO3. Experimental data has been obtained by Raman (Ra)and Infrared (IR) spetrosopy.Transverse modes Longitudinal modesPresent Ra [164℄ Ra [161℄ Present IR [161℄TO1 243 252 252 LO1 287 273TO2 288 275 276 LO2 348 306TO3 355 332 333 LO3 413 423TO4 617 632 634 LO4 855 8694.5.2 Ferroeletri LiNbO3In the ferroeletri phase of LiNbO3, the zone-enter phonon modes an be lassi�edinto 4A1 + 5A2 + 9E:The A1 and E modes are Raman and infrared ative. The frequenies of the orre-sponding transverse and longitudinal modes are reported in the Tables 4.10 and 4.11.The A2 modes are neither Raman nor infrared ative and will not be disussed here.The Raman suseptibility of the A1 modes is given in Eq. (4.20) while the Ramansuseptibilities of the E modes an be written asE(y) = 0�  � �� � d� d � 1A ; E(x) = 0� �  d � �d � � 1A : (4.24)Figures 4.6 show the theoretial (a) and experimental [164,166℄ (b) Raman spetraof LiNbO3 obtained for a x(zz)y sattering on�guration. As in ase of PbTiO3,only the transverse A1 modes an be deteted in this on�guration. The qualitativeagreement between theory and experiment is very good. The TO1 and TO4 modes areorretly predited to have the strongest sattering eÆieny. The TO2 peak appearsweaker on the theoretial spetrum than on the experimental spetrum. This e�etis not related to the intrinsi sattering eÆieny of the TO2 mode. It is rather aonsequene of the fat that the TO1 peak in Figure 4.6 (b) is quite broad and thatit overlaps with the TO2 peak. This is not the ase for the theoretial spetrum sinewe use a onstant width to represent the Raman peaks in Figure 4.6 (a). Finallythe sattering eÆieny of the TO3 mode is weaker than that of the other modes inagreement with the experiment, although the theoretial eÆieny is so small that thispeak does not appear in Figure 4.6 (a).The analysis of the E modes in LiNbO3 is more diÆult. In the literature, manydi�erent frequenies have been reported, whih were di�erently assigned (see f. ex.
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Figure 4.6: Theoretial (a) and experimental [164,166℄ (b) Raman spetrum of LiNbO3for a x(zz)y sattering on�guration. The spetra show the transverse A1 modes.
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92 CHAPTER 4. ELECTRIC FIELDS: RESULTSTable 4.11: Frequenies (m�1) of the transverse and longitudinal E modes in theferroeletri phase of LiNbO3. Experimental data has been obtained by Raman (Ra)and Infrared (IR) spetrosopy. The values in brakets are not assumed to be relatedto �rst-order phonons.Transverse modes Longitudinal modesPresent Ra Ra Ra IR Present Ra Ra IR[165,166℄ [167℄ [161℄ [161℄ [165℄ [167℄ [161℄TO1 155 153 155 152 152 LO1 197 195 198 198(177) (186)TO2 218 238 238 238 236 LO2 224 240 243 238TO3 264 264 265 264 265 LO3 298 299 295 296TO4 330 322 325 321 322 LO4 349 345 342TO5 372 363 LO5 384 371TO6 384 369 371 367 LO6 423 424 428 418TO7 428 432 431 434 431 LO7 452 456 454 450TO8 585 580 582 579 586 LO8 675 668 660(610) (625)TO9 677 663 668 670 LO9 863 878 880 878Ref. [69℄ for a more omplete disussion). This omes from the fat that the propertiesof lithium niobate rystals strongly depend on the internal and external defets [168℄. Inpartiular, Raman spetrosopy is very sensitive to small modi�ations in the strutureand to the stoihiometry of the samples [165,169℄.For the transverse opti phonons, most authors seem to agree on seven modesaround 152, 237, 265, 322, 368, 431 and 580 m�1. For the two missing modes, di�erentfrequenies have been suggested inluding those around 180 and 610 m�1 (values inbrakets in Table 4.11). Our alulation reprodues the seven modes mentioned abovebut we do not �nd any phonon frequenies around 180 and 610 m�1. For the tworemaining modes, we suggest instead that one of them has a frequeny of about 670m�1 in agreement with Refs. [161,166,167℄. Moreover, we suggest that the Raman andinfrared peaks around 370 m�1 do not orrespond to one transverse optial phononbut to two transverse optial phonons. One of them an only be deteted by infraredspetrosopy while the other one an only be deteted by Raman spetrosopy.In Figure 4.7, we ompare a theoretial (a) and an experimental [165, 166℄ (b)Raman spetrum of LiNbO3 obtained for a x(yz)y sattering on�guration. In thison�guration, the transverse and longitudinal E modes an be deteted. As in ase ofthe A1 modes, the qualitative agreement between theory and experiment is very good.In Table 4.12, we ompare the theoretial and experimental infrared osillator strengths(omputed from Eq. (3.38)) and Raman sattering eÆienies. Experimentally, it isdiÆult to determine absolute Raman sattering eÆienies aurately. We thereforereport the intensities of the Raman peaks relative to the intensity of the TO1 peak.The TO5 mode has an osillator strength of 3:59 � 10�4a:u:, in good agreementwith the experiment, and a weak Raman sattering eÆieny. Due to its signi�ant
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Figure 4.7: Theoretial (a) and experimental [165,166℄ (b) Raman spetrum of LiNbO3for a x(yz)y sattering on�guration. The spetra show the transverse and longitudinalE modes.
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94 CHAPTER 4. ELECTRIC FIELDS: RESULTSTable 4.12: Infrared (IR) mode osillator strengths (10�4 a. u.) and redued Raman(Ra) sattering eÆienies of the transverse E modes in LiNbO3.Theory ExperimentMode IR Ra IR [161℄ Ra [165,166℄Sm I/ITO1 Sm I/ITO1TO1 5.85 1.00 6.02 1.00TO2 0.55 0.91 0.53 0.83TO3 4.38 0.15 4.58 0.39TO4 2.71 0.38 2.70 0.55TO5 3.59 0.04 3.59TO6 0.15 0.32 0.68TO7 0.31 0.17 0.40 0.22TO8 14.33 0.88 13.43 0.78TO9 0.37 0.01 1.06 0.12osillator strength, this mode is easy to detet by infrared spetrosopy and it givesrise to a measurable LO-TO splitting. In ontrast, this mode is diÆult to detet byRaman spetrosopy. The TO6 mode has a weak osillator strength and a signi�antRaman sattering eÆieny. As an be seen in Figure 4.7 it gives rise to a well-de�nedRaman peak. In ontrast, due to its weak osillator strength, this mode is diÆult todetet by infrared spetrosopy and it does not give rise to a sizeable LO-TO splitting(see also Table 4.11).The distint harateristis of the TO5 and TO6 modes give a �rst argument infavor of our assumption that there are two transverse optial modes around 370 m�1.A stronger argument omes from an experiment of Claus and o-workers [167℄. The au-thors of Ref. [167℄ used Raman spetrosopy to measure the dependene of the phononfrequenies on the angle between the phonon wave vetor, q, and the z-axis of LiNbO3.In ase of the mode around 370 m�1 they observed no angular dependene of thefrequeny, indiating that this mode has a negligible infrared osillator strength. Theharateristis of the mode measured by Claus and o-workers are therefore ompatiblewith the harateristis of the TO6 mode. These observations annot be explained if weassume only one mode at this frequeny beause an osillator strength of 3:59 �10�4a:u:is not ompatible with the absene of angular dispersion of the phonon frequeny.To summarize, our study has shown that the theoretial alulation of RamaneÆienies an help the interpretation of experimental Raman spetra. In partiular,we have shown that LiNbO3 has two E-modes around 370 m�1 whereas previousstudies suggest that it only has one E-mode around this frequeny.In the following setion, we will study the EO tensor in BaTiO3, PbTiO3 andLiNbO3. The results of this setion will help us to understand the unusual ioniontribution to the EO oeÆients of these materials.



4.6. ELECTRO-OPTIC TENSOR IN FERROELECTRIC OXIDES 954.6 Eletro-opti tensor in ferroeletri oxides4.6.1 Ferroeletri LiNbO3The EO tensor in the ferroeletri phase of LiNbO3 has the four independent elements(Voigt notations) r13, r33, r22 and r51:r = 0BBBBBB� � �r22 r13� r22 r13� � r33� r51 �r51 � ��r22 � �
1CCCCCCA : (4.25)As disussed in Se. 4.5.2, the TO modes an be lassi�ed into 4A1 + 5A2 + 9E.The A1 and E modes are simultaneously Raman and IR ative. Only the A1 modesouple to r13 and r33, while the E modes are linked to r22 and r51. In Table 4.13, wereport the four lamped and unlamped oeÆients, as well as the ontribution of eahoptial phonon and the piezoeletri ontribution. For omparison, we also mentionthe oeÆients omputed by Johnston [128℄ from measurements of IR and Ramanintensities (IR + R) as well as the results of a bond-harge model (BCM) alulationby Shih and Yariv [170℄. The �rst-priniples alulations orretly predit the signof the four EO oeÆients [70℄. The absolute values are also well reprodued by ourmethod, espeially if we take into aount that NLO properties are generally diÆultto determine aurately. The experimental values are sensitive to external parameterssuh as temperature hanges [171℄ and the stoihiometry of the samples. For example,using rystals of various ompositions, Abdi and o-workers measured absolute valuesbetween 1.5 pm/V and 9.9 pm/V for r�22 [172℄. These diÆulties support the need forsophistiated theoretial tools to predit NLO properties. In ontrast to the models ofRefs. [128,170℄, our method is preditive and does not use any experimental parameters.Moreover, it reprodues the lamped EO oeÆients r�13, r�33 and r�22 better than thesemiempirial models.The EO oeÆients of LiNbO3 are signi�antly larger than the EO oeÆients of thesemiondutors disussed in Se. 4.3.3. This di�erent behavior an be explained fromthe deomposition of the EO oeÆients into their eletroni and ioni ontributions.In Se. 4.3.3, we observed that these ontributions are of the same order of magnitudein semiondutors and that they are of opposite sign. As a onsequene, they anelout, giving a small r�63. In ontrast, the EO oeÆients of LiNbO3 are dominated bythe ioni ontribution of the A1 TO1 and the E TO1 modes. In addition, the ontri-butions of these modes are muh lager than the eletroni and ioni ontributions inthe semiondutors. This an be explained as follows. At the paraeletri-ferroeletriphase transition, the unstable A2u and Eu modes of the paraeletri phase (see Se.1.2) transform to low-frequeny and highly polar modes in the ferroeletri phase [69℄,generating a large EO response if they exhibit, in addition, a large Raman suseptibil-ity. The A1 TO1 and E TO1 modes of the ferroeletri phase have a strong overlap



96 CHAPTER 4. ELECTRIC FIELDS: RESULTSof respetively 0.82 and 0.68 with the unstable A2u and Eu modes of the paraeletriphase and ombine giant polarity [69℄ and large Raman suseptibility (see Figures 4.6and 4.7 and Table 4.14).As disussed in Se. 3.3.4, the piezoeletri ontribution to the EO oeÆientsis related to deformations of the ell shape due to the onverse piezoeletri e�etand the hanges in the indies of refration indued by these deformations. UsingEq. (3.39), this ontribution an be omputed as the produt of the piezoeletristrain oeÆients, d�� , and the elasto-opti oeÆients, �ij�� . The omputationof the piezoeletri strain oeÆients is more diÆult than the omputation of thepiezoeletri stress oeÆient, e��. Both quantities are related through the linearsystem of equations [173℄ e�� =X�� d������ (4.26)where ���� are the elasti onstants. The values of �ij�� , e��, ���� omputed from�nite di�erenes and d�� omputed by solving Eq. (4.26) are summarized in Table4.15.The unlamped EO oeÆients in LiNbO3 are also reported in Table 4.13. As thepiezoeletri oeÆients d31 and d33 are small ompared to d15 and d22, the piezoele-tri e�et is important for r�22 and r�51 and negligible for r�13 and r�33. The unlampedEO oeÆient r�51 is nearly twie as large as the lamped one. Moreover, its theoret-ial value is in better agreement with the experiment than that of the lamped one.This suggests that the piezoeletri ontribution was not entirely eliminated duringthe measurement of r�51; the orret value of the lamped oeÆient might be loser tothe theoretial 14.9 pm/V.4.6.2 Tetragonal BaTiO3 and PbTiO3As disussed in Se. 4.5.1, in the tetragonal phase of BaTiO3 and PbTiO3, the TOmodes an be lassi�ed into 3A1 + 4E +B1. The EO tensor an be written asr = 0BBBBBB� � � r13� � r13� � r33� r42 �r42 � �� � �
1CCCCCCA : (4.27)It has only three independent elements: r13, and r33, oupling to the A1 modes, andr42, linked to the E modes. The B1-mode is IR inative and does not inuene the EOtensor. The values of the lamped EO oeÆients of the two ompounds omputedfrom the 2n + 1 theorem and the �nite eletri �eld (FEF) tehnique are reportedin Table 4.16. We also report the deomposition of the EO oeÆients into theireletroni and ioni ontributions as obtained from the 2n+ 1 theorem. As in ase of
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Table 4.13: EO tensor (pm/V) in LiNbO3 : eletroni, ioni and piezoeletri ontri-butions, and omparison with experiment, for the lamped and unlamped ases. Theioni part is split into ontributions from TO modes (!m in m�1).A1-modes E-modes!m r13 r33 !m r22 r51Eletroni 1.0 4.0 0.2 1.0Ioni TO1 243 6.2 18.5 155 3.0 7.5TO2 287 -0.2 -0.4 218 0.4 1.5TO3 355 -0.1 0.0 264 0.6 1.3TO4 617 2.8 4.8 330 -0.3 1.2TO5 372 -0.2 0.4TO6 384 -0.1 -0.2TO7 428 0.2 0.2TO8 585 0.7 2.1TO9 677 0.0 0.0Sum of ioni 8.7 22.9 4.4 13.9Strain 0.8 0.1 3.0 13.7Clamped Present 9.7 26.9 4.6 14.9Exp. [168℄ 8.6 30.8 3.4 28IR+R [128℄ 12 39 6 19BCM [170℄ 25.9 20.5Unlamped Present 10.5 27.0 7.5 28.6Exp. [168℄ 10.0 32.2 6.8 32.6Exp. [172℄ 9.9
Table 4.14: Raman suseptibilities and mode polarities (10�2 a. u.) of the A1 TOmodes in LiNbO3, BaTiO3 and PbTiO3.LiNbO3 BaTiO3 PbTiO3p3 �11 �33 p3 �11 �33 p3 �11 �33TO1 3.65 -0.70 -2.02 1.22 -0.16 -0.13 1.25 -0.67 -0.43TO2 0.45 0.30 0.53 3.25 -1.18 -2.73 2.18 -0.75 -0.33TO3 0.67 0.18 -0.05 1.74 -1.26 -2.55 2.68 -2.42 -2.28TO4 3.82 -1.96 -3.23
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Table 4.15: Theoretial and experimental [168, 174℄ values of the independent elastionstants, piezoeletri stress oeÆients, piezoeletri strain oeÆients and elasto-opti oeÆients in LiNbO3. Voigt notations are used for all oeÆients.Property CoeÆient Theory ExperimentElasti 11 1.96 2.03(N/m2) 12 0.71 0.5313 0.70 0.7514 0.05 0.0933 2.58 2.4544 0.66 0.6066 0.63 0.75Piezoeletri stress e15 3.44 3.7(C/m2) e22 2.41 2.5e31 0.15 0.2e33 1.42 1.3Piezoeletri strain d15 5.59 6.8(10�11C=N) d22 2.16 2.1d31 -0.10 -0.1d33 0.60 0.6Elasto-opti �11 -0.0048 -0.026�12 0.0583 0.09�13 0.1421 0.133�14 -0.0778 -0.075�31 0.1131 0.179�33 0.0640 0.071�41 -0.1444 -0.151�44 0.1329 0.146



4.6. ELECTRO-OPTIC TENSOR IN FERROELECTRIC OXIDES 99Table 4.16: Eletroni and ioni ontributions of individual TO modes (!m in m�1)to the lamped EO oeÆients (pm/V) in the P4mm phase of PbTiO3 and BaTiO3.For omparison, we also report the value of r�33 omputed from the �nite eletri �eld(FEF) tehnique. PbTiO3 BaTiO3A1-modes E-modes A1-modes!m r�13 r�33 !m r�42 !m r�13 r�33Ele. 2.1 0.5 2.2 1.0 2.1TO1 151 3.9 2.9 79 16.4 161 1.0 1.0TO2 357 1.4 0.7 202 10.5 300 5.7 16.3TO3 653 1.6 1.8 269 0.2 505 1.2 2.9TO4 484 1.2Tot 9.0 5.9 30.5 8.9 22.3FEF 5.9 22.6Exp. [176℄ 13.8 5.9Exp. [177℄ 10.2 40.6Exp. [87℄ 8 28the semiondutors, there is a good agreement between the values omputed from thetwo tehniques.For PbTiO3, we found only measurements of r�13 and r�33, whih agree well withour theoretial results. Moreover, our alulation predits that PbTiO3 exhibits alarge r�42, in spite of its low r�33. Combined with other advantageous features, suh assmall thermo-opti oeÆients [175℄, this suggests that PbTiO3 might be an interestingandidate for EO appliations if properly oriented.In BaTiO3, the low temperature struture is rhombohedral. The P4mm phaseis unstable and exhibits, in the harmoni approximation, an unstable E-mode thatprevents the use of Eq. (3.36) to ompute rion42 . The theoretial estimates of r�13 and r�33are reasonably aurate and reprodue the orret trends, despite an underestimationof the theoretial r�33. The origin of the error an be attributed to various soures.First, the values omputed for the P4mm phase orrespond to an extrapolation of theEO tensor to 0 K, while experimental results are obtained at room temperature. Also,linear and NLO suseptibilities an be relatively inaurate within the LDA. In thisontext, note the use of the LDA optial refrative indexes in Eqs. (3.35) and (3.36),overestimating the experimental values by about 10 %.4.6.3 DisussionWe ompare now the NLO response of the three ompounds. r�13 is similar for all ofthem, while r�33 is signi�antly smaller in PbTiO3 than in LiNbO3 and BaTiO3. In the



100 CHAPTER 4. ELECTRIC FIELDS: RESULTSTable 4.17: Deomposition of the Raman suseptibility of the A1 TO2 mode in BaTiO3and PbTiO3 into ontributions from the individual atoms in the unit ell.BaTiO3 PbTiO3� p
0 ��(1)33���3 u(�; 3) �33(�) p
0 ��(1)33���3 u(�; 3) �33(�)(a.u.) (10�2 a.u.) (a.u.) (10�2 a.u.)Ba/Pb 0.45 -0.014 -0.01 -1.00 -0.006 0.01Ti -6.46 0.257 -1.66 -2.64 0.216 -0.57O1 5.15 -0.167 -0.86 3.69 0.059 0.22O2/O3 0.43 -0.240 -0.10 -0.02 -0.316 0.01Tot -2.73 -0.32latter two ompounds, the magnitude of r�33 is dominated by one partiular phononmode. In BaTiO3, the TO2 mode at 300 m�1 has a similar strong overlap (92%)with the unstable mode in the paraeletri phase than the TO1 modes in LiNbO3,as previously disussed. In PbTiO3, all A1 modes ontribute almost equally to r�33.The TO2 mode at 357 m�1 has the strongest overlap (73%) with the soft mode inthe ubi phase. Surprisingly, its ontribution to r�33 is 23.5 times smaller than theontribution of the orresponding TO2 mode in BaTiO3.To identify the origin of the distintive behavior of PbTiO3, we report in Table4.14 the mode polarities and Raman suseptibilities of the A1 TO modes. In thethree ompounds, � has two independent elements �11 and �33 that determine theamplitude of r�13 and r�33. �33 is large for the TO1 mode in LiNbO3 and the TO2mode in BaTiO3. On the other hand, it is the smallest for the TO2 mode in PbTiO3,in agreement with experiments as disussed in Se. 4.5.1. Combined with a higherfrequeny (!2PbTiO3=!2BaTiO3 = 1:41), a lower polarity (pBaTiO3=pPbTiO3 = 1:49), anda larger value of the refrative index (n4PbTiO3=n4BaTiO3 = 1:35), this weak Ramansuseptibility (�BaTiO3=�PbTiO3 = 8:27) explains the weak ontribution of the TO2mode to r�33 in PbTiO3.The mirosopi origin of the lower A1 TO2 mode Raman suseptibility in PbTiO3,ompared to BaTiO3, is explained by the deomposition of �33 into ontributions ofthe individual atoms in the unit ell (see Table 4.17 and Table 1.1 for the labels of theatoms). In both perovskites, the major ontributions to the Raman suseptibility ofthe A1 TO2 modes are �33(T i) and �33(O1); �33 is mostly due to the displaementsof the atoms loated on the Ti{O hains oriented along the polar diretion. First,the derivatives of �(1)33 versus atomi displaement are of opposite sign for Ti and O1atoms, and signi�antly larger in BaTiO3 than in PbTiO3. Seond, the opposingdisplaements of Ti and O1 atoms in the TO2 mode in BaTiO3 produe ontributionsthat add to yield a giant �33. On the other hand, the in-phase displaements of Tiand O1 in PbTiO3 produe ontributions that anel out, giving a small �33. This



4.7. CONCLUSIONS 101distint behavior goes beyond a simple mass e�et. Changing the mass of Pb to thatof Ba in the dynamial matrix of PbTiO3 has no signi�ant e�et on the relative Ti{Odisplaement. Large atomi displaements of opposite diretion along the Ti{O hainsare therefore needed to generate a large �33 and potentially a large r33.4.7 ConlusionsIn this Chapter, we studied nonlinear optial properties of seleted semiondutors andferroeletris. We applied both the 2n+1 theorem and the �nite eletri �eld tehnique.From the results obtained in this study, we an draw the following onlusions:First, as it has been illustrated on several examples, the formalism of the 2n + 1theorem (PEAD and DAPE expressions) and the �nite eletri �eld tehnique anequivalently be used to study nonlinear optial properties. However, the PEAD formulaonverges faster with respet to the number on k-points than the DAPE formula orthe �nite eletri �eld tehnique.Seond, the Raman spetra omputed from �rst-priniples an be helpful to inter-pret experimental Raman spetra. In partiular, we were able to larify some of theproblems in the assignation of the E-modes in the ferroeletri phase of LiNbO3. Byomparing the theoretial Raman sattering eÆienies and infrared mode osillatorstrengths to the orresponding experimental values, we showed that LiNbO3 has twoE-modes around 370 m�1.Third, the di�erene between the EO properties of ferroeletris and semiondutorsan be explained from the ioni ontribution to the EO oeÆients. In the semiondu-tors, the ioni and eletroni ontributions are small and tend to anel eah other out.In ontrast, in the ferroeletri phase of LiNbO3 and BaTiO3, the large EO responseoriginates in the giant ontribution of the suessor of the soft mode, whih ombineslow frequeny, high polarity and high Raman suseptibility.In the next Chapter, we will take advantage of the dominant ontribution of the su-essor of the soft mode to build a model that allows us to study the �nite temperaturedependene of the EO oeÆients and refrative indies of BaTiO3.4.8 ReferenesThe tehniques and results presented in this Chapter have been partly disussed in thefollowing papers:� M. Veithen, X. Gonze and Ph. Ghosez, First-Priniples Study of the Eletro-Opti E�et in Ferroeletri Oxides, Phys. Rev. Lett. 93, 187401 (2004).� M. Veithen and Ph. Ghosez, First-Priniples study of the dieletri and dynam-ial properties of lithium niobate, Phys. Rev. B 65, 214302 (2002).� I. Souza, J. �I~niguez and D. Vanderbilt, First-Priniples Approah of Insulatorsin Finite Eletri Fields, Phys. Rev. Lett. 89, 117602 (2002).
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Chapter 5Temperature dependene ofthe eletroopti tensor andrefrative indies of BaTiO35.1 IntrodutionIn the previous Chapter, we studied the EO properties of LiNbO3, BaTiO3 and PbTiO3for their quantum mehanial ground-state at 0 K. These alulations gave a qualitativeinsight into the mehanisms responsible for the large EO responses of these materials.However, we must be areful when we ompare the omputed values of the EO oef-�ients to experimental values measured at room temperature. It is well known thatphysial properties of ferroeletris strongly depend on temperature and that they anpresent a divergent behavior in the viinity of a phase transition. In ase of LiNbO3and PbTiO3, we expet the values of the EO oeÆients omputed at 0 K to be a goodapproximation of their room temperature values sine the phase transition tempera-tures are quite high: 1480 and 763 K. In ontrast, in ase of BaTiO3, the rhombohedralphase is stable at 0 K whereas the tetragonal phase disussed in Se. 4.6.2 is stableat room temperature. The EO oeÆients omputed for this phase are therefore anextrapolation from 0 K and their omparison to experiment is questionable. Moreover,we were not able to ompute the value of r42 for this phase sine the ioni ontributionto this oeÆient is determined by an unstable E-mode.In optial appliations, it is mandatory to know preisely the dependene of therelevant properties on temperature. For instane, the temperature dependene of theEO oeÆients and refrative indies often imposes serious limitations on modulatorsand other devies. In order to work at low operating voltage, the EO oeÆients ofa material should be as high as possible. Unfortunately, it has been observed thatthe higher the EO oeÆients of a material, the stronger usually their temperature103



104 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSORdependene [87℄.Optial properties an also be used as an experimental probe. For example, it ispossible to determine the phase diagram [178℄ and polarization [179,180℄ of disorderedferroeletris from measurements of their birefringene as a funtion of temperatureand omposition. Moreover, it is possible to study ferroeletriity in ferroeletri thin�lms from measurements of their EO response [181℄.In this Chapter, we introdue a method to ompute the �nite temperature de-pendene of the EO oeÆients and refrative indies of ferroeletris using a �rst-priniples e�etive Hamiltonian [17℄. This method is well suited for ompounds inwhih the soft mode plays a dominant role and is applied to tetragonal BaTiO3. Weompare our approah with the model of DiDomenio and Wemple [182℄, a formalismwidely used to disuss the temperature dependene of the optial properties in ferro-eletris [179, 180, 183℄. In partiular, we show why this model is valid although itsunderlying hypothesis is not satis�ed.In Se. 5.2, we report the parameters of the lattie Wannier funtion and thee�etive Hamiltonian used in this study. In Se. 5.3, this Hamiltonian is applied tostudy the temperature dependene of the polarization, the strutural parameters, thedieletri tensor and the piezoeletri tensor of BaTiO3. In Se. 5.4, we extend thisapproah to study the temperature dependene of the EO oeÆients and refrativeindies of this ompound. In Se. 5.5, we report the results obtained for the tetragonalphase and in Se. 5.6, we ompare our approah with the Model of DiDomenio andWemple.5.2 E�etive Hamiltonian for BaTiO3In this setion, we desribe the BaTiO3 e�etive Hamiltonian of Ghosez and o-workers[184℄ used in this study. In this model, the full lattie Hamiltonian is projeted on thesubset of degrees of freedom de�ned by the unstable phonon branh of the ubi phaseand the marosopi (homogeneous) strain. To eah unit ell, i, we assoiate a loalizedatomi displaement pattern that orresponds to the lattie Wannier funtion of theunstable phonon branh, �̂i. These Wannier funtions de�ne an orthonormal basis thatspans the e�etive Hamiltonian subspae. Within this basis, a given set of values ofthe oordinates orresponds diretly to a partiular pattern of atomi displaement.This approah is di�erent from the approah of Zhong and o-workers [17,18℄ who onlyused the soft mode at the �-point to built the loalized atomi displaement pattern.Sine the ferroeletri phase transition involves only small strutural distortions, theHamiltonian is expressed as a low-order Taylor expansion around the high-symmetryubi struture. All the expansion parameters are determined from �rst-priniples totalenergy and linear response alulations. The temperature dependent properties of theHamiltonian are studied using lassial Monte Carlo simulations on a big superellontaining M unit ells with periodi boundary onditions.



5.2. EFFECTIVE HAMILTONIAN FOR BATIO3 1055.2.1 Lattie Wannier funtion of BaTiO3The lattie Wannier funtion of BaTiO3 is onstruted following the method desribedin Ref. [185℄. The disussion that follows is lose to that of KNbO3 in Ref. [22℄. Itis also similar to the disussion of PbTiO3 in Ref. [21℄ with the only di�erene thatthe lattie Wannier funtions in BaTiO3 and KNbO3 are build from the eigenvetorsof the dynamial matrix while the lattie Wannier funtion of PbTiO3 is build fromthe eigenvetors of the fore onstant matrix. The hoie of the dynamial matrixhas the advantage that the e�etive Hamiltonian an be used in moleular dynamissimulations sine the form of the kineti energy is greatly simpli�ed.Following the disussion of Ref. [22℄, we an build a Ti-entered lattie Wannierfuntion from the eigenvetors of the dynamial matrix at the high symmetry q-points�, X , M and R that orrespond to the unstable phonon modes �15, X5 and M 03 aswell as the Ti-dominated stable phonon modes R025, X1 and M 05 [65,74℄. To obtain anexpliit form for the lattie Wannier funtion, we onsider the symmetri oordinationshells surrounding a Ti-site and identify the independent displaement patterns ofeah shell that transform aording to the vetor representation of the site symmetrygroup Oh. For a given shell there an be more than one pattern of displaements witha given transformation property. To eah suh pattern orresponds an independentamplitude parameter. By inluding the displaements of shells up to �rst neighborBa and seond neighbor Ti shells as well as seleted displaements of O shells at �rst,seond and fourth neighbors, we obtain a total of 13 parameters. The �rst shell of Baatoms has 2 independent displaement patterns. There are 1, 2 and 2 parameters forthe zeroth, �rst and seond shells of Ti atoms and 2, 3 and 1 parameters for the �rst,seond and fourth shells of oxygen atoms. These displaement patterns are shown inFigure 5.1 for the z omponent of the lattie Wannier funtion.To determine the numerial values of the parameters, we build the normalizedeigenvetors1 of the dynamial matrix, vq(��), for the phonon modes �15, X5, M 03,R025, X1 and M 05 (the index � labels an atom and � a Cartesian diretion) from theparameterized lattie Wannier funtion usingvq(��) =Xj eiq�Rj �̂j(��) (5.1)where Rj is a diret lattie vetor and �̂j(��) is a lattie Wannier funtion entered atthe Ti site in the jth unit ell. Eq. (5.1) spei�es eah omponent of the eigenvetorsas a linear ombination of the parameters to be determined. The values determinedby solving the linear system of equations are reported in Table 5.1. As an be seen,the magnitude of these values deays rapidly with shell-radius. As a onsequene, thelattie Wannier funtion is well loalized around the Ti site. This justi�es the fat thatwe did not inlude more shells in the onstrution of the lattie Wannier funtion.1The eigenvetors of the dynamial matrix, v(��), are related to the eigendisplaements de�nedin Eq. (3.20) by v(��) = pM�U(��), where M� is the mass of atom �.



106 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSOR
Figure 5.1: z omponent of the Ti-entered lattie Wannier funtion of BaTiO3. Ba,Ti and O atoms are represented by open squares, solid squares and irles respetively.Parameters labeling the displaement patterns orrespond to the length of the dis-plaements (arrows) of the atoms. a denotes the lattie parameter of the ubi unitell.
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5.2. EFFECTIVE HAMILTONIAN FOR BATIO3 107Table 5.1: Values of the lattie Wannier funtion parameters.Ba-parameters b1 0.0022330b1p -0.0213426Ti-parameters d0 0.8013753d1a -0.0408339d1b -0.0025517d2a -0.0029953d2b 0.0052709O-parameters O1a -0.2082255O1b -0.2653019O2a -0.0043680O2b -0.0129174O2 0.0374073O4 0.00035385.2.2 Determination of the parameters of the e�etive Hamil-tonianFollowing the work of Waghmare and Rabe [21℄, the e�etive Hamiltonian is expressedas the sum of �ve parts: a loal mode self-energy, a short-range interation betweenloal modes, a long-range dipole-dipole interation, an elasti energy and an interationbetween loal modes and marosopi strainsHeff (f�rg; f�g) = Hself (f�rg) +Hshort(f�rg)+Hdpl(f�rg) +Helas(f�g) +Hint(f�rg; f�g): (5.2)�r is the amplitude of the displaement along the lattie Wannier funtion in ell rand � the strain tensor.The self-energy is the only part of the e�etive Hamiltonian that takes into aountanharmoni interations. It inludes isotropi terms up to eighth order in j�rj andubi anisotropy at fourth order:Hself (f�rg) =Xr �Aj�r j2 +Bj�r j4 + C(�4rx + �4ry + �4rz) +Dj�r j6 +Ej�rj8� : (5.3)To evaluate the short-range interation between loal modes, we onsider quadratiinterations up to third nearest neighbors with the most general form allowed by thespae group symmetry:Hshort(f�rg) = Xr Xd̂=nn1naL(�r � d̂)(�r(d̂) � d̂) + aT [�r � �r(d̂)� (�r � d̂)(�r(d̂) � d̂)℄o



108 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSOR+Xr Xd̂=nn2nbL(�r � d̂)(�r(d̂) � d̂) + bT1(�r � d̂1)(�r(d̂) � d̂1)+ bT2(�r � d̂2)(�r(d̂) � d̂2)o+Xr Xd̂=nn3nL(�r � d̂)(�r(d̂) � d̂)+ T [�r � �r(d̂)� (�r � d̂)(�r(d̂) � d̂)℄o : (5.4)The sums over d̂ in Eq. (5.4) are taken over the �rst (nn1), seond (nn2) and third(nn3) nearest neighbors of site r that are loated respetively in the h100i, h110i andh111i diretions. �r(d̂) denotes the lattie Wannier funtion at a neighbor of site r in d̂diretion. The seond neighbor sites are loated along the diagonal of a square of sidea (a is the lattie onstant of the ubi unit ell). The unit vetor d̂1 is in the planeof the square perpendiular to this diagonal, while d̂2 is perpendiular to the planeof the square. To desribe the long-range interations, we use a dipole-dipole formparameterized by the mode e�etive harge Z� and the eletroni dieletri onstant"1 Hdpl(f�rg) =Xr Xd (Z�)2"1 �r � �r(d))� 3(�r � d̂)(�r(d̂) � d̂)jdj3 : (5.5)The sum over d in Eq. (5.5) is taken over all neighbors of site r.The elasti energy is given by a seond-order expansion of the energy with respetto the homogeneous strain variables ���Helas(f�g) = Nf 3X�=1 ��� + N2 C11 3X�=1 �2�� + N2 C12 3X�;�=1�6=� ������ + N4 C44 3X�;�=1�6=� �2��(5.6)and the oupling between the strain and the loal modes is given by the expressionHint(f�rg; f�g) = g0 3X�=1 ���!Xr j�rj2+g1 3X�=1 ���Xr �2r�!+ g2 3X�;�=1�<� ���Xr �r��r� : (5.7)The parameters used in the e�etive Hamiltonian have been obtained from LDAtotal energy and linear response alulations performed at the experimental lattieonstant of BaTiO3 as desribed in Ref. [21℄. Their values are summarized in Table5.2.



5.3. STRUCTURAL & DIELECTRIC PROPERTIES 109Table 5.2: Parameters in the e�etive Hamiltonian (units eV per unit ell, exept forZ�="1 whih is dimensionless).A 2.9080 aL 0.3718 C11 123.0243B 11.5242 aT -0.4832 C12 47.1910C 23.2260 bL 0.2302 C44 192.6313D -53.1421 bT1 0.0354 g0 -7.2916E 169.9803 bT2 -0.1047 g1 -51.8323Z� 1.9220 L 0.2094 g2 -2.2036"1 6.7467 T -0.0389 f 3.06115.3 Strutural & dieletri properties5.3.1 Tehnial detailsWe solve the Hamiltonian using Monte Carlo (MC) simulations on a 12 � 12 � 12superell (8640 atoms) with periodi boundary onditions. We typially do 15000sweeps to equilibrate the system and 165000 additional sweeps to ompute the averagevalues h��i and h���i and the orrelation funtions [19, 186℄ to get �(1)�� and d�� . Ateah temperature, up to six alulations are arried out using di�erent seeds to generatethe random numbers. The linear term, f , in Eq. (5.6) is set to zero in the simulations,to ompensate for the �rst-priniples underestimate of the lattie onstant.5.3.2 Spontaneous polarization and spontaneous strainFigure 5.2 shows the temperature dependene of the spontaneous polarization, Ps,and spontaneous strain, �s, omputed from the average normal mode oordinate andstrain Ps = Z�
0 h�i (5.8)�s = h�i: (5.9)At high temperature, we �nd that Psx, Psy and Psz are lose to zero indiating thatthe system is in the paraeletri phase. The tensile strains, �s1, �s2 and �s3, are equal 2and the shear strains (Voigt notations), �s4, �s5 and �s6 are zero. Consequently, the high2The elasti energy de�ned in Eq. 5.6 depends quadratially on the strain. We might thereforeexpet that the tensile strains, �s1, �s2 and �s3 , vanish in the ubi phase. The non-zero values of �s1,�s2 and �s3 in Figure 5.2, are due to the parameterization of the interation between the strain andthe loal modes de�ned in Eq. (5.7) that depends on the average value of the squared loal modeoordinates. These terms to not vanish in the ubi phase. Sine Hint depends linearly on the tensilestrains (�rst and seond term), �s1, �s2 and �s3 are non-zero in the ubi phase.



110 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSORTable 5.3: Calulated phase transition temperatures, T, and saturated spontaneouspolarizations, Ps, of BaTiO3. Our results are ompared to the e�etive Hamiltonianalulations of Ref. [17℄ and to the experimental values quoted in the same referene.Phase He� He� [17℄ Exp [17℄T (K) O-R 190 200 183T-O 240 230 278C-T 335 297 403Ps (C/m2) R 0.45 0.43 0.33O 0.37 0.35 0.36T 0.30 0.28 0.27temperature phase of BaTiO3 is orretly predited to be ubi. As the system is ooleddown past 330 K, Psz inreases and beomes signi�antly larger than Psx and Psy . Thisindiates the transition to the tetragonal phase. The homogeneous strain variableson�rm that the shape of the unit ell beomes tetragonal at this temperature. Twoother phase transitions our as the temperature is redued further. The transitionfrom the tetragonal to the orthorhombi phase ours at 240 K (sudden inrease of Psx)and the transition from the orthorhombi to the rhombohedral phase ours at 190 K(sudden inrease of Psy).The sequene of transitions exhibited by the simulation is the same as observedexperimentally. In Table 5.3, we ompare the orresponding phase transition temper-atures and spontaneous polarizations to the values of Zhong and o-workers [17, 18℄obtained from a di�erent parameterization of the e�etive Hamiltonian and to theexperimental values. The theoretial results of the present study are lose to thetheoretial results of Ref. [17℄. The T's predited from both e�etive Hamiltoniansdeviate from the experimental T's. As disussed in Ref. [187℄, this disrepany an beattributed to an inorret modeling of the thermal expansion in the e�etive Hamilto-nian.5.3.3 Dieletri and piezoeletri tensorIn this setion we disuss the temperature dependene of the stati dieletri tensorand the piezoeletri tensor. We fous on the tetragonal phase, whih is the mostimportant one for pratial appliations sine it is stable at room temperature. Inthe Monte Carlo simulations, the stati dieletri suseptibilities and the piezoeletrioeÆients an be expressed as orrelation funtions. Following Ref. [186℄, we anwrite �(1)�� = �Z�
0 0� 1M hXi �i�Xj �j�i �Mh��ih��i1A (5.10)



5.3. STRUCTURAL & DIELECTRIC PROPERTIES 111
Figure 5.2: Temperature dependene of the spontaneous polarization and the sponta-neous strain in the ubi (C), tetragonal (T), orthorhombi (O) and rhombohedral (R)phases of BaTiO3.
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112 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSORFigure 5.3: Temperature dependene of the stati dieletri onstants in the ubi(C) and tetragonal (T) phases of BaTiO3. Our results are ompared to the results ofthe e�etive Hamiltonian alulations of Garia and Vanderbilt (GV) [20℄ and to theexperiment [177℄. The bottom and top x-axes orrespond respetively to the theoretialand experimental temperatures (see text).
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d�� = �Z�0�h���Xj �ji �Mh���ih�i1A (5.11)where � = 1kT .In Figure 5.3, we show the temperature dependene of the stati dieletri oef-�ients "11 and "33. Our results are ompared to the results of Garia and Vander-bilt [20℄ who used the e�etive Hamiltonian of Refs. [17, 18℄ and to the experimentalresults [177℄. As disussed in Se. 5.3.2, the theoretial phase transition tempera-tures systematially underestimate the experiment. In order to provide a meaningfulomparison of our results to experiment, we resaled the theoretial temperatures asin Ref. [19℄. The bottom x-axis in Figure 5.3 shows the temperatures used in theMonte Carlo simulations while the top x-axis shows the orresponding experimentaltemperatures after a linear adjustment of the sale in order to math the theoretialand experimental phase transition temperatures. Our results are in good agreementwith the results of Garia and Vanderbilt. Both models orretly predit a divergeneof the dieletri onstants at the ubi to tetragonal phase transition. In the tetrag-onal phase, "33 diverges at the transition to the ubi phase. At room temperature,the theoretial value of 120 is in exellent agreement with the experimental value of130. "11 is orretly predited to diverge at the transition from the tetragonal to the



5.3. STRUCTURAL & DIELECTRIC PROPERTIES 113Figure 5.4: Temperature dependene of the piezoeletri onstants in the ubi (C)and tetragonal (T) phases of BaTiO3.Our results are ompared to the results of thee�etive Hamiltonian alulations of Garia and Vanderbilt (GV) [19℄ and to the ex-periment [177℄. The bottom and top x-axes orrespond respetively to the theoretialand experimental temperatures (see text).
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orthorhombi phase. The amplitude of the divergene is underestimated by the ef-fetive Hamiltonian of Ghosez and o-workers. We obtain a value of about 2200 thatunderestimates the experimental value of 4400 by a fator of 2.Figure 5.4 shows the temperature dependene of the piezoeletri oeÆients d31and d33. The temperatures on the top x-axis have been resaled as desribed above.Our simulations and those of Garia and Vanderbilt [19℄ orretly predit d31 and d33to diverge at the transition from the tetragonal to the ubi phase and to vanish in theubi phase. At room temperature, the theoretial d31 (-33 pC/N) and d33 (105 pC/N)are in good agreement with the experimental values of -33 and 90 pC/N [177℄. In aseof the piezoeletri oeÆient d24 (not shown in Figure 5.4), the agreement betweentheory and experiment is less good. We obtain a value of 42 pC/N that stronglyunderestimates the experimental value of 564 pC/N.



114 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSOR5.4 EO oeÆients & refrative indies5.4.1 FormalismThe prinipal refrative indies, ni, an be omputed as the square root of the eigen-values of the optial dieletri tensor. At �nite temperature, T , we an writeh"ij(�r;�)i = Æij + 4�h�(1)ij (�r;�)i: (5.12)Let us write �r and � as �r = h�i+ Æ�r� = h�i+ Æ� (5.13)where Æ�r, Æ� denote the deviations from the average values. If we develop h�(1)ij (�r;�)ias a Taylor expansion about the paraeletri struture, we an separate the terms de-pending on h�i and h�i only from those involving also Æ�r and Æ�. At �nite tempera-ture, the dieletri suseptibility an therefore be expressed ash�(1)ij (�r ;�)i = �(1)ij (h�i; h�i) + h�(1)ij (h�i; h�i; Æ�r ; Æ�)i: (5.14)The �rst term of the right hand side of Eq. (5.14) desribes the variations of �(1)ij due tothe average rystal lattie distortions. It is responsible for the disontinuity of ni at thephase transition in ferroeletris suh as BaTiO3 (see Ref. [188℄). Following Ref. [188℄,we onsider terms up to the seond order in the Taylor expansion of �(1)ij (h�i; h�i)�(1)ij (h�i; h�i) = �(1)ij (0; 0) +X� ��(1)ij��� �����0;0 h��i+X�;� ��(1)ij���� �����0;0 h���i+12X�;� �2�(1)ij������ �����0;0 h��ih��i+12X�;� X�0;�0 �2�(1)ij�������0�0 �����0;0 h���ih��0�0i+X� X�;� �2�(1)ij������� �����0;0 h��ih��� i: (5.15)In Eq. (5.15), the �rst-order derivative of �(1)ij with respet to �� and the mixedseond-order derivatives of �(1)ij with respet to �� and ��� are zero by symmetry 3.3The soft mode in the paraeletri phase is polar (infrared ative). The quantities ��(1)ij��� and�2�(1)ij������� are related to the Raman suseptibilities of the soft mode in di�erent entrosymmetrion�gurations of BaTiO3. They are zero by symmetry beause in a entrosymmetri rystal, a phononmode annot be simultaneously Raman and infrared ative.



5.4. EO COEFFICIENTS & REFRACTIVE INDICES 115The seond term in the right hand side of Eq. (5.14) represents the variations of �(1)ijdue to thermal utuations and to their orrelations [189℄. It determines the variationsof ni in the paraeletri phase. This term is diÆult to ompute in pratie. However,in usual ferroeletris suh as BaTiO3, the variations of ni in the paraeletri phase aresmall ompared to their variation at the phase transition. Following Ref. [188℄, we willneglet the seond term of the right hand side of Eq. (5.14) sine we are interested in thevariation of ni below the phase transition temperature (T) where we expet the �rstterm to dominate. We note that this approximation is not always valid. In disorderedferroeletris suh as Pb(Mg1=3Nb2=3)O3 (PMN) or Pb(Zn1=3Nb2=3)O3 (PZN), largeanomalies of ni have been observed above T where h�i and h�i are zero [180, 190℄.Consequently, the �rst term of Eq. (5.14) is onstant and these anomalies are relatedto the seond term.The linear EO e�et is related to the �rst-order hange of the optial dieletri ten-sor indued by a stati or low frequeny eletri �eld, E . Using an approah similar tothe one presented in Se. 3.3.4, the unlamped EO oeÆient, r�ij , an be deomposedinto three terms: r�ij = relij � 4�n2in2j 3X�=1 ��(1)ij��� �����h�i;h�i �h��i�E� 4�n2in2j 3X�;�=1 ��(1)ij���� �����h�i;h�i �h���i�E : (5.16)The �rst term is a bare eletroni part. Its value is assumed independent of temperaturein the ferroeletri phase and equal to that reported in Table 4.16. It vanishes in theubi phase. The last two terms orrespond to the ioni and strain ontributions 4.They depend on (i) the variation of h�i and h�i in the �eld and (ii) the variation of �(1)ijwith atomi displaements and strains. The relaxations of the atomi positions andmarosopi strains within the �eld are related to the stati dieletri suseptibilitytensor �(1)� and the piezoeletri tensor d�� :�h��i�E = 
0Z��(1)� (5.17)�h���i�E = d�� : (5.18)They an be omputed from Eqs. (5.10) and (5.11). The dependene of �(1)ij on h�iand h�i an be estimated through Eq. (5.15):��(1)ij��� �����h�i;h�i = 3X�=1 �2�(1)ij������ �����0;0 h��i (5.19)4This deomposition is di�erent from the one of Se. 3.3.4. As it is disussed in Appendix B, thederivative ����E involves a oupling with the strain that is not inluded in the ioni ontribution of Se.3.3.4.



116 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSOR��(1)ij���� �����h�i;h�i = ��(1)ij���� �����0;0 + 3X�0;�0=1 �2�(1)ij�������0�0 �����0;0 h��0�0i: (5.20)5.4.2 Determination of parametersIn Se. 5.4.1, we used a seond-order Taylor expansion to desribe the dependene of�(1)ij on atomi positions and strains. In ase of the strain, �, this quadrati approxi-mation is reasonable sine the unit ell deformations at the phase transition are rathersmall in most ferroeletris. In ontrast, the internal distortions are larger and thepurely quadrati dependene of �(1)ij on h�i is questionable. To hek this hypothesis,we omputed the optial dieletri onstants of BaTiO3 as a funtion of atomi dis-plaements along the soft-mode eigenvetor polarized along z while keeping onstantthe ubi lattie parameters. Figure 5.5 shows the dependene of "xx and "zz on thepolarization assoiated with these distortions. We also show the orresponding double-well potential. The variation of " appears highly anharmoni. We had to use an 8thorder polynome to �t the data in Figure 5.5 (a) [solid line℄ and the urvature of "(Pz)dereases as Pz inreases. Consequently, a seond-order expansion around the ubiphase will lead to a strong overestimate of the value of "zz in the tetragonal phase ofBaTiO3.In spite of that, the use of a quadrati approximation may be justi�ed in a di�erentway. As disussed in Se. 5.3.2, h�i and h�i are disontinuous at the phase transitionof BaTiO3 and their temperature dependene in the tetragonal phase is small. Inpratie, we an use the formula�2�(1)ij������ �����0;0 �= 1�F� ��(1)ij��� ������F ;�=0 ; (5.21)where �F denotes the position of the minimum of the double well potential in thepositive z-diretion, as an approximation of the oeÆients of the quadrati terms inthe seond-order Taylor expansion of �(1)ij (h�i; h�i): The variation of "xx and "zz thatorresponds to this quadrati approximation is shown by the dotted lines in Figure 5.5(a).For the r�ij , Eq. (5.21) is aurate around the tetragonal phase5 sine the tangentsto the solid urve and the orresponding dotted urve in Figure 5.5 (a) have the sameslope at the minima of the double well potential. Indeed, Eq. (5.21) is equivalent to alinear approximation of ��(1)ij =��� around these minima��(1)ij��� �����h�i;h�i �= 3X�=1 1�F� ��(1)ij��� �������F ;�=0 h��i: (5.22)5For the other phases, it might be neessary to go beyond the seond-order Taylor expansion of�(1)ij (h�i; h�i) and to ompute the exat values of the derivatives of �(1)ij .



5.4. EO COEFFICIENTS & REFRACTIVE INDICES 117Figure 5.5: Dependene of the optial dieletri onstants (a) and energy (b) on thepolarization in BaTiO3. The points orrespond to the values omputed for variousinternal distortions. The solid lines orrespond to a polynomial �t and the dotted linesto the quadrati approximation explained in the text.

-0.015

-0.01

-0.005

 0

 0.005

 0.01

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Pz (C/m2)

E
ne

rg
y 

(e
V

)

(b)

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

O
pt

ic
al

 d
ie

le
ct

ric
 c

on
st

an
t (a)

εxx
εzz

For n1 and n3, Eq. (5.21) reprodues the orret behavior but leads to an overes-timate of n3 as an be seen in Figure 5.5 (a).The derivatives of �(1)ij appearing in Eq. (5.15) are omputed within the LDA. Theseond order derivative of �(1)ij , as de�ned in Eq. 5.21, are omputed on a 10� 10�10 grid of speial k-points. We use the 2n + 1 theorem to ompute the �rst-orderderivatives of �(1)ij in a struture where the soft-mode eigenvetor was frozen with anamplitude orresponding to the double-well potential minimum, while keeping onstantthe experimental ubi lattie. To take into aount the variations of the soft modeeigenvetor at the phase transition, these �rst-order derivatives were projeted on theeigenvetors of the soft E and A1 modes in the tetragonal phase. The strain derivativesin Eq. (5.15) are omputed from �nite di�erenes on a 6�6�6 grid of speial k-points.



118 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSORTable 5.4: First- and seond-order derivatives of �(1)ij . The seond-order derivativeswith respet to � are reported in 10�5 bohr�2. The strain derivatives are dimensionless.They are reported in Voigt notations.��(1)11 =��1 -0.0657804��(1)22 =��1 0.2680479��(1)23 =��4 0.1026835��(1)11 =��1��1 0.7692116��(1)22 =��1��1 0.2204320��(1)11 =��1��2 1.3173122��(1)33 =��1��2 0.2063500��(1)23 =��1��4 -0.1142776��(1)31 =��1��5 0.2633623��(1)11 =��4��4 0.6583961��(1)22 =��4��4 3.2084150��(1)12 =��4��5 -0.1149256��(1)33 =��3��3 -3.4355776��(1)22 =��3��3 -1.1950726��(1)32 =��3��2 -0.9530569The values of all independent oeÆients appearing in Eq. (5.15) are summarized inTable 5.4.5.5 ResultsFigure 5.6 shows the prinipal refrative indies (a) and the stress-free EO oeÆients(b) in the ubi and tetragonal phases of BaTiO3. As disussed in Se. 5.3, thepredited T's do not perfetly math the experimental values. In order to obtainalulated values omparable with experimental values, we resale the temperatures asin Se. 5.3.3. The bottom x-axis shows the temperatures used in the MC simulationswhile the top x-axis shows the orresponding experimental temperatures after a linearadjustment of the sale in order to math the theoretial and experimental T's.The LDA value of the refrative index in the ubi phase (n = 2.59) is about 7 %larger than the experimental value [191℄ (2.4). In order to ompare the theoretial andexperimental values of n1 and n3 in the tetragonal phase, we report in Figure 5.6 (a)the di�erene between the refrative indies of the ubi and tetragonal phases. Theinternal distortions related to the spontaneous polarization mainly determine the vari-ation of n1 and n3 while the spontaneous strain only plays a minor role. In partiular,



5.5. RESULTS 119Figure 5.6: Temperature dependene of the refrative indies (a) and EO oeÆients(b) in the ubi (C) and tetragonal (T) phases of BaTiO3. The open (solid) symbolsorrespond to the theoretial (experimental [177, 191℄) values. The bottom and topx-axes orrespond respetively to the theoretial and experimental temperatures (seetext).
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the disontinuous evolution of n1 and n3 at the phase transition is due to the dison-tinuous evolution of the spontaneous polarization and the spontaneous strain disussedin Se. 5.3.2. The values of �2�(1)33 =��23 and �2�(1)11 =��23 [see Table 5.4℄ are negative.Consequently, n1 and n3 are smaller in the tetragonal phase than in the ubi phaseand they derease as the temperature dereases. Beause the �rst oeÆient is abouttwo times more negative than the seond the variation of n3 is more pronouned thanthat of n1. At room temperature, the e�etive Hamiltonian predits a large negativebirefringene in agreement with the experiment although the theoretial value (-0.095)is somewhat more negative than the experimental value (-0.056 [191℄).The model Hamiltonian properly reprodues the �nite temperature dependeneof the EO tensor. The three oeÆients vanish in the ubi phase as requested by



120 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSORsymmetry. Also, r�13 and r�33 diverge at the ubi ! tetragonal transition while r�42diverges at the tetragonal! orthorhombi transition. Aording to Eqs. (5.16), (5.17)and (5.18), these divergenes have the same origin as those of the stati dieletri andpiezoeletri tensors. At room temperature, the theoretial r�13 (25 pm/V) and r�33(122 pm/V) are in reasonable agreement with the experimental values [177℄ of 8 and105 pm/V. r�42 is orretly predited to be about one order of magnitude larger thanr�13 and r�33 even if our result (622 pm/V) underestimates the experimental value of1300 pm/V (not shown in Figure 5.6 (b)). Part of this disrepany omes from thetheoretial value of the stati dieletri onstant "11 (2600) that underestimates theexperimental value (4400) [177℄ as disussed in Se. 5.3.3.5.6 Model of DiDomenio and WempleWe an now ompare our approah with the model of DiDomenio and Wemple [182℄onventionally used to explain the temperature dependene of optial properties inferroeletris. In this latter model, the linear EO e�et is desribed as a quadratie�et biased by the spontaneous polarization. In the paraeletri phase, the linear EOtensor is zero by symmetry and the lowest-order EO e�et is quadrati. Using thepolarization P� as the basi variable, we an write� �"�1�ij = 3X�;�=1 gij��P�P� (5.23)where gij�� is the quadrati polarization-opti tensor. In the ferroeletri phase, P�an be expressed as the sum of a spontaneous and an indued partP� = Ps� + 3X�=1�(1)��E�: (5.24)With the hypothesis that (i) the g-oeÆients remain onstant at the phase transitionand (ii) the dependene of the optial dieletri tensor on P is purely quadrati, weobtain the following expressions in the ferroeletri phaserij = 2 3X�;�=1 gij��Ps��(1)� (5.25)"ij(�F ; �F ) = "ij(0; 0)� n2in2j 3X�;�=1 gij��Ps�Ps� : (5.26)As demonstrated above, in the ase of BaTiO3, the dependene of "ij on the polar-ization is highly anharmoni and a similar behavior in other ferroeletris may beexpeted. Consequently, the use of Eqs. (5.25) and (5.26) is questionable. If we om-pute the g-oeÆients from a similar approximation as in Eq. (5.21), we an justify



5.7. CONCLUSIONS 121Table 5.5: Seond-order lamped polarization opti oeÆients gij�� (10�2 m4 C�2)of ubi BaTiO3. (i,j,�,�) Present Exp. [183℄ Exp. [87℄(3,3,3,3) 17.8 15 � 3 10(2,2,3,3) 5.0 3.8 � 0.6 3(3,2,3,2) 4.5 7 � 1.5 9the use of Eqs. (5.25) and (5.26). However, the so omputed g-oeÆients an no morebe identi�ed to the quadrati polarization-opti oeÆients of the paraeletri phase:aording to Eq. (5.22), they de�ne the slope of "ij(P) in the ferroeletri phase.With the approximation that the ferroeletri distortion is restrited to the softmode eigenvetor, the g-oeÆients an be related to the seond-order derivatives of�(1)ij as given by Eq. (5.21)gij�� = �4�n2in2j 
202(Z�)2 �2�(1)ij������ �����0;0 : (5.27)The theoretial values of the lamped gij�� reported in Table 5.5 are lose to theexperimental values. On the one hand, this agreement gives a further justi�ation of theapproximations used in our approah and validates the use of an e�etive Hamiltonianto predit optial properties. On the other hand, Eq. (5.27) may be used to omputethe gij�� oeÆients in situations, where no experimental data are available.5.7 ConlusionsIn this Chapter, we have presented an eÆient method to ompute the temperaturedependene of the EO oeÆients and the refrative indies of ferroeletris from a�rst-priniples e�etive Hamiltonian. We have suessfully applied this formalism toBaTiO3 in its tetragonal phase.We �rst desribed the BaTiO3 e�etive Hamiltonian used in this study. We re-ported the parameters of the lattie Wannier funtion and of the energy expansion andwe showed that this e�etive Hamiltonian orretly predits the �nite temperature de-pendene of the spontaneous polarization, the spontaneous strain, the stati dieletritensor and the piezoeletri tensor.We then proposed an extension of the e�etive Hamiltonian to study the tempera-ture dependene of the EO oeÆients and indexes of refration of ferroeletris. Weshowed that the dependene of the optial dieletri tensor on the strutural parame-ters is highly anharmoni. This result a priori invalidates the usual hypothesis, whihassumes a quadrati dependene of the optial dieletri onstants on these parameters.



122 CHAPTER 5. TEMPERATURE DEPENDENCE OF THE EO TENSORNevertheless, we showed that it is possible to justify the use of a quadrati approxi-mation by using a modi�ed expression of the seond-order terms, whih inludes mostof the anharmoni dependene.We applied this formalism to BaTiO3 in its tetragonal phase. The disontinuousevolution of the refrative indexes at the transition from the ubi to the tetragonalphase and the negative birefringene at room temperature an be explained from theinternal distortions related to the spontaneous polarization and the negative valuesof the parameters �2�(1)ij =������ . Our model orretly predits the EO oeÆientsto vanish in the ubi phase and to diverge at the phase transitions. These diver-genes have the same origin as the divergenes of the stati dieletri and piezoeletrioeÆients.We ompared our formalism to the model of DiDomenio and Wemple, whih de-sribes the linear EO e�et in ferroeletris as a quadrati e�et biased by the sponta-neous polarization. Although we showed that the dependene of the optial dieletrionstants on the polarization is highly anharmoni, this model an be justi�ed if wemodify the de�nition of the quadrati polarization opti oeÆients to take into a-ount higher-order e�ets.It is interesting to note that models similar to the model of DiDomenio and Wem-ple are used to desribe the piezoeletri e�et in ferroeletris as a quadrati e�etbiased by the spontaneous polarization. These models assume that the strain in theparaeletri phase depends quadratially on the polarization [4℄ (eletrostritive e�et).The results presented in this Chapter all into question the hypothesis of a quadratidependene. We must therefore be areful when we apply suh models in pratialsituations suh as the study of fatigue in ferroeletris [192℄.5.8 ReferenesThe formalism and results presented in this Chapter have been partly disussed in thefollowing papers:� M. Veithen and Ph. Ghosez, Temperature dependene of the eletro-opti tensorand refrative indies of BaTiO3 from �rst-priniples, aepted for publiationin Phys. Rev. B.� W. Zhong, D. Vanderbilt and K. M. Rabe, Phase Transitions in BaTiO3 fromFirst Priniples, Phys. Rev. Lett. 73, 1861 (1994).� A. Garia and D. Vanderbilt, Eletromehanial behavior of BaTiO3 from �rstpriniples, Appl. Phys. Lett. 72, 2981 (1998).� U. V. Waghmare and K. M. Rabe, Ab initio statistial mehanis of the ferro-eletri phase transition in PbTiO3, Phys. Rev. B 55, 6161 (1997).
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Conlusions and PerspetivesFirst-priniples alulations performed within density funtional theory are a powerfultool to study the ground-state and linear response properties of materials. In this work,we extended this formalism to study the eletron loalization tensor and the nonlin-ear response to eletri �elds of ferroeletris and other insulators. The tehniqueswe developed are based on reent theoretial advanes suh as the modern theory ofpolarization, the theory of Wannier funtions, the e�etive Hamiltonian approah andthe density funtional perturbation theory. Our work an be summarized as follows.As a �rst step, we studied the eletron loalization tensor. This formalism makes itpossible to quantify the degree of eletron loalization in materials. We set up a band-by-band deomposition of the loalization tensor that allows to study the loalization ofeletrons oupying individual groups of bands in a solid and to overome the problemsin the de�nition of the loalization tensor in pseudopotential alulations. In ontrastto the polarization or the Born e�etive harges, whih are, in the parallel gauge, equalto the sum of the ontributions of the individual bands, we had to distinguish betweenthe variane and the ovariane in the band-by-band deomposition of the loalizationtensor. We applied this formalism to several oxides and we showed that the band-by-band deompositions of the Born e�etive harges and the loalization tensor aresensitive probes to study the eletroni struture of materials. In addition, we observedonly small variations of eletron loalization during the phase transitions of BaTiO3and LiNbO3. This surprising result was explained in terms of the eletroni strutureof these ompounds as interpreted in the Harrison model.As a seond step, we presented two methods to study the nonlinear responses ofinsulators to eletri �elds. The �rst method onsiders the response to in�nitesimal�elds. It allows a systemati study of nonlinear response properties from density fun-tional perturbation theory. However, in order to use this tehnique, eah responseproperty and approximation of the exhange-orrelation energy has to be implementedexpliitly. We reported the LDA expressions of the nonlinear optial suseptibilities,the eletro-opti oeÆients and the Raman sattering eÆienies of transverse andlongitudinal optial phonons. The seond method onsiders the response to �nite ele-tri �elds. It onsists in the iterative minimization of an eletri �eld dependent energyfuntional. Various linear and nonlinear response properties an be omputed from �-nite di�erenes and do not require any additional implementations. Moreover, most125



126 CONCLUSIONS AND PERSPECTIVESapproximations of the exhange-orrelation energy available for ground-state alula-tions at zero eletri �eld an also be used in �nite eletri �eld alulations.As a third step, we applied both methods to various ferroeletris and semion-dutors. The main results of this study an be summarized as follows. First, thetwo methods an equivalently be used to study the nonlinear response of insulatorsto eletri �elds. However, the perturbative approah within the PEAD formulationonverges faster with respet to the k-point sampling than the DAPE formulation orthe �nite eletri �eld tehnique. Seond, by omparing theoretial infrared osillatorstrengths and Raman sattering eÆienies to the experiment, we were able to larifysome of the ambiguities in the assignation of the E-modes of LiNbO3. This showsthat the theoretial omputation of Raman spetra is a powerful tool to interpret ex-perimental Raman spetra. Third, the amplitude of the eletro-opti oeÆients inBaTiO3 and LiNbO3 is mainly determined by the ioni ontribution of the suessor ofthe soft mode in the ferroeletri phase that ombines a high polarity, a high Ramansuseptibility and a low frequeny. In ontrast, the ontribution of a similar mode inPbTiO3 is muh weaker beause of its low Raman suseptibility. This result underlinesthe important ontribution of the soft mode to the eletro-opti oeÆients of BaTiO3and LiNbO3 in line with its well-known ontributions to the dieletri onstants andwith its dominant role in the ferroeletri phase transition of these materials. It alsopoints out the distint behavior of PbTiO3, in spite of its perovskite struture similarto BaTiO3.As a fourth step, using the fat that the eletro-opti oeÆients in BaTiO3 andLiNbO3 are dominated by the suessor of the soft mode in the ferroeletri phase,we developed in Chapter 5 a model to study the �nite temperature dependene ofoptial properties of ferroeletris. This model onsists in an extension of the standarde�etive Hamiltonian to take into aount the dependene of the optial dieletrionstants on atomi positions and strains. We applied the model to BaTiO3 in itstetragonal phase and we showed that it orretly predits the temperature dependeneof the eletro-opti oeÆients and the refrative indexes. In addition, we were ableto give a mirosopi interpretation of the model of DiDomenio and Wemple and toexplain why this model is suessful in many situations although the dependene of theoptial dieletri onstants on the polarization is not quadrati as erroneously assumed.The theoretial advanes presented in Chapter 2 and 3 have been implemented inthe abinit ode. They are therefore freely aessible for future investigations and opennew perspetives.A �rst potential appliation is the systemati omputation of Raman satteringeÆienies. Together with the infrared osillator strengths, the theoretial Ramansattering eÆienies an help to study the lattie dynamis of omplex materials fromexperimental infrared and Raman spetrosopy.A seond appliation is the systemati omputation of eletro-opti oeÆientsof omplex materials in order to �nd better materials for optial appliations. Wean suggest two �elds that might be interesting to investigate in the future. First,disordered ferroeletris suh as PZN-PT are known to exhibit exellent piezoeletri



CONCLUSIONS AND PERSPECTIVES 127properties. It has been shown reently that these materials also have unusual eletro-opti properties [193℄ that might be interesting to study from �rst-priniples. Seond,the struture and polarization of thin ferroeletri �lms an be tuned by epitaxial strainindued by the lattie mismath between the ferroeletri �lm and the substrate. Ithas been suggested reently that this strain engineering an also be used to tune theeletro-opti properties of suh �lms [47℄.Conerning the potential theoretial developments, we mentioned above that the�nite eletri �eld tehnique allows the use of most approximations of the exhange-orrelation energy that are available for zero-�eld ground-state alulations. This teh-nique therefore makes it possible to study the e�et of these approximations on thelinear and nonlinear optial suseptibilities in a systemati way.Finally, our work an also serve as a basis for further implementations in the abinitode in order to ompute anharmoni fore onstants [58℄, the tunability of the diele-tri onstant [140℄, or the magnetoeletri oupling oeÆients of multiferrois [51℄. Inaddition, the loalization tensor in onnetion with the �nite eletri �eld tehniquemight be used to study the dieletri breakdown in solids [116℄.
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Appendix ARelation between theloalization tensor and theoptial ondutivityThe optial ondutivity (imaginary part of the optial dieletri tensor) of a givenmaterial is related to its absorption oeÆient, the probability of the valene eletronsto perform optial transitions to the unoupied ondution bands under the inuene ofan eletromagneti �eld. If we onsider only "vertial" band-to-band transitions (thusnegleting elementary exitations like the eletron-hole interation or the eletron-phonon oupling) this quantity writes in the dipolar approximation [101℄"00��(!) = 4�2e2m2e!2�h NXn=1 1Xm=N+1ZBZ 2dk(2�)3 p�nm(k)p�mn(k)Æ (!mn(k)� !) (A.1)where me is the eletron mass, pnm(k) = �i�hh nkjr mki and �h!mn(k) = "mk�"nk.The matrix elements of the momentum operator an equivalently be expressed aspnm(k) = �me!nm(k)hunkj�kumki: (A.2)It has been shown by Souza, Wilkens and Martin [13℄ that "00 is related to theloalization tensor by the relationZ 10 "00��(!) d! = 8�2e2N�h
0 hr�r�i : (A.3)In order to see the e�et of the band by band deomposition, we will write "00 as"00��(!) = NgXi=18<:"00��(!;Gi) + NgXj 6=i "00��(!;Gi;Gj)9=; (A.4)129



130 APPENDIX A. OPTICAL CONDUCTIVITYwhere "00��(!;Gi) = 4�2e2m2e!2�h Xn2Gi 1Xm=1m62Gi ZBZ 2dk(2�)3 p�nm(k)p�mn(k)Æ (!mn(k)� !) (A.5)"00��(!;Gi;Gj) = �4�2e2m2e!2�h Xn2Gi Xm2Gj ZBZ 2dk(2�)3 p�nm(k)p�mn(k)Æ (!mn(k)� !) : (A.6)The �rst sum of Eq. (A.5) has to be taken over the bands of group Gi while theseond sum extends over all bands (unoupied or not) exept those of group Gi. InEq. (A.6), the two sums extend over the bands of group Gi and Gj . It is easy to showthat "00��(!;Gi) and "00��(!;Gi;Gj) are related to the varianes and ovarianes by therelations Z 10 "00��(!;Gi)d! = 8�2e2ni�h
0 hr�r�i (Gi) (A.7)Z 10 "00��(!;Gi;Gj)d! = 8�2e2ninj�h
0 hr�r�i (Gi;Gj): (A.8)Thanks to these de�nitions, the physial meaning of the ovariane beomes now ob-vious: If the total loalization tensor was simply the sum of the varianes hr�r�i (Gi),the expression of the dieletri tensor (A.1) would not only ontain transitions betweenoupied and unoupied states, but also transitions between oupied states them-selves. It is by adding the ovarianes hr�r�i (Gi;Gj) that one ompensates the e�etof these forbidden transitions in order to get a physially orret quantity.



Appendix BExpressions of the lampedand unlamped EO tensorsB.1 Marosopi approahAs disussed in Se. 3.3.4, the optial properties of a ompound are modi�ed byan eletri �eld E or a mehanial onstraint (a stress ��� or a homogeneous strain���). At linear order, the variations of "�1ij an be desribed using either the variables(E ; ���) or (E ; ���) [173,183℄�("�1)ij = 3X=1 r�ijE + 3X�;�=1�ij����� ; (B.1)�("�1)ij = 3X=1 r�ijE + 3X�;�=1}ij����� ; (B.2)where r�ij and r�ij are respetively the lamped (strain-free) and unlamped (stress-free) EO oeÆients, �ij�� are the elasto-opti (strain-opti) oeÆients and }ij��are the piezo-optial (stress-optial) oeÆients. In order to relate Eqs. (B.1) and(B.2), we an express the strain as beeing indued by the stress or by the eletri �eld(onverse piezoeletri e�et)��� = 3X�0;�0=1S���0�0��0�0 + 3X=1 d��E ; (B.3)where S���0�0 are the elasti omplianes and d�� the piezoeletri strain oeÆients.If we assume, for example, that the unit ell is free to relax within the eletri �eld(stress-free mehanial boundary onditions) we an either use Eq. (B.2) (in whihase the seond term of the right-hand side is zero) or Eq. (B.1) to ompute �("�1)ij .131



132 APPENDIX B. CLAMPED & UNCLAMPED EO TENSORIn the latter ase, the strain indued by the eletri �eld an be obtained from theseond term of the right-hand side of Eq. (B.3)�("�1)ij = 3X=1 r�ijE= 3X=1 r�ijE + 3X�;�=1 3X=1�ij��d��E : (B.4)Using this identity, we obtain the following relation between the unlamped and thelamped EO oeÆients r�ij = r�ij + 3X�;�=1�ij��d�� : (B.5)B.2 Mirosopi approahIn order to derive the expressions of the lamped and unlamped EO tensor of Se.3.3.4, we use a Taylor expansion of the eletri enthalpy [194℄ F . Similar developmentshave already been applied to determine the lattie ontribution of the stati dieletritensor and of the piezoeletri tensor [195, 196℄. They are based on an expansion ofF up to the seond order in the atomi oordinates R��, the homogeneous strain ���and the marosopi eletri �eld E . In this setion, we extend these developments tothe third order.The eletri enthalpy of a solid in an eletri �eld is obtained by the minimizationF (E) = minR;� F (R; �;E) : (B.6)We denote R(E), �(E) the atomi positions and the strain that minimize F at onstantE and R0, �0 (= 0) their values at E = 0. For small �elds, we an expand the funtionF (R; �;E) in powers of E around E = 0:F (R; �; E) = F (R; �; 0)�
0 3Xi=1 Pi (R; �) Ei � 
08� 3Xi;j=1 "ij (R; �) EiEj�
03 3Xi;j;k=1�(2)ijk (R; �) EiEjEk + � � � (B.7)where 
0 is the volume of the primitive unit ell in real spae and P (R; �), "ij (R; �)and �(2)ijk (R; �) are the marosopi polarization, eletroni dieletri tensor and non-linear optial oeÆients at zero marosopi eletri �eld and for a given on�guration(R, �). At non-zero �eld, these quantities are de�ned as partial derivatives of F with



B.2. MICROSCOPIC APPROACH 133respet to E . For example, the eletri �eld dependent eletroni dieletri tensor anbe omputed from the expression"ij (R(E); �(E); E) = � 4�
0 �2F�Ei�Ej ����R(E);�(E);E : (B.8)Let ��� = R�� � R0;�� be the displaement of atom � along diretion � and���� (����) the �rst-order modi�ation of the atomi position (strain) indued by aperturbation � ���� = ������ �����=0 ; ���� = ������ �����=0 : (B.9)In the disussion that follows, we will study the e�et of an eletri �eld perturbationand a strain perturbation on the eletri enthalpy F in order to obtain the formulasto ompute the elasto-opti oeÆients as well as the lamped and the unlamped EOtensors.B.2.1 Elasto-opti oeÆients (E = 0)The elasto-opti tensor an be omputed from the total derivative of the dieletritensor with respet to ��� at zero eletri �eldd"ij (R; �; 0)d��� ����R0;�0 = �"ij (R; �)���� ����R0;�0 + 4�X�� ��(1)ij (R; �)���� �����R0;�0 ������ : (B.10)The derivative in the �rst term of the right-hand side is omputed onsidering theioni ores as arti�ially lamped at their equilibrium positions. The remaining termsrepresent the ioni ontribution to the elasto-opti tensor. They involve derivatives ofthe linear dieletri suseptibility �(1)ij with respet to the atomi positions that have tobe multiplied by the �rst-order strain indued atomi displaements ������ [Eq. (B.9)℄.To ompute these quantities we use the fat that F is minimum at the equilibrium foran imposed strain �. This ondition implies�F (R; �)���� ����R(�);� = 0: (B.11)Sine we are interested in �rst-order atomi displaements we an write ���(�) =P3�;�=1 ������ ��� +O(�2): Solving the extremum equation (B.11) to the linear order in�, we obtain X�0;�0 �2F (R; �)�������0�0 ����R0;�0 �����0�0 = � �2F (R; �)�������� ����R0;�0 : (B.12)The seond derivatives on the left side of Eq. (B.12) de�ne the matrix of interatomifore onstants at zero marosopi eletri �eld whih enables the omputation of the



134 APPENDIX B. CLAMPED & UNCLAMPED EO TENSORtransverse phonon frequenies !m and eigendisplaements Um(��). By deomposing������ in the basis of the zone-enter phonon-mode eigendisplaements������ =Xm ����m Um(��) (B.13)and using Eqs. (3.20), (3.21) we derive the following expression for the �rst-orderstrain indued atomi displaements����m = �1!2m �2F (R; �)������m ����R0;�0 ; (B.14)where �2F (R; �)������m ����R0;�0 =X�;� �2F (R; �)�������� ����R0;�0 Um(��): (B.15)If we introdue Eqs. (B.13) and (B.14) into Eq. (B.10) and use the de�nition of theRaman suseptibility Eq. (3.24) and the transformation Eq. (3.33), we �nally obtainthe formula to ompute the elasto-opti tensor�ij�� = �1n2in2j �"ij (R; �)���� ����R0;�0+ 4�n2in2jp
0 Xm �mij!2m �2F (R; �)������m ����R0;�0 : (B.16)To simplify, we write Eq. (B.16) in the prinipal axes of the rystal under investigation.A more general expression an be obtained from Eq. (3.33).Eq. (B.16) is di�erent from the approah used previously by Detraux and Gonzeto study the elasto-opti tensor in �-quartz [86℄. The authors of Ref. [86℄ used �nitedi�erenes with respet to strains to ompute the the total derivative of "ij . In theirapproah, the atoms where relaxed to their equilibrium positions in the strained on-�gurations. In ase of Eq. (B.16), the �rst term of the right-hand side is omputed atlamped atomi positions while the e�et of the strain-indued atomi relaxations istaken into aount by the seond term.B.2.2 Clamped EO oeÆients (� = 0)The lamped EO tensor an be omputed from the total derivative of the eletri �elddependent dieletri tensor Eq. (B.8) with respet to Ed"ij (R; �0;E)dE ����R0;E=0 = �"ij (R0; �0;E)�E ����E=0 + 4�X�� ��(1)ij (R; �0)���� �����R0 �E��: (B.17)



B.2. MICROSCOPIC APPROACH 135The derivative in the �rst term is omputed onsidering the ioni ores as arti�iallylamped at their equilibrium positions. This term represents the bare eletroni ontri-bution to the EO tensor that an be omputed from the nonlinear optial oeÆients�"ij (R0; �0;E)�E ����E=0 = 8��(2)ijk���k= (B.18)related to a third-order partial derivative of F�(2)ijk = �(2)ijk (R0; �0) = �12
0 �3F (R0; �0;E)�Ei�Ej�Ek ����E=0 : (B.19)The remaining terms in Eq. (B.17) represent the ioni ontribution to the EO tensor.They involve derivatives of the linear dieletri suseptibility �(1)ij with respet to theatomi positions that have to be multiplied by the �rst-order eletri �eld induedatomi displaements �E�� [Eq. (B.9)℄. To obtain these quantities, we proeed the sameway as in ase of the elasto-opti tensor. Using the equilibrium ondition�F���� = 0 = �F (R; �0; 0)���� ����R(E) � 
0 3Xi=1 �Pi (R; �0)���� �����R(E) Ei� 
08� 3Xi;j=1 �"ij (R; �0)���� ������R(E) EiEj + � � � (B.20)and expanding ��� to the �rst-order in the eletri �eld, we obtainX�0;�0 �2F (R; �0; 0)�������0�0 ����R0 �E�0�0 = 
0 �P (R; �0)���� ����R0 : (B.21)This expression is similar to Eq. (B.12). The seond-order derivatives of F on the leftside are the interatomi fore onstants and the derivative of the zero �eld polarizationwith respet to ��� on the right side is the Born e�etive harge tensor Z��;� of atom �.Deomposing �E�� in the basis of the zone-enter phonon-mode eigendisplaements [Eq.(B.13)℄ and using the orthononormality onstraint Eq. (3.21) we derive the followingexpression for the �rst-order eletri �eld indued atomi displaements�Em = 1!2mX�;� Z��;�Um(��): (B.22)If we introdue Eqs. (B.18) and (B.22) into Eq. (B.17) we �nally obtain the formulato ompute the total derivative of the dieletri tensord"ij (R; E)dE ����R0;E=0 = 8��(2)ijk���k=



136 APPENDIX B. CLAMPED & UNCLAMPED EO TENSOR+4�Xm 1!2m  X�;� ��(1)ij (R)���� Um(��)!�0�X�0;�Z��0;�Um(�0�)1A : (B.23)Using the de�nition of the Raman suseptibility [Eq. (3.24)℄, the mode polarity [Eq.(3.37)℄ and the transformation [Eq. (3.33)℄ we obtain the expression of the lampedEO tensor r�ij = �8�n2in2j �(2)ijl �����l= � 4�n2in2jp
0 Xm �mij pm!2m (B.24)As in ase of the elasto-opti tensor [Eq. (B.16)℄, we have written Eq. (B.24) in theprinipal axes of the rystal under investigation.B.2.3 Unlamped EO tensor (� = 0)In order to ompute the unlamped EO tensor, we have to take into aount both theeletri �eld indued atomi displaements �E�� and the eletri �eld indued strain �E��when omputing the total derivative of "ijd"ij (R; �;E)dE ����R0;�0;E=0 = �"ij (R0; �0;E)�E ����E=0 + 4�X�� ��(1)ij (R; �0)���� �����R0 �E��+4� 3X�;�=1 ��(1)ij (R0; �)���� ������0 �E�� : (B.25)The eletroni ontribution [�rst term of Eq. (B.25)℄ is the same as for the lampedEO tensor. It an be omputed from the nonlinear optial oeÆients [Eq. (B.18)℄. Toompute �E�� and �E�� , we an use an equilibrium ondition similar to Eq. (B.20) wherewe require that the �rst-order derivatives of F with respet to ��� and ��� vanish.Expanding ��� and ��� to the �rst-order in the eletri �eld, we obtain the system ofoupled equations [see also Ref. [140℄℄X�0;�0 �2F (R; �; 0)�������0�0 ����R0;�0 �E�0�0 +X�;� �2F (R; �; 0)�������� ����R0;�0 �E�� = 
0 �P (R; �)���� ����R0;�0(B.26)X�0;�0 �2F (R; �; 0)�������0�0 ����R0;�0 �E�0�0 + X�0;�0 �2F (R; �; 0)���0�0���� ����R0;�0 �E�0�0 = 
0 �P (R; �)���� ����R0;�0(B.27)Beause of the oupling between �E�� and �E�� , de�ned by the mixed seond-orderderivatives �2F������� ; the seond term of the right-hand side of Eq. (B.25) is di�erentfrom that of Eq. (B.17). That means that the sum of the �rst and seond term of Eq.



B.2. MICROSCOPIC APPROACH 137(B.25) is not idential to the lamped EO oeÆients r�ij . Moreover, the third termof Eq. (B.25) is di�erent from the piezoeletri ontribution of Se. B.1.In order to obtain the deomposition of r�ij into eletroni, ioni and piezoeletriontributions de�ned previously, we an solve Eq. (B.26) for �E��. In the basis of thezone-enter phonon mode eigendisplaements we an write�En = pn!2n � 1!2n X�� �2F (R; �; 0)��n���� ����R0;�0 �E�� : (B.28)If we insert this relation into Eq. (B.25) and use the transformation Eq. (3.33) weobtain the following expression of the unlamped EO tensor in the prinipal axesr�ij = �8�n2in2j �(2)ijl �����l= � 4�n2in2jp
0 Xm �mij pm!2m� 4�n2in2j X�;� ��� ��(1)ij (R; �;E)���� �����R0;�0;E=0� 1p
0 Xm �mij!2m �2F (R; �; 0)��m���� ����R0;�0;E=0����E�� : (B.29)The sum of the �rst and seond term of the right-hand side of Eq. (B.29) is equalto the lamped EO oeÆient r�ij . The produt of the onversion fator times thebraket in the third term of Eq. (B.29) is equal to the elasto-opti oeÆient �ij��[Eq. (B.16)℄. Finally, by de�nition of the onverse piezoeletri e�et, �E�� is equalto the piezoeletri strain oeÆient d�� . We obtain thus the following expression ofthe unlamped EO oeÆients that is equal to the one derived in Se. B.1 from puremarosopi arguments r�ij = r�ij + 3X�;�=1�ij��d�� : (B.30)It is worth noting that the so-alled piezoeletri ontribution not only takes into a-ount the hange of the linear optial suseptibility with strain (third term of theright-hand side of Eq. (B.25)) but also inludes the modi�ation of the ioni ontri-bution, with respet to the lamped ase, that is assoiated to the modi�ation of theioni relaxation indued by the strain.
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GlossaryAbbreviationsBZ Brillouin zoneDAPE Disretization after perturbation expansionDFT Density funtional theoryDFPT Density funtional perturbation theoryEO Eletro-optiFEF Finite eletri �eldsGGA Generalized gradiend approximationLDA Loal density approximationPEAD Perturbation expansion after disretizationNotation for rystalsai basis vetor of the real spae rystal lattieGi basis vetor of the reiproal lattie
0 volume of the primitif unit ellL size of the Born- von Karman superellNotation for eletroni propertiesk wavevetor of the Bloh funtionsGi group of bands nk(r) eletroni Bloh funtionunk(r) periodi part of the Bloh funtionWn(r�R) eletroni Wannier funtionjRni Dira notation of the eletroni Wannier funtion Wn(r�R)e harge of the protonme mass of an eletronE Kohn-Sham energy at zero eletri �eldF eletri �eld dependent energy funtionalEg eletroni band gap at zero eletri �eld
 spread of Wannier funtions: 
 = 
I + e
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140 GLOSSARY
I gauge invariant part of 
e
 gauge dependent part of 
hr�r�i element of the loalization tensorNotation for dynami properties��� displaement of atom � along the Cartesian diretion �C��;�0�0 interatomi fore onstantsUm(��) normalized phonon mode eigendisplaementspm� mode polarities�i amplitude of the displaement along the lattie Wannier funtion in ell iZ� mode e�etive harge of the soft mode in the ubi phase of BaTiO3V angle of olletion in a Raman sattering experimentGeneral physial quantitiesT phase transition temperature of a ferroeletriE marosopi eletri �eldP marosopi polarizationPs spontaneous polarization of a ferroeletrif�� fore on atom � along the Cartesian diretion ���� elements of the stress tensor��� elements of the (homogeneous) strain tensor���0�0 elasti onstantsd�� piezoeletri strain oeÆientse�� piezoeletri stress oeÆients"ij elements of the optial dieletri tensor�(1)ij elements of the optial dieletri suseptibility tensor"�� elements of the stati dieletri tensor�(1)�� elements of the stati dieletri suseptibility tensor�(2)ijl elements of the nonlinear optial suseptibility tensorr�ij elements of the stress-free (unlamped) EO tensorr�ij elements of the strain-free (lamped) EO tensor�ij�� elasto-opti (strain-opti) oeÆients}ij�� piezo-opti (stress-opti) oeÆients
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