
UNIVERSITE DE LIEGE
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Introduction

Ferroelectric oxides are insulating solids characterized, in a given temperature range, by
a switchable spontaneous polarization [1]. At high temperatures, they are in a high-
symmetry paraelectric phase. As the temperature is lowered, they undergo one or several
transitions to ferroelectric phases characterized by a lower symmetry. These materials are
of great importance for numerous applications. Their multistability allows the realization
of nonvolatile ferroelectric memories [2, 3]. Furthermore, ferroelectric materials usually
combine very large dielectric, piezoelectric, pyroelectric, non-linear optic and electrooptic
responses. The piezoelectric effect is exploited in transducers and actuators [4, 5], designed
to convert an electrical signal into a mechanical one, or vice versa. Because of their large
electrooptic and non-linear optical coefficients, ferroelectric materials are also widely used
in telecommunications [6, 7], holography [8, 9] or for the frequency doubling of lasers.

Nowadays, many physical properties of solids and molecules can be calculated and
predicted very accurately from first-principles, taking as only inputs the atomic numbers
of the constituent atoms. One of the most powerful techniques available is the Kohn-Sham
density functional theory [10, 11]. Combined with linear response techniques this method
has already played an important role to elucidate the physics of ferroelectric oxides [12].
Its systematic application to a large number of compounds improved our understanding
of their structural, electronic, dielectric and piezoelectric properties. Unfortunately, there
has been no similar study of related quantities such as the electron localization tensor.
Moreover, most first-principles studies have been performed on perovskite ferroelectrics
such as barium titanate (BaTiO3) or lead titanate (PbTiO3) and only little attention has
been paied to compounds with a trigonal structure such as lithium niobate (LiNbO3).
These two points will be adressed in this work.

In the first chapter we investigate the linear dielectric and dynamical properties of
lithium niobate (LiNbO3). This material is known to have exellent electrooptic and non-
linear optical properties. It is widely used in various fields including telecommunications
and holography. In order to understand the origin of its exellent coupling coefficients,
it is essential to have a detailled understanding of the linear dielectric and dynamical
properties of this compound.

In the first chapter, we investigate the problems related to the assignation of the
phonon modes in the ferroelectric phase, the origin of the anomalous effective charges and
the mechanisme of the structural phase transition. In particular, we report fundamental
quantities that have never been computed before in this compound such as the Born
effective charges, the spontaneous polarization or the static and optical dielectric tensors.
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The second chapter is devoted to a topic related with the modern theory of polar-
ization [13, 14, 15]. In extended systems, the electric field perturbation requires a care-
ful treatment. Crystalline solids are usually described using periodic Born von Karman
boundary conditions. These boundary conditions are incompatible with the scalar poten-
tial E ·r that enters the Kohn-Sham Hamiltonian since the position operator r breaks the
periodicity of the crystal lattice. Nevertheless, thanks to the modern theory of polarization
it is possible to study the linear and non-linear response of a periodic solid to an electric
field. Moreover, we are able to adress more fundamental questions such as the problem
of electron localization. In the second chapter we study the electron localization tensor
in various oxides including the ferroelectric perovskites BaTiO3 and PbTiO3. Similar
studies on zincblende semiconductors [16] and IV-VI chalcogenides [17] have shown that
this concept can give useful informations about the electronic properties of a compound
when it is systematically applied to a family of solids with related structures.

We first set up a band-by-band decomposition of the localization tensor. In the first
chapter, such a decomposition has already revealed to be useful to relate the anomalous
Born effective charges in LiNbO3 to the particular electronic structure of this compound.
In case of the localization tensor, it gives an even deeper insight in the kind of hybridiza-
tions that take place in a solid. In particular, we investigate the variations of electron
localization during the ferroelectric phase transtion of BaTiO3. We show that the results
are consitent with the electronic structure as it is interpreted in the Harrison model.
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Chapter 1

First-principles study of lithium

niobate

Using a first-principles approach based on density functional theory, the electronic, di-
electric and dynamical properties of the two phases of lithium niobate are studied. In
particular, the spontaneous polarization, the optical dielectric tensors, the Born effective
charges and the zone-center phonons are computed. The Born effective charges are found
to be significantly larger than the nominal ionic charges of the ions, a feature similar to
what is observed in related ABO3 compounds and attributed to the hybridization between
the O 2p and Nb 4d states. The analysis of the zone-center phonons in the paraelectric
phase reveals an unstable A2u mode to be responsible for the phase transition. The origin
of the structural instability is attributed to destabilizing long-range dipolar interactions
which are not fully compensated by stabilizing short-range forces. Finally, the identifica-
tion of the E modes in the ferroelectric phase, that is still cause for debates in spite of the
numerous experimental and theoretical studies, is discussed and a new assignation based
on the analysis of the mode oscillator strengths and of the angular dispersion relation of
extraordinary phonons is proposed.
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1.1 Introduction

Lithium niobate (LiNbO3) belongs to the class of ferroelectric oxydes. Its good electro-
optic, photorefractive and non-linear optical properties make it nowadays a widely used
material in devices like modulators for fiber-optic communications systems [1, 6, 7] or
holographic applications [8, 9].

Many ABO3 coumpounds like BaTiO3 have a perovskite structure [1]. In contrast,
lithium niobate has two phases of trigonal symmetry with 10 atoms per unit cell: a high
symmetric paraelectric phase (space group R3c) stable above 1480 K, and a ferroelectric
ground state (space group R3c). Because of its high transition temperature Tc and due to
the fact that its melting point (about 1520 K) is quite close to Tc, only few experimental
data are available on the paraelectric phase. On the contrary, during the last decades, the
ferroelectric phase has been the subject of numerous experimental and theoretical studies.

A good review, that summarizes a wide range of experimental results is proposed
in Ref. [21]. From a theoretical point of view, a few first-principles studies have been
performed. Without being exhaustive, let us cite the papers of Inbar and Cohen [22, 23]
who identified the nature of the phase transition to be mainly of the order-disorder type.
More recently, Caciuc, Postnikov and Borstel [24, 25] have calculated zone-center phonons
in the ferroelectric phase, and Parlinski, Li and Kawawzoe [26] have obtained phonon
dispersion relations in the two phases.

The present work is intended to complete the set of existing data on lithium niobate.
In particular, we report the Born effective charges and the optical dielectric tensors in the
two phases. The knowledge of these quantities allows us to deduce the frequencies of the
longitudinal phonon modes at the Γ-point and to investigate the origin of the ferroelectric
instability. We also pay a particular attention to the assignation of the E phonon modes
in the ferroelectric phase. We draw several comparisons with the perovskites and we
show that, in spite of its different structure, LiNbO3 has a very similar behaviour. Beside
using the local density approximation (LDA), as it was the case in the previous works
cited above, we also compute some properties within a generalized gradient approximation
(GGA) for the exchange-correlation energy. This allows to compare the results and to
examine the impact of both kinds of approximations.

This chapter is organized as follows. Using a first-principles density functional ap-
proach, we first study ground-state properties (section 1.3) like the atomic and electronic
structures and the spontaneous polarisation appearing during the phase transition. We
then discuss dielectric properties (section 1.4) like the optical dielectric tensor and the
Born effective charges. We finally report the phonons at the Γ-point (section 1.5) in the
two phases and deduce the static dielectric tensor for the ferroelectric phase.

1.2 Method

Our calculations were performed in the framework of the density functional theory (DFT)
as it was developed by Hohenberg, Kohn and Sham [10, 11]. We used the abinit [27]
package, a planewave pseudopotential DFT code.
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For the exchange-correlation functional, we chose either the local density approxi-
mation (LDA) as parametrized by Perdew and Wang [33] or the generalized gradient
approximation (GGA) proposed by Perdew, Burke and Erzenhof [34]. The all-electron
potentials were replaced by norm-conserving pseudopotentials generated according to the
Troullier-Martins scheme [35] thanks to a package developed at the Fritz-Haber Institute,
Berlin [36]. Niobium 4s, 4p, 4d and 5s electrons, lithium 1s and 2s electrons as well
as oxygen 2s, 2p electrons were considered as valence states in the construction of the
pseudopotentials.

For the calculations within the LDA, the wave functions were expanded in plane
waves up to a kinetic-energy cutoff of 45 Ha and the Brillouin zone was sampled using a
6×6×6 Monkhorst-Pack [37] mesh of special k-points. These parameters were necessary
to obtain converged results in the linear-response calculations of phonon frequencies and
Born effective charges. A 35 Ha cutoff and a 4×4×4 grid of special k-points were already
enough to obtain converged values for the lattice constants and atomic positions and were
used in the GGA determination of these quantities.

1.3 Ground-state properties

1.3.1 Structural data

As a first step, we determined the structural parameters of lithium niobate in its two
phases by relaxing simultaneously the cell shape and the atomic positions. In the opti-
mized structures reported here, the forces on the atoms are less than 10−5 hartree/bohr
and the stresses on the unit cell are smaller than 10−7 hartree/bohr3. The two phases of
LiNbO3 are rhombohedral with 10 atoms in the unit cell. To describe their geometry, one
can either use the primitive (rhombohedral) or an hexagonal unit cell. In the discussion
of our results, the symbols a and c correspond to the lengths of the basis vectors of the
hexagonal unit cell. Atomic positions are given in hexagonal coordinates.

The paraelectric phase belongs to the space group R3c. The positions of the 10 atoms
in the rhombohedral unit cell are shown on Figure 1.1. The threefold axis is formed by
a chain of equidistant niobium and lithium atoms. Each niobium is located at the center
of an octaedron formed by 6 oxygen atoms. In Table 1.1, we define the parameters that
determine the atomic positions in the two phases by reporting the hexagonal coordinates
of five atoms of the rhombohedral unit cell. The coordinates of the other atoms can easily
be obtained by using the symmetry operations of the space groups R3c and R3c.

In the paraelectric phase, the positions of the niobium and lithium atoms are fixed
by symmetry while the positions of the oxygen atoms are determined by the internal
parameter x. The results of our structural optimizations are summarized in Table 1.2.
They are compared to the results obtained by Parlinski et al. [26] and Caciuc et al. [24] as
well as to the experimental data deduced from neutron diffraction on a powder [38]. The
GGA gives the closest agreement with the experiment whereas our LDA results present
errors similar to those of the previous DFT calculations (also performed within the LDA).
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Figure 1.1: Primitive unit cell of the paraelectric phase of LiNbO3.

The ferroelectric phase belongs to the space group R3c. During the structural op-
timizations, we held the niobium Nb1 atom fixed at the origin. The coordinates of the
lithium and oxygen atoms are reported in the lower part of Table 1.1. Our results for
the ferroelectric phase are summarized on Table 1.3. As for the paraelectric phase, our
values are close to those of Parlinski et al. [26]. Again, we tried to improve the accuracy
of the calculation using the GGA. However, this does not yield a significative improve-
ment: looking for example at the value of the parameter a, we observe that the GGA
tends to overcorrect the errors of the LDA, a fact already observed in this kind of calcu-
lations [39, 40].

Comparing Table 1.2 and 1.3, we see that our values for the lattice parameters are
in better agreement with the experiment for the ferroelectric than for the paraelectric
phase. A possible explanation is that we determined the ground-state of the compound
at 0 K and we thus neglected the effects of the thermal expansion. As the paraelectric
phase of lithium niobate is only stable above 1480 K, these effects are more important for
this phase than for the ferroelectric one and the calculated parameters tend to be smaller
than the measured ones.
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Phase Atom Position
Paraelectric Nb1 ( 0, 0, 0 )

Li1 ( 0, 0, 1
4

)
O1 ( −1

3
, −1

3
+ x, 7

12
)

O2 ( 1
3
− x, −x, 7

12
)

O3 ( x, 1
3
, 7

12
)

Ferroelectric Nb1 ( 0, 0, 0 )
Li1 ( 0, 0, 1

4
+ z )

O1 ( −1
3
− u, −1

3
+ v, 7

12
− w )

O2 ( 1
3
− v, −u − v, 7

12
− w )

O3 ( u+ v, 1
3

+ u, 7
12

− w )

Table 1.1: Atomic positions (in hexagonal coordinates) in the two phases of litihium
niobate.

a(Å) c(Å) x
Exp. [38] 5.289 13.848 0.060
Calc. (LDA) [24] 5.138 13.499 0.049
Calc. (LDA) [26] 5.097 13.708 0.036
Present (LDA) 5.125 13.548 0.042
Present (GGA) 5.255 13.791 0.048

Table 1.2: Lattice constants and atomic position parameter x (see Table 1.1) in the
paraelectric phase of lithium niobate.

1.3.2 Electronic properties

In Figure 1.2, we report the Kohn-Sham band structure of the paraelectric phase of lithium
niobate. The notations of the high symmetry points between which we have drawn the
band structure correspond to those chosen in Ref. [41]. We observe the presence of well
separated groups of bands. Each of these groups has a marked dominant character and
has been labeled by the name of the atomic orbital that mainly composes this energy
state in the solid.

As previously discussed by Inbar and Cohen [22, 23], the chemical bonding in lithium
niobate has a mixed covalent-ionic character. The Nb 4d and O 2p atomic orbitals strongly
interact to form the valence and conduction bands near the Fermi level while the Li atoms
completely loose their 2s electrons. In other words, the bonding between niobium and
oxygen atoms has a non-negligible covalent character while the bonding with the lithium
atoms is essentially ionic. This mixed feature is similar to what has been observed in most
perovskite ABO3 compounds like KNbO3 and BaTiO3 [42] but different from the case of
PbTiO3 [43, 44, 45], in which the lead atom has a covalent interaction with the oxygen.

In Figure 1.3, we compare the Kohn-Sham electronic band structure of the two phases
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a(Å) c(Å) z u v w
Exp. [38] 5.151 13.876 0.0329 0.00947 0.0383 0.0192
Calc. (LDA) [26] 5.086 13.723 0.0350 0.01497 0.0247 0.0186
Present (LDA) 5.067 13.721 0.0337 0.01250 0.0302 0.0183
Present (GGA) 5.200 13.873 0.0318 0.00973 0.0382 0.0199

Table 1.3: Lattice constants and atomic position parameters (see notations of Table 1.1)
in the ferroelectric phase of lithium niobate.
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Figure 1.2: Kohn-Sham electronic band structure in the paraelectric phase of LiNbO3

calculated within the LDA.

of LiNbO3 in the region close to the fermi level. The transition to the ferroelectric state is
accompanied by a strong increase of the indirect bandgap Eg from 2.60 to 3.48 eV and a
reduction of the spread of the O 2p bands from 5.06 to 4.71 eV. We note that, in spite of
the well known DFT bandgap problem [46], the value of the Eg in the ferroelectric phase
only slightly underestimates the experimental value of 3.78 eV [47]. For the deeper bands
not mentioned on the picture, we observed that the spread remains unaffected at the
transition while the position with respect to the top of the valence band is slightly shifted
to higher energies. We conclude that the only significant effect of the phase transition on
the electronic properties is to modify the hybridizations between O 2p and Nb 4d orbitals.
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Figure 1.3: Kohn-Sham electronic band structure near the Fermi level in the paraelectric
(solid line) and ferroelectric (dashed line) phases of LiNbO3 calculated whitin the LDA.
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1.3.3 Spontaneous Polarization

The modern theory of polarization, as it was developped by R. Resta [13], R. D. King-
Smith and D. Vanderbilt [14, 15], identifies the spontaneous polarization of a ferroelectric
material to a Zak-phase of the electronic wavefuntions. We used this approach to calculate
the spontaneous polarization of lithium niobate.

The formulas we used are described in Ref. [14] (in particular equation (16)). To
calculate the polarization, we sampled the Brillouin zone by a 4 × 4 × 20 mesh of k-
points. We calculated the polarization for the two phases of LiNbO3 and then took the
difference to get the spontaneous polarization. Our results, obtained in LDA and GGA,
are summarized in Table 1.4. We compare them to experimental values obtained by a
field reversal method [48] and a pyroelectric measurement [49]. For completeness, we also
mention a value reported by Hafid et al. [50] even if their calculation was conceptually
wrong in the sense that it was making use of static charges deduced from a population
analysis of the Xα electronic distribution of a NbO6 cluster, instead of the dynamical
Born effective charges (see Section 1.4.2).

Ps (C/m2)
exp. [48] 0.71
exp. [49] 0.70
calc. [50] 0.77
LDA 0.80
GGA 0.80

Table 1.4: Spontaneous polarization of lithium niobate.

Our values overestimate the experimental results by 0.1 C/m2. This agreement is not
perfect but comparable to what has been obtained in perovskite ferroelectrics [51]. Part of
the error could be assigned to the use of DFT and approximate functionals [52]. Another
origin for the error could be attributed to the fact that our calculated value is an upper
limit, related to an idealized perfect crystal. A real sample always presents defects that
tend to lower the measured polarization.

1.4 Dielectric properties

1.4.1 The optical dielectric tensor

We have calculated the optical dielectric permitivity tensors, ε∞αβ, in the two phases of
lithium niobate. This tensor is related to a second derivative of the electronic energy with
respect to an electric field and has been computed using a linear response technique [31].
All calculations were done using the LDA and no scissors correction has been included.
Our results are summarized in Table 1.5, where we also compare the values in the ferro-
electric phase to the experiment. The tensors are reported in cartesian coordinates with
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the z axis along the ferroelectric direction (vector c of the hexagonal unit cell, see section
1.3.1), the y axis in a gliding plane perpendicular to an a axis and x along a.

Phase reference ε∞xx ε∞yy ε∞zz

Paraelectric calc. present 6.1 6.1 6.9
Ferroelectric calc. present 5.6 5.6 5.5

exp. [[65]] 5.0 5.0 4.6

Table 1.5: Optical dielectric tensors (in cartesian coordinates) in the two phases of lithium
niobate.

The calculated values overestimate the experimental results [53]. This problem has
been previously discussed in the litterature [54, 55] and has been related to the lack of
polarization dependence of local and quasi-local exchange-correlation functionals (LDA,
GGA). In spite of this error on the absolute value, the evolutions of ε∞ are in general
qualitatively well described by LDA calculations.

We first notice that, as observed in related ABO3 perovskite compounds like BaTiO3 [56]
and KNbO3 [57], the amplitude of the dielectric tensor decreases at the transition from
the paraelectric to the ferroelectric phase. This can be correlated with the evolution of
the bandgap. Also, the lowering is strongest along the ferroelectric z direction so that
the nature of LiNbO3 changes at the transition from positively uniaxial (ε∞zz/ε

∞
xx > 1) to

negatively uniaxial (ε∞zz/ε
∞
xx < 1). Another interesting comparison with perovskite com-

pounds concerns the absolute value of ε∞. The amplitude of ε∞zz in LiNbO3 is close to
what is reported for the cubic and rhombohedral phases of KNbO3 [57] (6.63 and 5.49
respectively) while the elements ε∞xx and ε∞xx are slightly smaller (6.63 and 5.93 repectively
in KNbO3).

1.4.2 Born effective charges

The Born effective charges (Z∗) play a fundamental role in the dynamics of insulating
crystal lattices. They govern the amplitude of the long-range Coulomb interaction between
nuclei and the splitting between longitudinal (LO) and transverse (TO) optic phonon
modes. The Born effective charge tensor of an atom κ is defined as the coefficient of
proportionality, at the linear order and under the condition of zero macroscopic electric
field, between the macroscopic polarization per unit cell created in the direction β and a
cooperative displacement of atoms κ in the direction α

Z∗
κ,αβ = Ω0

∂Pβ

∂τκ,α

∣
∣
∣
∣
∣
E=0

(1.1)

where Ω0 is the unit cell volume. As previously discussed in the litterature (see for instance
Ref. [58]), Z∗ is a dynamical quantity, strongly influenced by dynamical changes of orbital
hybridization induced by the atomic displacements. As a consequence, its amplitude is
not direclty related to that of the static charges and can take anomalous values.
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We calculated the Born effective charge tensors in the two phases of LiNbO3 using both
the linear response formalism (LDA calculation) and the Berry phase approach (LDA +
GGA calculations). Table 1.6 summarizes the results obtained by linear response for Li1,
Nb1 and the three O1, O2, O3 oxygen atoms. At the last line, we mention the eigenvalues
of the symmetric part of Z∗

O that are identical for all the oxygens. The labels of the
atoms correspond to those defined in section 1.3.1. The tensors are reported in cartesian
coordinates using the same set of axis as for the dielectric tensor (section 1.4.1).

paraelectric phase ferroelectric phase
Li1 1.15 0 0 1.19 -0.25 0

0 1.15 0 0.25 1.19 0
0 0 1.11 0 0 1.02

Nb1 8.28 2.07 0 7.32 1.65 0
-2.07 8.28 0 -1.65 7.32 0

0 0 9.17 0 0 6.94

O1 -1.80 0 0 -1.62 0.31 -0.17
0 -4.48 2.46 0.23 -4.06 1.79
0 2.32 -3.43 -0.13 1.85 -2.66

O2 -3.81 -1.16 -2.13 -3.22 -1.15 -1.46
-1.16 -2.47 -1.23 -1.23 -2.46 -1.04
-2.01 -1.16 -3.43 -1.53 -1.04 -2.66

O3 -3.81 1.16 2.13 -3.68 0.96 1.63
1.16 -2.47 -1.23 0.88 -2.00 -0.75
2.01 -1.16 -3.43 1.67 -0.81 -2.66

O (eig.) -6.40 -1.51 -1.80 -5.33 -1.41 -1.60

Table 1.6: Born effective charges (in atomic units) of Nb1, Li1, O1, O2 and O3 in the two
phases of lithium niobate. The last line gives the eigenvalues of the symmetric part of Z∗

O

(identical for all the oxygens).

For comparison, we also determined Z∗
Nb using the so called “Berry phase approach”,

by approximating Eq. (1.1) by a finite difference expression :

Z∗
κ,αβ ≃ Ω0

∆Pβ

∆τκ,α
. (1.2)

in which the electronic contribution to the change of polarization is estimated using the
same approach as in Section 1.3.3. To calculate Z∗

Nb, we displaced the niobium atom
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by 0.02 Bohr along the three primitive vectors of reciprocal space and we calculated the
polarization difference between this configuration and the equilibrum configuration along
these three directions. As in section 1.3.3, we used a grid of 20 k-points in the direction
along with we calculated the polarization and 4 k-points in the two other directions. We
finally performed a transformation to get the cartesian components of these tensors. LDA
and GGA results are summarized on Table 1.7.

paraelectric phase ferroelectric phase
LDA 8.26 2.07 0 7.30 1.61 0

-2.07 8.26 0 -1.61 7.30 0
0 0 9.08 0 0 6.83

GGA 8.40 2.10 0 7.23 1.59 0
-2.10 8.40 0 -1.59 7.23 0

0 0 9.29 0 0 6.46

Table 1.7: Born effective charges of the niobium atom calculated using the Berry phase
approach in LDA and GGA.

As expected, within the LDA, the tensors obtained by linear response or using the
Berry phase approach are identical within the accuracy of the calculation (±0.02). How-
ever, we note that we had to use a plane-wave kinetic energy cutoff of 45 hartree to get
converged results by linear response whereas a smaller value of 35 hartree was sufficient
using the Berry phase approach. We also observe differences between LDA and GGA re-
sults, the largest one being for the Z∗

Nb,33 element. In order to get a better insight on the
influence of the exchange-correlation functional, we recomputed Z∗

Nb in the paraelectric
phase using the GGA wavefunctions but with the geometric parameters (atomic positions
and lattice constants) obtained in LDA:

Z∗
Nb =






8.30 2.08 0
−2.08 8.30 0

0 0 9.12




 . (1.3)

We observe that the tensor in now very close to the one obtained in LDA. The difference
between the results reported in Table 1.7 comes therefore principally from the fact that
LDA and GGA give slightly different geometrical parameters whereas the Berry phase
itself is quite insensitive to the approximation used for the exchange-correlation energy.

Analysing now the charges reported in Table 1.6, we observe that Z∗
Li is nearly isotropic

and that the diagonal elements have a value close to the nominal charge of the lithium
atom (+1). At the opposite, the amplitude of Z∗

Nb is highly anomalous in the sense that
it is significantly larger than the nominal charge expected in a purely ionic crystal (+5).
The niobium charge is slightly anisotropic with a significantly different value along the
trigonal axis. For the oxygen atoms, the anisotropy is much stronger. This feature appears
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clearly form the inspection of the tensor eigenvalues. The highest eigenvalue is strongly
anomalous (-6.4 for the paraelectric phase, to be compare to the nominal charge of -2)
and the inspection of the associated eigenvector reveals that it is the charge associated
to an oxygen displacement (nearly) along the Nb–O bond. In contrast, the two other
eigenvalues (associated to oxygen displacement in the plane perpendicular to the Nb–O
bond) are smaller than -2.

Most of our observations on LiNbO3 are comparable to what has been previously
reported for related perovskite compounds like KNbO3 [57, 51] or NaNbO3 [51]. For
instance, the Nb charge in the paraelectric phase for a displacement along the Nb–O bond
is respectively equal to 8.75, 9.11 and 9.23 in LiNbO3, NaNbO3 [51] and KNbO3 [51] while
the Li, Na and K charge are equal respectively to 1.11, 1.13 and 1.14.

The amplitude of the charge in LiNbO3 can be explained following the same line of
thought than Ghosez et al. for perovskite compounds in Ref. [58] . The Li atom is
close to a fully ionized configuration and only carries its nominal charge. At the opposite,
there is a partly covalent interaction between Nb and O which is responsible for their
anomalous effective charges and for the strong anisotropy of the oxygen tensor, as it
is made plausible within the bond orbital model of Harisson [59]. During an atomic
displacement, the parameters that determine the covalent interactions between the Nb
4d and O 2p atomic orbitals (the hopping integrals) vary. This variation produces a
dynamical charge transfer between the niobium and the oxygen atoms which is at the
origin of the anomalous part of Z∗

Nb and Z∗
O.

The essential role played by the O 2p bands can be emphasized from the analysis of
the contribution of the different isolated sets of bands (as identified in Figure 1.2) to the
global niobium charge. Individual contributions were obtained thanks to formula (16) of
Ref. [14] by considering only the Bloch functions associated to a particular set of bands as
elements of the overlap matrix. The results of the decomposition are summarized in Table
1.8. The first line (Zcore) brings together the nucleus and core electrons contributions.
The last line corresponds to the total charge. The second column refers to the isotropic
nominal value that would be expected in a purely ionic compound. All the deviations
with respect to this reference isotropic nominal value are referred to as anomalous.

Focusing first on the deep Nb 4s and Li 1s levels, we do not identify any significant
anomalous contribution, in agreement with the fact that these electrons do not participate
to the bonding. To the contrary, the anomalous O 2p contribution is very large and mainly
responsible for the total anomalous charge. This can be explained by dynamical changes
of the Nb 4d orbital contribution to the O 2p bands producing a dynamical transfer of
electrons from O to Nb when the Nb–O distance shortens. We note finally small and
compensating anomalous contributions at the level of the Nb 4p and O 2s bands : they
reveal the existence of hybridizations between these levels.

If we now compare the result in the paraelectric and in the ferroelectric phases in Table
1.6, we observe a global decrease of the charges in the ferroelectric state, specially along
the ferroelectric direction. This is similar to what has been reported for the perovskite
compounds. If we look at Table 1.8, we see that for Z∗

Nb this reduction originates in a
modification of the O 2p contribution only. It confirms the strong influence of the phase
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Bands Nominal paraelectric phase ferroelectric phase
Zcore 13.00 13.00 0 0 13.00 0 0

0 13.00 0 0 13.00 0
0 0 13.00 0 0 13.00

Nb 4s -2.00 -2.04 0.03 0.00 -2.06 0.02 0.00
-0.03 -2.04 0.00 -0.02 -2.06 0.00
0.00 0.00 -2.02 0.00 0.00 -2.04

Li 1s 0.00 0.01 -0.01 0.00 0.01 -0.00 0.00
0.01 0.01 0.00 0.00 0.01 0.00
0.00 0.00 0.00 0.00 0.00 0.00

Nb 4p -6.00 -6.42 -0.06 0.00 -6.49 -0.05 0.00
0.06 -6.42 0.00 0.05 -6.49 0.00
0.00 0.00 -6.37 0.00 0.00 -6.35

O 2s 0.00 0.57 0.09 0.00 0.60 0.10 0.00
-0.09 0.57 0.00 -0.10 0.60 0.00
0.00 0.00 0.58 0.00 0.00 0.50

O 2p 0.00 3.14 1.89 0.00 2.25 1.45 0.00
-1.89 3.14 0.00 -1.45 2.25 0.00
0.00 0.00 3.89 0.00 0.00 1.71

Total 5.00 8.26 2.07 0.00 7.30 1.62 0.00
-2.07 8.26 0.00 -1.62 7.30 0.00
0.00 0.00 9.08 0.00 0.00 6.83

Table 1.8: Band by band decomposition of the Born effective charge of the niobium atom
(LDA calculation).
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transition on the O 2p – Nb 4d hybridizations as discussed in Section 1.3.2. All the other
contributions remain unaffected confirming that only the O 2p bands are affected by the
phase transition.

In section 1.3.3, we had computed the spontaneous polarization of lithium niobate by
using the Berry phase formulation proposed by King-Smith and Vanderbilt. From the
tensors reported in Table 1.6, one can also access to a rough estimate of the spontaneous
polarization by using the following formula :

Ps,α =
1

Ω0

∑

κ,β

Z∗
κ,αβδτκ,β (1.4)

where δτκ,β represents the displacement of atom κ during the phase transition. The
calculation can be performed using the atomic positions reported in section 1.3.1 and
keeping the lattice constants of the paraelectric phase. We obtain a value of 0.83 C/m2

and 0.67 C/m2 by using respectively the effective charges of the paraelectric and of the
ferroelectric phase. At first, this illustrate that the reduction of Z∗ has a strong effect
on the magnitude of Ps. Moreover, comparing these values to the ones reported in Table
1.4, we see that the spontaneous polarization is not the mean of the two values estimated
from the effective charges : this points out that the evolution of the charges along the
ferroelectric path of atomic displacement is highly non-linear. A similar behaviour was
observed for barium titanate [58].

1.5 Phonons

1.5.1 Paraelectric phase

The paraelectric phase belongs to the space group R3c. At the Γ-point, the optical phonon
modes can be classified according to its irreductible representations into:

A1g ⊕ 2A1u ⊕ 3A2g ⊕ 3A2u ⊕ 4Eg ⊕ 5Eu.

The A2u and Eu modes are infrared active. At the Γ point, they are split into transverse
and longitudinal components AT

2u (resp. ET
u ) and AL

2u (resp. EL
u). This splitting can be

calculated from the Born effective charges and the optical dielectric tensor (see section
1.4.1) as it is described in Ref. [31].

The frequencies of the transverse and longitudinal modes are listed in Table 1.9. As no
experimental data are available, we only compare our results to the frequencies calculated
by Parlinski et al. [26]. Both calculations identify unstable A2u and A2g modes. Our
calculated frequencies are usually in reasonnable agreement with those of Parlinsky et
al. but there are exceptions, as for the Eg mode at 501 cm−1. That could eventually
be explained by strong anharmonicities of the potential energy to which our method is
less sensitive. Another major difference is that the lowest Eu mode is unstable in our
calculation whereas Parlinski et al. identify it as stable. The frequency of this mode
is low, so that it is probably very sensitive to numerical errors. Anticipating what is
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discussed at the end of this Section, we note that the instability of this mode is related
to its giant effective charge and is therefore plausible.

Silent modes Infrared active modes
Present Ref. [26] Present Ref. [26] Present

A1g 403 415 AT
2u 201i 227i AL

2u 90i
A1u 279 294 94 116 346

435 481 478 520 838
A2g 115i 151i

405 393 ET
u 53i 77 EL

u 174
889 912 177 152 274

Eg 175 162 393 411 419
425 433 460 539 508
501 617 532 614 844
589 644

Table 1.9: Phonon frequencies (in cm−1) of the transverse and longitudinal modes in the
paraelectric phase of lithium niobate.

At first, we note that it is the most unstable A2u mode which drives the paraelectric to
ferroelectric phase transition. The dynamical matrix eigenvector associated to this mode
is

Li1 ( 0, 0, 0.466 )
Nb1 ( 0, 0, 0.216 )
O1 ( 0, -0.050, -0.276 )
O2 ( 0.043, 0.025, -0.276 )
O3 ( -0.043, 0.025, -0.276 ).

It is worth noticing that it has an overlap of 0.99 with the vector representing the atomic
displacements during the phase transition (for which we have chosen the same normaliza-
tion as for the phonon eigenvectors).

On Figure 1.4 we have shown part of the phonon band structure in the paraelectric
phase of LiNbO3. We can identify three soft modes. The A2u and A2g modes are unstable
in the whole Brillouin zone while the Eu mode gets stable away from the Γ-point.

To have a better insight on the microscopic origin of the different instabilities, we can
use a model already applied by Ghosez et al. [56] to explain the phonon instability in
barium titanate and which is based on a seminal idea of Cochran [60]. The interatomic
forces in a crystal can be decomposed into short-range forces and a long-range Coulomb
(dipole-dipole) interaction. A structural instability can appear from the cancellation of
both contributions.

By following the notations of Ref. [56], we can write the full dynamical matrix A
as the sum of a contribution due to the short-range forces (ASR) and a contribution
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Figure 1.4: Phonon band structure in the paraelectric phase of LiNbO3.

due to the dipole-dipole interactions (ADD). The latter one can be evaluated by using
Ewald summation techniques, as it is described in Ref. [61] whereas ASR is obtained
by subtracting ADD from the full dynamical matrix A. Using this approach, we can
decompose ω2, as the sum of two contributions ω2

DD and ω2
SR:

〈η|A|η〉
︸ ︷︷ ︸

ω2

= 〈η|ASR|η〉
︸ ︷︷ ︸

ω2

SR

+ 〈η|ADD|η〉
︸ ︷︷ ︸

ω2

DD

(1.5)

where η is an eigenvector of the full dynamical matrix. Table 1.10 gives the results of this
decomposition for the three unstable modes of the paraelectric phase.

The A2u mode that drives the phase transition is strongly destabilized by the dipole-
dipole interactions that are not fully compensated by the short-range forces which tend to
stabilize the paraelectric structure. The large amplitude of the dipolar interaction must
be related to the high mode effective charge equal to 6.71 1. Similarly, the Eu mode at 53i
cm−1 is strongly destabilized by the dipole-dipole interactions as we could expect from its
even larger mode effective charge equal to 9.78. It is interesting to note that the square of

1For the mode effective charge Z∗

m, we use the same conventions as the authors of Ref. [31]:

Z∗

m,β =

(
∑

κ,α

Z∗

κ,αβη
(m)
q=0(κ, α)

)

/





√
∑

κ,α

[η
(m)
q=0(κ, α)]2



 .
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its frequency is the sum of two very large terms that do nearly cancel so that the resultant
frequency is quite small.

A2u (201i) A2g (115i) Eu (53i)
ω2

DD -88803 109023 -298387
ω2

SR 48260 -122248 295571
ω2 -40543 -13225 -2816

Table 1.10: DD and SR contributions to the TO mode frequency squared (cm−2) for the
soft modes in the paraelectric phase.

1.5.2 Ferroelectric phase

At the Γ-point, the optical phonons can be classified according to the irreductible repre-
sentations of the space group R3c into :

4A1 ⊕ 5A2 ⊕ 9E.

The A1 and E modes are Raman and infrared active so that they are split into transverse
and longitudinal components.

A-modes

Tables 1.11 and 1.12 summarize the frequencies of the transverse and longitudinal A1

modes that we have computed. Our results are compared to the frequencies calculated
by Parlinski et al. [26] and Caciuc et al. [25] and to the experimental frequencies obtained
by Raman and infrared spectroscopy. We note that the longitudinal frequencies reported
by Parlinski et al. were obtained using an empirical guess of the Born effective charges
and the optical dielectric tensor. The longitudinal modes have their wavevector along the
z axis while the wavevectors of the transverse modes are perpendicular to it.

calc. frequencies exp. frequencies
present Ref. [25] Ref. [26] Ref. [62] Ref. [64] Ref. [65]

243 208 239 252 251 252
288 279 320 275 273 276
355 344 381 332 331 333
617 583 607 632 631 634

Table 1.11: Phonon frequencies (in cm−1) of the four transverse A1 modes in the ferro-
electric phase.
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calc. frequencies exp. frequencies
present Ref. [26] Ref. [65] Ref. [69] Ref. [70]

287 309 273 275 273
348 381 306 333 332
413 548 423 436 436
855 831 869 876 873

Table 1.12: Phonon frequencies (in cm−1) of the four longitudinal A1 modes in the ferro-
electric phase.

calc. frequencies exp. frequency
present Ref. [25] Ref. [26] Ref. [66]

218 153 220 224
297 287 321 314
412 417 432
454 439 462 455
892 883 893

Table 1.13: Phonon frequencies (in cm−1) of the A2 modes in the ferroelectric phase.

The calculated and measured frequencies of the A2 modes are summarized in Table
1.13. Experimental data comes from inelastic neutron scattering [66]. Our results are
quite close to the experimental data. They present in general a similar error as those
obtained in previous calculations.

The A1 mode at 234 cm−1 has the strongest overlap (0.82) with the A2u mode that
drives the phase transition in the paraelectric phase. By analysing the interatomic forces
for this mode, we found ω2

DD = −67649 cm−2 and ω2
SR = 126618 cm−2 respectively. This

helps us to clarify the stabilization of the soft mode after the phase transition. Although
the Born effective charges decrease at the transition, the dipole-dipole interactions remain
quite strong in the ferroelectric phase (strong enough to destabilize the mode in the
paraelectric phase) and it is the increase of the short-range forces that stabilizes this
mode. This behaviour contrasts with what was observed in barium titanate [56] where it
is a decrease of the dipole-dipole interactions that stabilizes the ferroelectric mode in the
rhombohedral phase.

E-modes

The analysis of the 9 E modes is more difficult. In the litterature, many different frequen-
cies have been reported which where differently assigned. This comes from the fact that
the properties of lithium niobate crystals strongly depend on the internal and external
defects [21]. In particular, Raman spectroscopy is very sensitive to small modifications in
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the structure and to the stoechiometry of the samples [63, 67].
For the transverse optic phonons, most authors seem to agree on seven modes around

152, 237, 265, 322, 368, 431 and 580 cm−1. For the two missing modes, Ridah et al. [63]
and Repelin et al. [67], suggest frequencies at 180 and 610 cm−1, Kaminow et al. [68]
report modes at 92 and 630 cm−1 and Claus et al. [69] mention phonons at 668 and 743
cm−1. Barker et al. [65] are tempted to identify the modes at 180 and 610 cm−1 to mixed
phonons that have their wavevector at 450 from the z axis and the mode at 670 cm−1 to a
combination band. Yang et al. [70] report modes at 152 and 530 cm−1 and suggest that
the frequencies at 741 and 667 cm−1 are due to combination bands.

For the transverse E modes, all the experimental values mentioned above as well as
the theoretical results of Caciuc et al. [25] and Parlinski et al. [26] are summarized in
Table 1.14 while the frequencies of the longitudinal E modes are given in Table 1.15.

Calc. frequencies Exp. frequencies
Present Ref. [25] Ref. [26] Ref. [63] Ref. [67] Ref. [68] Ref. [69] Ref. [65] Ref. [70]

92
155 151 157 153 155 152 155 152 152 152

167 177 180
218 236 214 238 238 238 238 236 238 236
264 269 264 265 262 265 265 264 263
330 307 349 322 325 322 325 322 321 322

334
372 352 419 369 368 363 367
384 423 371 371 370
428 432 446 432 431 436 431 431 434 431

530
585 526 605 580 582 582 582 586 579 578

617 610 610
630

677 690 668 670
743

Table 1.14: Phonon frequencies (in cm−1) of transverse E modes in the ferroelectric phase.

One can see that there are some discrepancies between the frequencies reported by
the various authors. Even the previous first-principles calculations do not clarify all
ambiguities. Parlinski et al., whose results are relatively similar to ours, assign the seven
modes reported by most authors as well as phonons at 423 and 690 cm−1, while Caciuc et
al. suggest the existence of phonons at 167 and 617 cm−1 as it was proposed by Ridah et
al. and Repelin et al.. In order to clarify the identification of the E modes, we will analyze
two quantities related to the phonon modes that have been measured experimentally in
the past: the directional dispersion branches of the extraordinary phonons (Figure 1.5)
and the mode oscillator strengths (Table 1.16).

Figure 1.5 shows the dependence of the phonon frequencies on the angle θ between
the c axis and the phonon wavevector q in the limit of long wavelengths (q → 0). This
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calc. frequencies exp. frequencies
présent Ref. [26] Ref. [65] Ref. [69] Ref. [70] Ref. [63]

152 186
197 204 198 198 194 195
224 216 238 243 240 240
298 316 296 295 295 299
349 372 342 345
384 422 371 370
423 445 418 428 425 424
452 570 450 454 460 456

530
625

675 677 660 668
739

863 856 878 880 878 878

Table 1.15: Phonon frequencies (in cm−1) of longitudinal E modes in the ferroelectric
phase.

calculated directional dispersion relation agrees with the experimental measurements of
Ref. [69, 70] for the branches (1)-(5) and (8)-(13). One main difference is the absence of
branch (7) for both autors and the fact that they report a different behaviour for branch
(6): according to their results, the A1L mode transforms into an A1T mode and not into
an EL mode as we have observed. Further differences concern branches at 743 [69] cm−1

and 152, 530 [70] cm−1 that are not reproduced by our calculation and that have not been
found in the other experimental studies. We can thus assume that they are not related
to first-order phonons.

On the basis of Figure 1.5 we will now discuss the assignation of selected phonon
modes in Tables 1.14 and 1.15. Ridah et al. and Repelin et al. report an ET mode at 180
cm−1 that has also been found by Caciuc et al. but not by Parlinski et al. neither in our
study. As mentioned before, Barker et al. associate this frequency to a mixed phonon
with the wavevector at 450 of the z axis. By looking at the spectra reported in the papers
of Ridah et al. and Repelin et al. (Figure 3 of Ref. [63] and Figure 2 (b) of Ref. [67]), we
see that this mode has indeed his wavevector in this direction (Ridah et al., for example,
measure it only in an X(ZY)Z orientation that allows them to detect transverse E modes
whose wavevector form an angle of 450 with the z-axis). One can see from Figure 1.5 that
the ET mode at 155 cm−1 (branch (1)) transforms smoothly into the EL mode at 197
cm−1 when θ varies from 0 to 90 degrees. At 450, the frequency of this mode is 174 cm−1

and it has a strong transverse component (q is along the direction (0,1,1)) as one can see
it from its mode effective charge

(

0 −2.92 2.35
)

.
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Figure 1.5: Directional dispersion branches of extraordinary phonons in the ferroelectric
phase of LiNbO3. θ is the angle between the c axis and the phonon wavevector q.

Therefore, we believe that Ridah et al. and Repelin et al. have measured this particular
mode and we propose that the second pure transverse E mode has in fact a frequency
of 234 cm−1, in agreement with the results of Parlinski et al.. We should note, that we
observe a similar behaviour for branch (11): the ET mode at 585 cm−1 gives rise to a
mode of 601 cm−1 for θ = 450. As Barker et al., we are therefore tempted to assign the
reported frequencies around 610 cm−1 to such a kind of mixed phonon and not to a pure
transverse mode. 2

One can see also from Table 1.14 that Caciuc et al. do not associate the measured
mode at 264 cm−1 to any of their calculated phonons in spite of the fact that it has
been observed in all the experiments cited above. They suppose that the measured line
is due to a braking of the Raman selection rules caused by anharmonic effects and that
it corresponds to the lowest A1T mode. Their main argument is that Claus et al. have
observed that this ET mode transforms into the mentioned A1T mode as θ varies from 00

to 900. But as can be seen from Figure 1.5, branch (3) reproduces this behaviour. As
Parlinski et al. also find an ET mode whose frequency is close to the measured one at 264

2For the sake of completeness, we should mention that this mode has not only been observed in an
X()Z configuration as it is the case for the mode at 180 cm−1, but also in an X()Y configuration that
allows to measure phonons whos wavevector is in the plane perpendicular to the c axis. This argument
holds thus less than for the mode at 180 cm−1.
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cm−1, we conclude that it corresponds to a real first-order ET phonon.
The last point we would like to discuss related to Figure 1.5 concerns the ET modes

at 372 and 384 cm−1. In Table 1.14, they were associated to measured frequencies at 369
and 371 cm−1 that we believe to be related to two different phonons in spite of the fact
that all other authors associate them to the same. The ET and EL modes at 384 cm−1

in Tables 1.14 and 1.15 correspond to branch (8) in Figure 1.5. This branch has been
measured by Claus et al. and Yang et al. while line (7) is absent for both authors. Now, it
is interesting to note that Ridah et al. and Barker et al. report a couple of ET -EL modes
at 369 and 342 cm−1 that has not been reported by the two other autors but that can
be found on Figure 1.5. Because of this fact, we suppose that the measured frequencies
of 369 and 371 cm−1 correspond to two different first-order ET modes that cannot been
distinguished on the spectra due to the small difference in their frequencies.

A further certification of our assignement can be obtained from the inspection of Table
1.16 where we compare the mode oscillator strengths to the experimental values measured
by Barker et al.. The mode oscillator strength Sm,αβ for mode m was calculated from the

A1 modes E modes
freq Sm,calc Sm,exp [65] freq Sm, calc Sm,exp [65]
243 13.29 11.66 155 5.89 6.02
288 0.20 0.89 218 0.55 0.53
355 0.45 0.18 264 4.38 4.58
617 14.57 11.92 330 2.71 2.70

372 3.59 3.59
384 0.15
428 0.31 0.40
585 14.33 13.43
677 0.37 1.06

Table 1.16: Mode-oscillator strengths (in 10−4 atomic units) of the active modes in the
ferroelectric phase of lithium niobate. For each mode, we also recall the calculated fre-
quency.

Born effective charges and the phonon eigenvectors according to the relation:

Sm,αβ =

(
∑

κ,γ

Z∗
κ,γαη

(m)(κ, γ)

)(
∑

κ,γ

Z∗
κ,γβη

(m)(κ, γ)

)

. (1.6)

For the A1 modes, the agreement is reasonable. For most E modes, the agreement with
experiment is much better except for the last mode. The Table shows in particular that the
assumption concerning the E modes at 369 (372) and 371 (384) cm−1 is reasonable: Barker
et al. report a mode oscillator strength of 3.59 for the mode at 369 cm−1, in agreement
with what we found for the mode at 372 cm−1. The fact that they did not observe the
mode at 371 cm−1 in their infrared measurements can also easily be understood because
of its small mode oscillator strength.
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On the contrary, Yang et al. as well as Claus et al. measured the mode at 371 cm−1

and they report that its frequency does not vary with θ. But if the frequencies of 369 and
371 cm−1 were related to the same phonon, the mode oscillator strength of 3.59 would
give rise to a measurable angular dependence. This is another indication that the two
frequencies measured on one side by Barker et al. and on the other side by Yang et al.
cannot correspond to the same phonon.

Static dielectric tensor

In section 1.4.1, we have reported the optical dielectric tensor ε∞αβ. This quantity describes
the response of the electron gas to a homogenous electric field if the ions are taken as fixed
at their equilibrum positions. To include the response of the cristal lattice to the electric
field, one can use a model that assimilates the solid to a system of undamped harmonic
oscillators [31]

ε0
αβ = εαβ(∞) +

4π

Ω0

∑

m

Sm,αβ

ω2
m

. (1.7)

The calculated and measured elements of ε0
αβ are summarized in Table 1.17. The

agreement is very good for the elements ε0
xx and ε0

yy while ε0
zz overestimates the experi-

mental value. This result was predictable because we saw in the preceding section that

reference ε0
xx ε0

yy ε0
zz

calc. present 42.4 42.4 29.3
exp. [65] 41.5 41.5 26.0
exp. [70] 43.6 43.6 24.3

Table 1.17: Static dielectric tensor in the ferroelectric phase of lithium niobate.

the calculated mode oscillator strenghts agree better for the E modes than for the A1

modes.
Looking back at Table 1.16, we observe that the two A1 modes at 243 and 617 cm−1

have a large oscillator strength. However, due to their different frequency they do not
contribute equally to ε0

zz: the main contribution (84 %) comes from the A1 mode at 243
cm−1 while only 14 % are originating in the mode at 617 cm−1. For ε0

xx and ε0
yy we do not

observe such a clear domination of one mode. The most important contributions come
from the modes at 155 cm−1 (59 %), 264 cm−1 (15 %) and 585 cm−1 (10 %).

1.6 Conclusions

Using a plane wave pseudopotential approach to density functional theory, we studied
structural, electronic, dielectric and dynamical properties of the two phases of lithium
niobate. In particular, the amplitude of the optical dielectric tensor and of the Born
effective charges have been obtained.
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Some of our results were computed within a LDA and a GGA for the exchange-
correlation energy. We found that the use of a GGA has only a small influence on
quantities like the Born effective charges or the spontaneous polarization while it has a
stronger impact on the optimized lattice parameters and atomic positions.

The analysis of the Born effective charges revealed several features that have already
been observed in similar studies performed on perovskite oxydes: Z∗

Nb as well as Z∗
O are

larger than their nominal ionic charge while Z∗
Li is rather close to it. The first two tensors

decrease during the transition from the paraelectric to the ferroelectric phase while the
latter one remains quite constant. All these results could be explained from the mixed
ionic/covalent character of the chemical bonds in lithium niobate, especially from the
partial hybridization between Nb 4d and O 2p states.

By examining the zone center phonons in the paraelectric phase, we have shown that a
soft A2u mode is responsible for the ferroelectric transition and from a model calculation
we identified the destabilizing long-range dipolar forces to be at the origin of this phonon
instability. During the discussion of the phonons in the ferroelectric phase, we paid
much attention to the identification of the E modes. We tried to clarify the remaining
ambiguities and we proposed a new assignation justified by the analysis of the mode
oscillator strengths and of the angular dispersion relation of the extraordinary phonons.
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Chapter 2

Electron localization: Band-by-band

decomposition and application to

oxides

Using a plane wave pseudopotential approach to density functional theory we investigate
the electron localization length in various oxides. For this purpose, we first set up a theory
of the band-by-band decomposition of this quantity, more complex than the decomposition
of the spontaneous polarization (a related concept), because of the interband coupling. We
show its interpretation in terms of Wannier functions and clarify the effect of the pseu-
dopotential approximation. We treat the case of different oxides: BaO, α-PbO, BaTiO3

and PbTiO3. We also investigate the variation of the localization tensor during the fer-
roelectric phase transitions of BaTiO3 as well as its relationship with the Born effective
charges.
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2.1 Introduction

In the study of periodic crystalline solids, the electronic ground-state wave function is
usually described in terms of Bloch functions, delocalized on the whole system. As a
consequence, for a long time, the understanding of electron localization in crystalline solids
was mainly based on approximate pictures. Nevertheless, the basics of a quantitative
characterization of electron localization had already been formulated by W. Kohn [71] in
1964. Recently this problematic was renewed, thanks to the development of the theory
of polarization based on Berry phases [14, 15, 13, 72], and the rigorous definition of the
position operator in periodic systems [73, 74, 75, 76]. These ideas have been further
developped using a cumulant generating function approach [77].

Following these advances, Sgiarovello and co-workers [16], have computed the local-
ization lengths for different cubic semiconductors, in the framework of the Kohn-Sham
density functional theory [10, 11] (DFT). They showed that the degree of electron local-
ization is quite different for the various investigated materials. These results encourage
to pursue the study to other insulating crystals.

The localization tensor 〈rαrβ〉c, can be computed from the periodic part of the Bloch
functions unk(r) and their first derivatives with respect to their wavevector :

〈rαrβ〉c =
Vc

N(2π)3

∫

BZ
dk

N∑
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{〈
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nk
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u
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∣

∂u
nk

∂kβ

〉}

(2.1)

where Vc is the volume of the primitive unit cell, N the number of doubly occupied
bands and α, β are two cartesian directions. The localization tensor is a global quantity
that characterizes the occupied Kohn-Sham manifold as a whole (all k-points and all
bands). This statement calls for two comments. First, applications of DFT to solids
often make use of the frozen-core and pseudopotential approximations, while Eq.(2.1)
requires an all-electron calculation. Second, the behavior of core and valence electrons is
treated globally while both kinds of electrons are expected to exhibit strongly different
localization properties interesting to identify independently.

The localization tensor has been shown [16] to give a lower bound for the spread of
maximally localized Wannier functions (WF) as defined by Marzari and Vanderbilt [78, 79]
(hereafter cited as MV). In order to get some insight into the physics of the chemical bonds
in molecules and solids, such WF are usually constructed considering only a restricted
number of electronic bands close to the Fermi level. The spread of the resulting WF is
strongly dependent of the electronic states included in the minimization process. In this
context, it seems interesting to try to identify the intrinsic localization of the electrons in a
specific set of bands and to understand how this quantity is affected when including other
bands. This would allow to solve the problem associated to the use of pseudopotentials
and to characterize separately the behavior of core and valence electrons.

This chapter is organized as follows. In Sec. 2.2, we propose a decomposition of the
localization tensor into contributions originating from isolated sets of bands composing the
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energy spectrum of a solid. Using a simple model, we then illustrate the role of the covalent
interactions on the different terms of the decomposition. We also make a connection
between the localization tensor and the Born effective charges and we discuss the relation
between pseudopotential and all-electron calculations. In Sec. 2.3, we give the technical
details underlying our first-principles calculations and we point out the differences between
our method and that applied in Ref. [16]. In Sec. 2.4 and 2.5, we present the results
obtained on two ferroelectric perovskites (BaTiO3 and PbTiO3) as well as on two binary
oxides (BaO and α-PbO). We investigate the variation of electron localization during the
phase transitions of BaTiO3 and show that the evolution is compatible with the electronic
structure of this compound.

2.2 Band by band decomposition of the localization

tensor

2.2.1 Formalism

Contrary to the polarization and the Born effective charges, for which band-by-band
decompositions have been previously reported [81, 80, 58, 82], the localization tensor (Eq.
(2.1)) involves scalar products between Bloch functions of different bands, making the
identification of the contribution of isolated sets of bands less straightforward. In order
to explain this fact, we have to remember that the localization tensor is related to the
second moment of WF while the Born effective charges and the spontaneous polarization
are linked to their first moment. From standard statistics, it is well known that these two
quantities do not add the same way : when considering two random variables x1 and x2,
the mean value of the sum x1 +x2 is simply the sum of the mean values while the variance
of the sum is the sum of the variances plus an additional term, the covariance.

These considerations can be transposed in the simple context of a confined model
system made of two orthonormalized states ψ1(x) and ψ2(x). The total many-body wave-
function Ψ(x1, x2) is a Slater determinant constructed on the one-particle orbitals. The
center of mass is given by the expectation value of the position operator X̂ =

∑

i=1,2 x̂i

X = 〈Ψ|X̂|Ψ〉 =
∑

i=1,2

〈ψi|x̂|ψi〉 (2.2)

while the total spread (two times the localization tensor) is related to X̂2,

σ2 = 〈Ψ|X̂2|Ψ〉 − 〈Ψ|X̂|Ψ〉2

=
∑

i=1,2

[〈ψi|x̂
2|ψi〉 − 〈ψi|x̂|ψi〉

2] − 2〈ψ1|x̂|ψ2〉〈ψ2|x̂|ψ1〉. (2.3)

We see that the first moments of the one-particle orbitals add to form the total dipole
of the many-body wavefunction. On the contrary, the total spread is not equal to the
sum of the individual spreads of ψ1 and ψ2 but involves also matrix elements of the one-
particle position operator x̂ between ψ1 and ψ2. The additional term would be absent if

31



the many-body wavefunction was a simple product of the one-particle orbitals. It arises
from the anti-symmetry requirement. In analogy with the language of statistics, we will
name it the covariance.

Based on these arguments, we can now define a band-by-band decomposition of Eq.
(2.1). Suppose that the band structure is formed of Ng groups labelled Gi, each of them
composed of ni bands (i = 1, ..., Ng). The variance of a particular group Gi is defined as

〈rαrβ〉c(Gi) =
Vc

ni(2π)3
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(2.4)

where the sums have to be taken over the bands of group Gi. The covariance of two
groups Gi and Gj (i 6= j) is given by the following relationship:

〈rαrβ〉c(Gi, Gj) =
−Vc

ninj(2π)3
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. (2.5)

Using these definitions, the total tensor, associated to the whole set of occupied bands,
can be written as

〈rαrβ〉c =
1

N

Ng
∑

i=1

ni






〈rαrβ〉c(Gi) +

Ng
∑

j 6=i

nj〈rαrβ〉c(Gi, Gj)






. (2.6)

The variance 〈rαrβ〉c(Gi) is intrinsic to an isolated set of bands. It is related [77, 16]
to the quantity ΩI introduced by MV through the relation

ΩI = ni

3∑

α=1

〈rαrα〉c(Gi). (2.7)

In a one-dimensional crystal, ΩI is simply the lower bound of the total spread Ω of the
WF 1,

Ω =
∑

n∈Gi

[〈r2〉n − 〈r〉2n], (2.8)

that can be realized by choosing an adequate phase factor for the Bloch functions. In a
three-dimensional crystal, it is no more possible to construct WF that are simultaneously
maximally localized in all cartesian directions. It is only possible to minimize their spread
in one given direction as realized for the so-called hermaphrodite orbitals introduced in
Ref. [16] : these particular functions are localized (Wannier-like) in a given direction α
and delocalized (Bloch-like) in the two others. The variance of a particular group of bands
〈rαrα〉c(Gi) is the lower bound of the average spread 1

ni

∑

n∈Gi
[〈r2

α〉n − 〈rα〉
2
n] where the

sum is taken over all Wannier-like functions in the unit cell belonging to group Gi. This

1〈...〉n represents the expectation value over the nth occupied Wannier function in the unit cell

32



lower bound is reached for WF that are maximally localized in direction α. The variance
therefore gives some insight on the localization of the electrons within a specific set of
bands taken independently. This localization is affected by the hybridizations between
atomic orbitals giving rise to the formation of the considered electronic bands within the
solid so that the variance can act as a probe to characterize these hybridizations.

The covariance is no more related to an isolated set of bands. It teaches us how the
construction of WF including other bands can improve the localization. As discussed by
MV, the definition of groups of bands in a solid is not unique and sometimes there is a
doubt about which bands have to be considered together. If we consider two sets of bands
Gi and Gj as one single group, its total variance is the sum of the individual variances
and covariances, that have to be rescaled by the number of bands in each group

〈rαrβ〉c =
1

ni + nj
{ni [〈rαrβ〉c(Gi) + nj〈rαrβ〉c(Gi, Gj)] + nj [〈rαrβ〉c(Gj) + ni〈rαrβ〉c(Gj, Gi)]} .

(2.9)
Until now, we considered separately the two cartesian directions α and β. Stronger

results can be obtained when diagonal elements of the localisation tensor are considered, or
when this localication tensor is diagonalized, and the eigenvalues are considered. Different
inequalities can be derived. In particular, from Eq. (2.5), it appears that the covariances
for α = β are always negative. This means that the diagonal elements of the full tensor
are always smaller than those obtained by the sum of the diagonal variances. In other
words, it is always possible to obtain more strongly localized orbitals by constructing WF
considering more than one group of bands. As a consequence the covariance appears as a
tool to identify which bands have to be considered together in the construction of WF in
order to improve their localization.

In appendix A we give an interpretation of the variance and covariance in terms of the
optical conductivity. It illustrates from a different viewpoint the influence of the fermionic
nature of the electrons on the localization tensor : the appearance of the covariance in
Eq. (2.6) is a direct consequence of the Pauli principle.

2.2.2 Simple model

In this section we will investigate a one-dimensional model system. This will help us to
understand the role of the covalent interactions on the electron localization length and
related quantities like the Born effective charges. We will deal with a confined system
for which the localization tensor can be computed from matrix elements of the position
operator and its square as described in Ref. [16].

Let us consider a diatomic molecule XY. In order to describe the chemical bonds of
this model system we adopt a tight-binding scheme [59] defined by the hopping integral t
and the on-site terms ∆ and −∆. We will call a the interatomic distance and ψX , ψY the
s-like atomic orbitals that are used as basis functions. The hamiltonian can be rescaled
by ∆ (A=t/∆) in order to become a one parameter hamiltonian defined by

H =

(

−1 A
A 1

)

. (2.10)
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We further assume that ψX is centered at the origin, ψY in a and that these two functions
do not overlap at any x

ψX(x)ψY (x− a) = 0. (2.11)

The eigenfunctions of the hamiltonian correspond to

φ1,2(x) = u1,2ψX(x) + v1,2ψY (x− a) (2.12)

where the coefficients u1,2 and v1,2 can be expressed in terms of the bond polarity [59] αp

(αp = 1√
1+A2

):

u1 =
√

1+αp

2
, v1 =

√
1−αp

2

u2 =
√

1−αp

2
, v2 = −

√
1+αp

2
.

(2.13)

In order to see the meaning of the different terms appearing in the band by band
decomposition of the localization tensor and the Born effective charges let us first consider
the molecular orbitals independently.

The variance of state φ1 can be computed from the coefficients u1 and v1. It writes

〈x2〉c(1) = σ2
X

1 + αp

2
+ σ2

Y

1 − αp

2
+

a2A2

4(1 + A2)
(2.14)

where σ2
X and σ2

Y are the second central moments of ψX and ψY . The variance of φ2

is given by a similar expression. This quantity is composed of three positive terms that
summarize the mechanisms that are able to delocalize the electrons with respect to the
atomic orbitals. On one hand, the electronic cloud on a particular atom is not a delta-
Dirac function but presents a degree of delocalization related to σ2

X and σ2
Y (first and

second term). When the state φ1 is made entirely of ψX , that is, when αp equals one, the
localization length is correctly equal to σ2

X (first term). Incorporating more ψY changes
the localization length in proportion of αp (the balance between first and second terms).
On the other hand, the electrons can occupy two sites X and Y that are separated by a
distance a (third term). This term scales as a2. Even a small covalent interaction is thus
able to induce an important delocalization if it acts on a sufficiently large distance.

The Born effective charge of atom X is defined as the derivative of the dipole moment
p with respect to a. This dipole moment is the sum of the nuclear and static electronic
charges multiplied by the interatomic distance. The contribution coming from the elec-
trons occupying state φ1 is equal to

p1 = −2eu2
1a = −e(1 + αp)a (2.15)

where e is the module of the electronic charge. The derivative of Eq. (2.15) with respect
to a gives the contribution of these electrons to the total effective charge

Z∗
X,1 =

∂p1

∂a
= −e(1 + αp) + ea

A

(1 + A2)3/2

∂A

∂a
. (2.16)

The first term is the (static) effective atomic charge [59] of atom X while the second term
represents an additional dynamical contribution due to a transfer on electrons between X
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and Y during a relative atomic displacement. The contribution of the electrons occupying
state φ2 is given by a similar expression

Z∗
X,2 =

∂p2

∂a
= −e(1 − αp) − ea

A

(1 + A2)3/2

∂A

∂a
. (2.17)

This simple model illustrates how both the variance of the localization tensor and the
Born effective charges depend on the covalent interactions defined by the parameter A.
The variance is a static quantity depending on the amplitude of the covalent interations
only while the the Born effective charges are dynamical quantities that also depend on
the variations of these interactions during a relative atomic displacement.

If we now consider the states φ1 and φ2 as a single group we have to add their variances
and covariances to get the whole localization tensor. The covariance reduces to

〈x2〉c(1, 2) =
−a2A2

4(1 + A2)
. (2.18)

By adding this covariance to the variance in Eq. (2.14), we remove in some sense the
delocalization induced by the covalent interactions. The total localization tensor becomes
independent of the hopping A and the interatomic distance a. It reduces to the mean
spread of the atomic orbitals ψX and ψY :

〈x2〉c =
σ2

X + σ2
Y

2
. (2.19)

Eq. (2.19) defines the mean spread of the WF constructed as linear combinations of φ1

and φ2 that minimize the spread functional Ω (see Eq. (2.8)). As shown by MV, these WF
diagonalize the position operator x̂ projected on the subspace of occupied states. They
are thus equal to the atomic orbitals since the hypothesis of zero overlap (Eq. (2.11))
implies 〈ψX |x̂|ψY 〉 = 0.

The total Born effective charge of atom X can be obtained by adding the nuclear
charge Z∗

core = 2e to the terms (2.16) and (2.17). It is easy to check that for this model
Z∗

X is equal to zero. This result can be interpreted in two ways. The point of view usually
adopted is to say that the two molecular orbitals are of the opposite polarity so that the
total dipole of the molecule vanishes. Based on the results of the preceeding paragraph,
we can also affirm that each maximally localized WF is confined on a single atom so that
no interatomic charge transfer can take place.

This result suggests that the variance gives more informations about the localization of
electrons of particular chemical bonds than the total localization tensor. It also illustrates
the observation of Ghosez et al. [58, 81] that anomalous effective charges mainly come from
hybridizations between occupied and unoccupied states. In fact, the different chemical
bonds generate opposite effects so that a net charge transfer is possible only if some of
them are unoccupied.

In summary, we have illustrated the mechanisms that govern the variance of the local-
ization tensor and the Born effective charges in the particular case of a one dimensional
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model system. The observations made in this section give us an intuitive understanding
of how delocalized electrons can generate anomalous effective charges. Hybridizations
between occupied states generate opposite effects that tend to cancel out when they are
summed. Because of the simplicity of the above adopted picture, we have however to be
careful when we apply this model to real materials. First, we considered only hybridiza-
tions between two types of atomic orbitals, while the chemical bonds in real systems
generally result from more complicated interactions. In particular, we neglected on-site
hybridizations that are also able to generate anomalous effective charges but that induce a
stronger localization on the electronic cloud. Second, the hypothesis of zero overlap (2.11)
is not always fullfilled so that maximally localized WF constructed on the whole set of
occupied states generally not reduce to the atomic orbitals. Nevertheless, this simple
model will allow us to interpret some results in Sections 2.4 and 2.5.

2.2.3 Pseudopotentials

As mentioned in the introduction, there is a fundamental problem in the computation
of the total localization tensor when pseudopotentials are used. This is due to the fact
that the localization tensor is related to the bands of the system as a whole : first, there
is no cancellation between the core electrons and the nuclear charge, as it is the case
in the computation of the total polarization; second, the localization tensor is a kind of
mean over all bands, that combines strongly localized (core) states, and weakly localized
(valence) states. This is clearly seen in Eq.(2.1), where the number of bands explicitely
appears both as the denominator of the prefactor and in the two summations. The band-
by-band decomposition allows us to overcome this problem partly, by focusing only on
the variances of isolated groups of bands. Thanks to Eq. (2.9) it is also possible to get
some insight into the physics of the all-electron localization tensor when pseudopotentials
are used. In this section, we focus on the diagonal elements of the electron localization
tensor α = β (of course, any direction can be chosen as α).

In an all-electron calculation, let us consider separately two sets of bands: core bands
(labelled as ’co’), and valence bands (labelled as ’va’). The total localization tensor can
be obtained from the localization tensors of each group of bands, combined with the
covariance between the two groups of bands:

〈rαrα〉c =
1

nco + nva

{nco〈rαrα〉c(co) + nva〈rαrα〉c(va) + 2nconva〈rαrα〉c(co, va)} . (2.20)

Both variances 〈rαrα〉c(co) and 〈rαrα〉c(va) are positive quantities. The covariance
times the product of the number of bands nconva〈rαrα〉c(co, va), a negative quantity, must
always be smaller in magnitude than each of the related variances multiplied by the
corresponding number of bands. This translates to bounds on the diagonal elements of
the total localization tensor :

|nva〈rαrα〉c(va) − nco〈rαrα〉c(co)|

nco + nva
≤ 〈rαrα〉c ≤

nva〈rαrα〉c(va) + nco〈rαrα〉c(co)

nco + nva
. (2.21)
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In the frozen-core approximation, 〈rαrα〉c(co) can be obtained from separate all-
electron calculations for each atom of the system. The localization tensor of the valence
bands is (likely) computed accurately in the pseudopotential approximation : the spread
of the Wannier functions should be quite similar if estimated from all-electron valence
wavefunctions or from pseudo-wavefunctions.

Thus, a bound on the diagonal elements of the localization tensor can be computed from
the atomic wavefunctions of the core electrons and the pseudo-valence wavefunctions. In
order to compute the covariance more accurately it is necessary to reconstruct the all-
electron wavefunctions. This could be done following the ideas exposed in Ref. [88].

2.3 Method and implementation

In the remaining part of this paper, we apply the previous formalism to various oxides.
The electronic wavefunctions are obtained within DFT [10, 11] and the local density
approximation (LDA) thanks to the abinit [27] package. At variance with a previous
work on semiconductors [16], the first derivatives of the wave functions with respect
to their wavevector are not computed from finite differences but from a linear-response
approach [32] within the parallel-transport gauge. The wave functions are further trans-
formed to the diagonal gauge [82]. Both ground-state and first-order wavefunctions are
expanded in plane waves up to a kinetic-energy cutoff of 45 Hartree. Integrations over the
BZ are replaced by sums over a 8×8×8 mesh of special k-points [37]. With these param-
eters, the convergence of the localization tensor for the investigated compounds is better
than 10−3 Bohr2. The ionic-core electron potentials of the Ba, Pb, Ti and O atoms are
replaced by ab initio, separable, extended norm-conserving pseudopotentials, as proposed
by M. Teter [84]. Ba 5s, 5p and 6s electrons, Pb 6s, 5d and 6p electrons, Ti 3s, 3p and 3d
electrons, O 2s and 2p electrons are considered as valence states. Beside calculating the
localization tensor on bulk-materials, we also computed it on the isolated atomic systems
Ba2+, Pb2+ and O by placing each atom at the origin of a periodic supercell of 20 Bohrs.

As shown by Sgiarovello et al. [16], the localization tensor and thus the variances and
covariances, are real. Moreover, they are obviously symmetric in α and β. Consequently
there exists a set of cartesian axes where they are diagonal and their eigenvalues are also
real numbers. In the discussion of our results we will always work in this particular frame
so that we do not need to consider the off-diagonal elements of the localization tensor.

2.4 Results

2.4.1 Structural and electronic properties

We will consider the two binary oxides BaO and α-PbO as well as the ferroelectric per-
ovskites BaTiO3 and PbTiO3. BaO has a rocksalt structure while the tetragonal α phase
of lead oxide is formed of parallel layers of Pb and O atoms. BaTiO3 and PbTiO3 have a
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high-temperature cubic perovskite structure with five atoms per unit cell. As the temper-
ature is lowered, the former compound undergoes a sequence of three ferroelectric phase
transitions transforming to tetragonal, orthorhombic and rhombohedral structures while
the latter compound only undergoes one single transition from the cubic to the tetragonal
phase. We will consider explicitely the cubic, tetragonal and rhombohedral phases of
BaTiO3 as well as the cubic phase of PbTiO3.

The electronic structures of these compounds have been previously studied [80, 85, 87,
43] and are illustrated in Fig. 2.1. They are formed of well separated groups of bands.
Each of them has a marked dominant orbital character and can be labeled by the name
of the atomic orbital that mainly composes the energy state in the solid. The bands at
the Fermi level are mainly composed of O 2p states that show significant interactions
with other atomic orbitals like the well known O 2p-Ti 3d hybridization in BaTiO3 and
PbTiO3. The bandstructures in the ferroelectric phases of BaTiO3 are similar to that of
the cubic phase. The phase transitions principally affect the bandgap and the spread of
the O 2p bands while the positions of the deeper lying bands remain quite constant. The
main difference in the electronic structures of BaO and BaTiO3 on one hand and PbO
and PbTiO3 on the other hand comes from the presence or absence of Pb 6s electrons
(that form the so called lone-pair in PbO). These electrons show a strong hybridization
with the O 2p states. As a consequence the O 2p and Pb 6s bands are degenerate at the
R point in PbTiO3 and around the Z point in PbO. Consequently, we have to consider
them as one single group of bands in the decomposition of the localization tensor.
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Figure 2.1: Band structures of BaO, cubic BaTiO3, cubic PbTiO3 and α-PbO.

2.4.2 Localization tensor and Born effective charges

As the total localization tensor is meaningless in pseudopotential calculations that do not
include covariances with the core states, we focus on the variances of the different groups
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of bands. The values can be found in the Tables 2.1 and 2.2 where they are compared to
the variances of the dominant atomic orbitals. We do not report any values associated
to the deepest lying Ti 3s and Ti 3p bands although they have been included in our
pseudopotential calculation. Their variances are in fact close to the atomic ones and they
do not show any sizeable covariance with other bands in both BaTiO3 and PbTiO3.

System Str. Element Band
Ba 5s O 2s Ba 5p O 2p

Atom − 〈r2〉c 1.011 0.929 1.370 −
BaO − 〈r2〉c 1.065 1.552 2.023 2.199
BaTiO3 C 〈r2〉c 1.091 0.950 2.189 1.875

T 〈r2
⊥〉c 1.091 0.945 2.180 1.852

〈r2
‖〉c 1.088 0.965 2.175 1.842

R 〈r2
⊥〉c 1.092 0.963 2.196 1.862

〈r2
‖〉c 1.092 0.949 2.189 1.804

Table 2.1: Variances (Bohr2) of the Ba 5s, O 2s, Ba 5p and O 2p bands for the isolated
atomic systems Ba2+ and O, BaO and the cubic (C), tetragonal (T) and rhombohedral
(R) phases of BaTiO3.

System Element Band
O 2s Pb 5d Pb 6s + O 2p

Atom 〈r2〉c 0.929 0.657 −
PbTiO3 〈r2〉c 1.874 1.490 1.749
PbO 〈r2

⊥〉c 2.234 1.142 2.178
〈r2

‖〉c 1.724 0.990 1.968

Table 2.2: Variances (Bohr2) of the O 2s, Pb 5d and Pb 6s +O 2p bands in PbTiO3,
α-PbO and for the isolated atomic systems Pb2+ and O.

In the cubic crystals BaO, BaTiO3 and PbTiO3 as well as in the atomic systems, the
reported tensors are isotropic so that we only mention their principal values 〈r2〉c. This
is no more true in the ferroelectric phases of BaTiO3 where a weak anisotropy can be
observed. The tensors have an uniaxial character as the corresponding dielectric ones:
they are diagonal when expressed in the principal axes and the elements 〈r2

⊥〉c and 〈r2
‖〉c

refer to cartesian directions perpendicular and parallel to the optical axis (that has the
direction of the spontaneous polarization). A much stronger anisotropy is observed in
α-PbO where the localization tensor has the same symmetry as in the ferroelectric phases
of BaTiO3. Due to its particular structure formed of atomic Pb-O planes the electrons
of each group of bands are more delocalized in a direction parallel (〈r2

⊥〉c) to the atomic
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planes2 than perpendicular (〈r2
‖〉c) to them. This observation agrees with our intuitive

picture that the covalent interactions between atoms inside a layer are stronger than
between atoms of different layers.

Examining the variances of the different groups of bands we see that the Ba 5s electrons
show a similar degree of localization both in BaO and BaTiO3 also equivalent to that of
the corresponding atomic orbital. On the contrary, the O 2s electrons behave differently
in the materials under investigation: in BaTiO3, their variance is close to the atomic one
while they show a significant larger delocalization in the three other compounds. It is in
fact surprising to see the degree of delocalization of the inner bands like the O 2s, Ba 5p
or Pb 5d bands. In some cases like BaTiO3, the electrons of these bands are even more
strongly delocalized than those of the bands at the Fermi level. These results suggest
that the corresponding atomic orbitals are chemically not inert but present non negligible
covalent interactions. An interesting observation can be made for the O 2s and Pb 5d
bands in PbTiO3 and α-PbO. The delocalization induced by the covalent interactions
that generate these bands tends to disappear when we consider them as one single group.
In order to compute the variance of the whole O 2s and Pb 5d bands, we have to use Eq.
(2.9). As an example let us consider PbTiO3. The different elements can be summarized
in a matrix where the diagonal elements are the variances (Bohr2) and the off-diagonal
elements the covariances (Bohr2) of the individual groups

(

1.874 −0.240
−0.240 1.490

)

.

The total variance of the (O 2s + Pb 5d) group considered as a whole reduces to 0.734
Bohr2. For α-PbO, we obtain similar values of 0.732 Bohr2 for 〈r2

⊥〉c and 0.701 Bohr2

for 〈r2
‖〉c. These values can be compared to the mean spread of the atomic orbitals

1
6
(0.929 + 5 × 0.657) = 0.702 Bohr2.

The results presented above suggest that inner orbitals like O 2s, Ba 5p or Pb 5d
are chemically not inert in the materials under investigation. This observation seems in
contradiction with the conclusions drawn from partial density of states analysis [87] that
these states are rather inert. Nevertheless the inspection of the Born effective charges in
BaO or BaTiO3 [80, 81] confirms our observations that will now be illustrated for α-PbO
and PbTiO3. This points out that the global shape of the bandstructure is less sensitive
to the underlying covalent interactions than the variance of the localization tensor or the
Born effective charges.

In order to investigate the connection between the localization tensor and the Born ef-
fective charges we report in Table 2.3 the band by band decomposition of Z∗

Pb in PbTiO3

and α-PbO. In the perovskite, this tensor is isotropic while in α-PbO it has the same
symmetry as the localization tensor. The contribution of each group of bands has been
separated into a reference nominal value and an anomalous charge3. For α-PbO, we ob-

2In α-PbO, the optical axis is perpendicular to the atomic layers.
3The Born effective charges are in general compared to an isotropic nominal value that is the charge

expected in a purely ionic compound. All deviations with respect to this reference nominal value are
referred to as anomalous.
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serve the same anisotropy as for the localization tensor: the covalent interactions inside
an atomic layer (Z∗

Pb⊥) generate larger anomalous contributions than the interactions in-
volving atoms of different layers (Z∗

Pb‖). By looking at the O 2s and Pb 5d bands we
see that they generate important anomalous charges that confirm our observations con-
cerning the variances of these bands. Interestingly, in both materials these contributions
cancel out when they are summed. We observe thus the same tendencies for the Born
effective charges and the localization tensor: the effects induced by the covalent interac-
tions between inner orbitals tend to disappear when the resulting bands are considered
together.

PbTiO3 α-PbO
Band Z∗

Pb Z∗
Pb⊥ Z∗

Pb‖
Core 14.00 14.00 14.00
O 2s 0 + 3.47 0 + 1.89 0 + 0.26
Pb 5d -10 - 3.36 -10 - 1.80 -10 - 0.40
Pb 6s + O 2p -2 + 1.78 -2 + 1.06 -2 + 0.48
Tot. 2 + 1.89 2 + 1.15 2 + 0.34

Table 2.3: Band by band decomposition of the Born effective charges (a. u. of charge)
in PbTiO3 and α-PbO. The contributions have been separated into a reference nominal
value and an anomalous charge.

2.5 Discussions

Based on the simple model exposed in Sec. 2.2.2 we can suggest the following mechanism
to explain the results presented in the preceeding section. The atomic orbitals O 2s and
Pb 5d (for which the hypothesis of zero overlap (2.11) is reasonable) present weak covalent
interactions that generate the corresponding energy bands in PbTiO3 and α-PbO. When
we construct maximally localized WF for each individual group, the resulting orbitals are
delocalized on Pb and O atoms so that during an atomic displacement an interatomic
transfer of charges − generating anomalous Born effective charges − is possible. The fact
that the variance of the global (O 2s + Pb 5d) group of bands is close to the mean spread
of the atomic orbitals suggests that the maximally localized WF constructed on these
bands are similar to the original atomic orbitals. In other words, they are confined on
a single atom. This confinement also suppresses the interatomic charge transfer so that
the anomalous charges disappear. We can make similar observations for the Ba 5p and O
2s bands in BaO and BaTiO3, although, in the latter compound, the cancellation in the
Born effective charges and the variance is not as complete as in the three remaining ones.
This suggests that in the lead oxides as well as in BaO, the inner bands Pb 5d and O 2s
(resp. Ba 5p and O 2s) mainly result from hybridizations between two types of atomic
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orbitals. At the opposite, in BaTiO3 the Ba 5p and O 2s bands are formed of more than
two types of atomic orbitals.

Looking now at the bands at the Fermi level, we see that their variance is significantly
larger in BaO and α-PbO than in the corresponding perovskites and that it remains nearly
constant in the different phases of BaTiO3. This latter observation seems surprising for
two reasons. (i) The LDA bandgap presents drastic changes when passing from the cubic
(1.72 eV) to the rhombohedral (2.29 eV) phase. This increase suggests a much stronger
localization of the O 2p electrons in the ferroelectric phases. (ii) The giant Born effective
charges observed in the paraelectric phase [58, 81] imply an important reorganization
of the electronic cloud during an atomic displacement. It appears surprising that this
reorganization has such small effects on the localization tensor. These small variations
are not restricted to BaTiO3 but similar observations have been made in other ferroelectric
compounds like LiNbO3 [89].

Considering point (i), we note that the correlation between the bandgap and the
localization tensor is not as tight as one might think. The variance of the O 2p bands for
instance is significantly larger in BaO than in BaTiO3 in spite of the fact that its LDA
bandgap (1.69 eV) is close to the gap in the cubic phase of BaTiO3.

Considering point (ii), we note that it is possible to have an important reorganization
of the electronic charge without affecting the localization tensor a lot. Following the
ideas of the Harrison model [59], the giant effective charges in perovskite ferroelectrics
result from dynamical orbital hybridizations changes generating interatomic transfers of
charges. In Fig. 2.2 (a) we have drawn shematically an O centered WF in the cubic phase
of BaTiO3 along a Ti - O chain. Due to the O 2p - Ti 3d hybridization, this WF has
a finite probability on the neighbouring Ti1 and Ti2 atoms. According to the Harrison

OTi Ti

dτ

a)

b)

21

Figure 2.2: Oxygen centered WF in the cubic phase (solid line) of BaTiO3 (a) and its
variation during the transition to the tetragonal phase (dashed line) (b).

model, a fraction of electrons is transferred from Ti1 to Ti2 during a displacement dτ of
the O atom (Fig. 2.2 (b)). Even if the quantity of charges involved in this process is small,
the large scale on which this transfer takes place (of the order of the lattice parameter)
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implies a shift of the WF center larger than the underlying atomic displacement and
explains the anomalous effective charges. During the transition from the cubic to the
tetragonal phase, the central O atom is displaced by few percents of the lattice constant a
(dτ

a
= 0.045) with respect to Ti1 and Ti2. The resulting shift of the WF center generates

the spontaneous polarization in the ferroelectric phase.
Based on this simple picture the origin of the small variations of the O 2p variance dur-

ing the phase transitions becomes more obvious: When the electrons are transferred from
Ti1 to Ti2 their distance to the initial WF center remains unaffected and their distance to
the displaced WF center slightly decreases due to its shift towards Ti2. Mathematically
speaking, due to the fact that the variations do not depend on the direction of the atomic
displacement, they are of the second order in dτ

a
.

In order to get a numerical estimate of the charges transferred during this process and
its impact on the localization tensor we can consider a one dimensional model WF whose
square is the sum of three delta-Dirac functions

|Wn(x)|2 =
1

2

{

2 − Z ′
O

2
[δ(x− a) + δ(x+ a)] + Z ′

Oδ(x)

}

. (2.22)

This model only takes into account the delocalization of the electrons on different atoms
(third term of Eq. (2.14)) while it completely neglects the delocalization of the electronic
cloud on the individual atoms (first and second term of Eq. (2.14)). In this particular case
we can identify the localization tensor to the second moment of the WF. This is no more
true in a real, three dimensional crystal. In BaTiO3 for instance, the O 2p group contains
9 different WF per unit cell located on three different O atoms. These WF extend in
different spatial directions so that their average spread in the x-direction is lower than
the spread of one single WF as the one shown in Fig. 2.2.

In Eq. (2.22), Z ′
O represents the probability of the electrons to be found on the O

atom. It can be computed from the value of the O 2p variance in the paraelectric phase
of BaTiO3 and the lattice constant a using the relation

∫

x2|Wn(x)|
2dx = 〈r2〉c,O2p. This

yields Z ′
O = 1.73. This quantity allows an estimate of the static charge of the O atom in

BaTiO3 by substracting three times Z ′
O from the charge due to the nucleus and the core

electrons O 1s and O 2s. This yields ZO,st = 4 − 3 · 1.73 = −1.19 e.
When the O atom is displaced, the shift of the WF center is directly related to the

quantity of charges ε transferred from Ti1 to Ti2. The value of ε can be computed from
the value of the effective charge generated by the O 2p electrons (Z∗

O2p = −9.31) in the
cubic phase [58] by taking into account that the anomalous charges are generated by three
WF located on the same O atom [79]. To get the polarization due to one single WF, we
have to divide this quantity by 3 since each of them brings a similar contribution to Z∗

O2p.
In the tetragonal phase, the model WF writes

|Wn(x)|2 =
1

2

{

2 − Z ′
O − ε

2
δ(x+ a) + Z ′

Oδ(x− dτ) +
2 − Z ′

O + ε

2
δ(x− a)

}

. (2.23)

By identifying twice its first moment to Z∗
O2pdτ/3 one gets ε = 0.0614 at the transition

from the cubic to the tetragonal state. It implies a decrease in the spread of the model
WF of 0.18 Bohr2.
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This variation is larger than the observed one (0.023 Bohr2). Part of the discrepancy
is probably due to the fact that we considered Z∗

O2p to be constant along the path of
atomic displacement from the paraelectric to the ferroelectric phase. Using the value of
Z∗

O2p in the tetragonal phase we obtain a value of 0.0467 for ε while the variance decreases
of 0.12 Bohr2. Moreover, one has to bear in mind that the localization tensor in BaTiO3

is an average value that has to be taken over 9 WF. Six of them are centered on O atoms
that ly in a plane perpendicular to the direction of the spontaneous polarization. They
are probably less affected by the phase transition. As a consequence, the variation of the
WF located on the remaining O atom (the one represented on Fig. 2.2) is expected to be
larger than the variation of the localization tensor.

In summary, even if there is no formal connection between the real WF in BaTiO3 and
Eq. (2.22), this simple model shows that small variations of the localization tensor are
compatible with giant effective charges and their interpretation in terms of the Harrison
model. As illustrated with the model WF, the transfer of charges along the Ti−O chains
only implies a slight decrease in the spread of one single WF. This decrease is expected
to be larger than the decrease in the variance because this latter quantity is an average
value over 9 WF that are not modified to the same extent during the phase transition.

2.6 Conclusions

Using a plane wave-pseudopotential approach to DFT we computed the electron local-
ization tensor for various oxides. Our study was based on the work on semiconductors
performed by Sgiarovello and co-workers but used linear-response techniques to compute
the first-order wavefunctions.

In order to investigate the properties of electrons occupying individual groups of bands
independently, we first set-up a band by band decomposition of the localization tensor. In
analogy with the field of statistics we had to distinguish between variance and covariance
in this decompositon. The significance of these new concepts was illustrated in terms
of WF and explained on a simple model. The variance allows to get some insight into
the hybridizations of atomic orbitals. The covariance can be useful to help constructing
maximally localized WF: It identifies the bands that have to be considered together in
order to improve their localization. We also made a connection between the localization
tensor and the Born effective charges and we discussed the difference between all-electron
and pseudopotential calculations.

We applied these techniques to binary oxides (BaO and α-PbO) as well as perovskite
ferroelectrics (BaTiO3 and PbTiO3). By considering first the electrons of the inner bands
we showed that some of them present a strong delocalization with respect to the situation
in an isolated atom. This observation suggests that the underlying atomic orbitals are
chemically not inert but present non negligible covalent interactions. This fact had been
confirmed from an inspection of the Born effective charges.

Finally, the variations of the O 2p variance during the ferroelectric phase transitions
of BaTiO3 were found to be very small. This surprizing result was explained in terms of
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the electronic structure of this compound as it is interpreted in the Harrison model.
We think that, when combined with Born effective charges, the band-by-band de-

composition of the localization tensor could provide a powerful tool for the qualitative
characterization of bonds in solids. However, more studies are needed, for different classes
of materials, in order to make it fully effective.
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Conclusions

Using density functional theory we studied ground-state and linear response properties of
LiNbO3 and the localization tensor in various oxides.

In the first chapter, we investigated the dielectric and dynamical properties of LiNbO3.
In particular, we clarified the assignation of the zone-center optical phonons. In addition,
we adressed more fundamental questions such as the origin of the giant Born effective
charges in the paraelectric phase and the mechanism responsible for the phase transition.
The first point has been clarified from a band-by-band decomposition. This technique
revealed the particular electronic structure, especially the hybridization between O 2p and
Nb 4d states, to be responsible for the anomalous values of the Born effective charges. To
investigate the second point, we used a microscopic model constructed from first-principles
calculations. This model allowed us to relate the structural instability to the long-range
Coulomb interactions between atoms.

In the second chapter we applied the Berry phase theory of polarization to the funda-
mental problem of electron localization in insulating crystals. We first set up a band-by-
band decomposition of the localization tensor. In the first chapter, such a decomposition
allowed us to clarify the origin of the anomalous Born effective charges in LiNbO3. In the
case of the localization tensor it gave an even deeper insight in the electronic structure
of ferroelectrics since it clarified the kind of hybridizations that take place in these com-
pounds. We paied a particular attention to the variations of electron localization during
the ferroelectric phase transition of BaTiO3 and showed that the slightly stronger local-
ization in the ferroelectric phase agrees with the electronic structure of this compound as
it is interpreted in the Harisson model.

The results presented in the first and second chapter have been published recently [18,
19]. At the time being, other works are in progress. In fact, these two chapters are a first
step in the study of non-linear optical properties from first-principles. For example, the
quantities presented in the first chapter will be useful to compute the electrooptic tensor
and the Raman scattering efficiencies in LiNbO3. The details of this study will be left for
a later discussion. Here, we just want to mention a few points in close relationship with
the topics discussed in this work. The computation of the Raman intensities in LiNbO3

confirms our assignation of the zone-center phonons in the first chapter. This gives us
an other strong argument in favour of our assignation. Moreover, the computation of
the electrooptic coefficients in various oxides revealed that the soft mode dominates the
amplitude of these coefficients. A similar domination has been observed for the dielectric
tensor of LiNbO3 discussed in the first chapter. Our results underline the important role
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of the soft mode in the electromechanical response of ferroelectric oxides that is exploited
in many applications.
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Appendix A

Optical conductivity

The optical conductivity (imaginary part of the optical dielectric tensor) of a given ma-
terial is related to its absorption coefficient, the probability of the valence electrons to
perform optical transitions to the unoccupied conduction bands under the influence of an
electromagnetic field. If we consider only ”vertical” band-to-band transitions (thus ne-
glecting elementary excitations like the electron-hole interaction or the electron-phonon
coupling) this quantity writes in the dipolar approximation [90]

ε′′αβ(ω) =
4π2e2

m2ω2h̄

N∑

n=1

∞∑

m=N+1

∫

BZ

2dk

(2π)3
pα

nm(k)pβ
mn(k)δ (ωmn(k) − ω) (A.1)

where m is the electron mass, pnm(k) = −ih̄〈ψ
nk|∇ψmk〉 and h̄ωmn(k) = ε

mk−ε
nk. The

matrix elements of the momentum operator can equivalently be expressed as pnm(k) =
−mωnm(k)〈u

nk|∂kumk〉.
It has been shown by Souza, Wilkens and Martin [77] that ε′′ is related to the local-

ization tensor by the relation

∫ ∞

0
ε′′αβ(ω) dω =

8π2e2N

h̄Vc
〈rαrβ〉c . (A.2)

In order to see the effect of the band by band decomposition, we will write ε′′ as

ε′′αβ(ω) =
Ng∑

i=1






ε′′αβ(ω;Gi) +

Ng∑

j 6=i

ε′′αβ(ω;Gi, Gj)






(A.3)

where

ε′′αβ(ω;Gi) =
4π2e2

m2ω2h̄

∑

n∈Gi

∞∑

m6∈Gi

m=1

∫

BZ

2dk

(2π)3
pα

nm(k)pβ
mn(k)δ (ωmn(k) − ω) (A.4)

ε′′αβ(ω;Gi, Gj) =
−4π2e2

m2ω2h̄

∑

n∈Gi

∑

m∈Gj

∫

BZ

2dk

(2π)3
pα

nm(k)pβ
mn(k)δ (ωmn(k) − ω) . (A.5)

The first sum of Eq. (A.4) has to be taken over the bands of group Gi while the second
sum extends over all bands (unoccupied or not) except those of group Gi. In Eq. (A.5),
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the two sums extend over the bands of group Gi and Gj . It is easy to show that ε′′αβ(ω;Gi)
and ε′′αβ(ω;Gi, Gj) are related to the variances and covariances by the relations

∫ ∞

0
ε′′αβ(ω;Gi)dω =

8π2e2ni

h̄Vc
〈rαrβ〉c (Gi) (A.6)

∫ ∞

0
ε′′αβ(ω;Gi, Gj)dω =

8π2e2ninj

h̄Vc
〈rαrβ〉c (Gi, Gj). (A.7)

Thanks to these definitions, the physical meaning of the covariance becomes now obvi-
ous: If the total localization tensor was simply the sum of the variances 〈rαrβ〉c (Gi),
the expression of the dielectric tensor (A.1) would not only contain transitions between
occupied and unoccupied states, but also transitions between occupied states themselves.
It is by adding the covariances 〈rαrβ〉c (Gi, Gj) that one compensates the effect of these
forbidden transitions in order to get a physically correct quantity.
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