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Introduction

The crystals having a spontaneous polarization are called pyroelectrics and the direction
of the polarization is the polar axis. Ferroelectrics are pyroelectrics which possess a
spontaneous polarization which can be reversed by applying a suitable electric field. The
process is known as switching and is accompanied by hysteresis in the field-polarization
curve. The value of the spontaneous polarization is easily determined from the switching
loop.

Pyroelectricity has been know since ancient time because of the ability of such ma-
terials to attract objects when they are heated. During the eighteenth century, many
experiments where carried out in an attempt to characterize the pyroelectric effect in a
quantitative manner for instance by Gaugain [1] in 1856. At the opposite, ferroelectricity
was discovered less than hundreed years ago. It was first identified in 1920 by Valasek [2]
who observed that the polarization of Rochelle salt can be reversed by the application
of an external electric field. The principal reason that ferroelectrics were discovered so
much later is because the formation of domains of differently oriented polarization within
virgin single crystals leads to a lack of any net polarization and a very poor pyroelectric
response.

From the very beginning, ferroelectricity aroused joined scientific and industrial in-
terests. With the passing years, distinct families of ferroelectric crystals were identified.
A tremendous lot of experimental data were accumulated and different theories were
proposed to explain its origin.

Since decades, ferroelectric materials are used in various technological applications [3,
4, 5, 6], not only according to their intrinsic ferroelectric behavior but also because they
present unusual properties such as high dielectric, piezoelectric, non-linear optical and
pyroelectric constants. During the recent years, different ferroelectric oxides systems
have particularly attracted the attention for applications. A new class of ferroelectric
relaxors has been discovered which presents an anomalously high piezoelectric response
and could therefore tremendously improve the efficiency of piezoelectric transducers [7, 8].
Lithium niobate, already used for frequency doubling in some lasers, has been identified
as a promizing candidate for holographic data storage [9, 10]. Finally, and without being
exhaustive, in the research for “high K” dielectrics to replace the amorphous SiO layer in
electronic devices, as well as for the development of MEMS ' and ferroelectric data storage

IMEMS is an acronym for Micro Electro Mechanical Systems which are miniature multifunctional
systems consisting of sensors, actuators and electronics
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systems, thin films of ABOj ferroelectric oxides that can be grown on silicon [11, 12] are
expected to play a major role in the near future [13].

In spite of many years of constant interest for this class of compounds, the origin of
ferroelectricity and related phenomena was for long unclear [14, 6] and some questions still
remain open today. As a single example, let us cite the debate concerning the evolution
of ferroelectricity with thickness in thin films and small particles. During the last decade,
some important advances in the microscopic understanding of ferroelectricity in oxides
have been achieved in the framework of first-principles simulations. These developments
are the subject of the present course. In this introductory Chapter, they will be put back
in the context of a brief history of ferroelectricity focusing on the ABO3 compounds.

The family of ABO3; compounds

The first series of isomorphous ferroelectric crystals was produced in Ziirich, during the
thirties. It concerned a family of phosphates and arsenates. The most popular of these
compounds is potassium dihydrogen phosphate (KHyPO,), usually abbreviated as KDP.
At that time, it was commonly thought that the existence of a hydrogen bond was a
necessary, if not sufficient, condition for the polar instability to occur. Consequently,
there was only very little motivation for looking for ferroelectricity in materials such as
oxides which did not contain hydrogen.

The ferroelectric properties of barium titanate (BaTiO3) were discovered incidentally,
in 1945, when searching for new dielectrics to replace mica [14]. Rapidly, it became by far
the most extensively studied ferroelectric material. On cooling, it undergoes a sequence
of three successive structural transitions from a paraelectric cubic phase to ferroelectric
structures of tetragonal, orthorhombic and rhombohedral symmetry. It was the first
ferroelectric without hydrogen bonds, the first with a non-polar paraelectric phase, the
first with more than one ferroelectric state. In addition, its prototype crystal structure was
cubic perovskite ? with only five atoms per unit cell. It was therefore offering to physicists
an opportunity to study the onset of ferroelectricity from a very simple structure.

The sudden interest for BaTiO3 broadened gradually to different oxides of the ABOj3
family [14]. A ferroelectric activity was discovered in KNbOj presenting the same sequence
of phase transitions as BaTiOs3, or in PbTiO3 that remains stable at low temperature in
tetragonal symmetry. Ferroelectricity was also observed in LiNbOj3 and LiTaOj3, which
do not have the perovskite structure ? but still are ABOj3 lattices with oxygen octahedra.

The great fascination for the family of ABO3; compounds is that, in addition to fer-
roelectric potentialities, it also readily undergoes non-polar structural phase transitions,
associated with different tilts of the oxygen octahedra. Moreover, the observed transitions
are not necessarily ferrodistortive (involving a T' type displacement of the atoms of the
prototype phase) but may be antiferrodistortive (displacement associated to a non-zero
phonon wavevector within the Brillouin zone). The most frequently observed case consists
in a cell doubling transition, associated to a Brillouin zone boundary type displacement

?Barium titanate crystallizes also in a more complex hexagonal structure
3They crystallize in a trigonal structure related to but slightly different from the ilmenite.
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like in SrTiOj (non-polar distortion) or PbZrOj (antiferroelectrics). Sometimes, like in
NaNbQs, instabilities of different characters are present and produce a chain of transitions
of different natures: ferroelectric, anti-ferroelectric, non-polar.

Empirical and semi-empirical models

Due to the simplicity of the ABOj3; perovskite structure, it was quite natural to expect
theoretical progress at the microscopic level in the understanding of ferroelectricity. A first
important step was performed in 1950 by Slater [15] who suggested that the ferroelectric
instability of BaTiO3 should be caused by long-range dipolar forces which, via the Lorentz
local effective field, tend to destabilize the high symmetry configuration favored by local
forces. It was the starting point for a “displacive” explanation of the phase transition, as
opposed to the more conventional order-disorder description *. The concept of “rattling”
Ti ion was introduced in models considering motion of the Ti atom in the rigid framework
of the rest of the lattice. It was a first neat picture, however questionable as all the
atoms were actually displaced after the ferroelectric transition has occurred. A new
breakthrough arrived in 1959, when Cochran [17] ® realized that the theory describing the
displacive lattice instability should be cast within the framework of lattice dynamics, when
considering one of the lattice modes as the basic variable. His theory was exhibited in
the framework of a shell-model approach. The concept of soft-mode was introduced. The
competition between short-range and Coulomb forces highlighted by Slater reappeared
coherently in this context as the origin of the softening of a particular transverse optic
mode. Later, the ideas of Cochran were generalized in the framework of microscopic
effective Hamiltonians [14] and the soft-mode became a central quantity in the description
of different structural instabilities.

Independently, we note that theory had also progressed rapidly at the macroscopic
level when focusing on thermodynamic concepts. An interesting description of BaTiO3
was, for instance, already reported by Devonshire [19] in 1949, from an expression of
the free energy in powers of polarization and strain. While the microscopic description
of Cochran was essentially concerned by the atomic displacements, one of the major
contribution of the thermodynamic approach was probably to emphasize the crucial role
of the macroscopic strain. Coupling between the soft-mode and the strain, neglected in
many of the microscopic models, appeared recently as a major ingredient for a correct
description of the successive phase transitions in ABO3 compounds [20, 21].

Since the sixties, the emphasis has been placed dominantly on the lattice dynamical
description of the ferroelectricity. There was an explosion of experimental activity using
techniques allowing to measure frequency and temperature dependent properties of the
soft-mode. A new step in the microscopic understanding of the ferroelectricity in ABOj
compounds arose from the fit of these experimental data within a shell-model approach.

4The order-disorder description makes reference to a multi-well energy surface, yielding macroscop-
ically non-polar but microscopically polar paraelectric phase. In the displacive model, the paraelectric
phase is also microscopically non-polar [16].

® A similar approach was taken independently by Anderson [18].
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In 1976, Migoni, Bilz and Béauerle [22] suggested that the ferroelectric instability should
originate in a non-linear and anisotropic polarizability of the oxygen atoms. This gave
rise to the “polarizability-model” [23, 24] that was widely used to describe the dynamics
of ABO3; compounds. The unusual polarizability of the oxygen atom was discussed [22,
25, 23] and is still sometimes referred to as the origin of the ferroelectricity [26]. In
particular, it was already suggested by Bilz et al. [22] that the anisotropy of the oxygen
polarizability should be induced by the dynamical hybridization between oxygen p-states
and transition metal d-states [22, 23]. As we will see later, this intuition was correct and
these hybridizations play a major role in the ferroelectric instability. However, within their
semi-empirical approach, it was not possible to understand the mechanisms of interplay
between the electronic and dynamical properties.

At the same time, but in a different context, Comes, Lambert and Guinier [27] reported
diffuse X-ray scattering for crystals of BaTiO3 and KNbQOj3, in three sets of planes normal
to the cubic axis. This feature was associated to a static linear disorder, explained in
terms of what is now usually referred to as the “8-sites model”. This model is another
meaningful picture currently invoked to visualize the mechanism of the phase transition.
It was however contested by Hiiller [28] who preferred to favor a dynamical explanation
for the linear disorder. Independently of the debate on the static or dynamical nature
of the disorder, the existence of chain correlations became well accepted, although its
microscopic origin remained unclear [29].

At the end of the seventies, different interesting features had therefore been identified
as playing an important role in the ferroelectricity of ABO3 compounds. Different models
were available, well suited for a qualitative description of the ferroelectric instability
within a specific context. Nevertheless, accumulating the experimental data, it appeared
gradually that the ferroelectric transition was more complex than previously expected:
for instance, it was observed that the phase transition is not purely displacive in the
sense defined by Cochran, but has also an order-disorder character around the transition
temperature . Unfortunately, the theoretical models available at that time had their
limitations and were not accurate enough to describe and investigate all the subtle features
of the phase transition.

A first-principles approach

A new opportunity for addressing the remaining open questions concerning ferroelectricity
was given beginning of the nineties when ABO3; compounds became accessible to first-
principles calculations performed within the Density Functional Theory (DFT) [30, 31].
Indeed, such a technique does not restrict to the description of the electronic properties of
materials but is also particularly suited to investigate their structural properties. Earlier
DFT calculations on ABO3 compounds were reported by Weyrich [32, 33| during the
eighties. The renewal of interest in these materials during the last decade is a consequence

6The appearance of the order-disorder character originates in the evolution of the thermal energy with
respect to the height of the multi-well energy barrier [16].
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of different theoretical advances combined with a gigantic jump of the computational
power.

A first crucial advance concerns the emergence of the modern theory of polarization,
pioneered by Resta [34], King-Smith and Vanderbilt [35, 36]. Until 1992, the macroscopic
electronic polarization was indeed not directly accessible for periodic systems with con-
tinuous electronic distributions. This was a major impediment to a systematic study of
ferroelectric materials for which the polarization appears as the fundamental quantity.
Since 1992, the electronic contribution to the polarization can be conveniently obtained
as a Berry phase of the electronic wavefunctions and is easily computed in the framework
of DFT.

A second ingredient is the effective Hamiltonian approach to structural phase transi-
tions, developed by Rabe and Joannopoulos [37, 38, 39], in which the parameters of the
Hamiltonian are determined from the results of first-principles calculations. Such an ap-
proach, first applied to GeTe [37], was then generalized by Rabe and Waghmare [40, 41, 21]
for general phonon-related phase transitions, opening the door to a systematic first-
principles study of the family of ABO3 compounds. In this specific context, the density
functional perturbation theory (DFPT) [42, 43|, appeared as an important complementary
tool for an efficient determination of the parameters associated to the model Hamiltonians.

Since 1992, an impressive number of first-principles calculations have been performed
yielding a similarly impressive number of interesting results that will be reintroduced
all along this course. A spectacular achievement concerns a correct description of the
sequence of phase transitions for various pure and mixed ABO3; compounds like BaTiO;
[20, 44, 45], SrTiO; [46, 47], PbTiO3 [48, 21, 49], PbZrO; [21, 50], KNbO;3 [51], CaTiO;
[52] or NaNbOj3 [52].

Starting from the “first principles”, such kind of calculations was also a new op-
portunity to connect, within a rigorous approach, the macroscopic properties of ABOj3
compounds to their intimate microscopic features. It allowed to clarify the interplay be-
tween the electronic and dynamical properties and to understand better the mechanism
of the ferroelectric instability [53]. It gave some insight on the origin of the unusually high
piezoelectric response of relaxor compounds [8]. Going further, the approach seems now
appropriate for an ab initio design of perovskite alloys with predetermined properties [54].

The present course

In this course, we propose a microscopic description of some selected properties of ABO3
ferroelectric materials, as it emerges in the framework of first-principles calculations within
the density functional formalism. We try to present a coherent overview starting from
the basics and going to the most recent advances. However, we have no pretension to
make an exhaustive summary of all the recent achievements in the field. Instead, we
concentrate on two prototype materials: barium titanate (BaTiO3) and lithium niobate
(LiNbO3). We proceed step by step, mainly focusing on the results we have obtained
since we started working on these compounds in 1992.

Because the opportunity of this course was kindly offered to us by the % Cycle de
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la Physique en Suisse Romande on the initiative of Prof. Jean-Marc Triscone and Dr.
Thomas Tybell, this manuscript is essentially devoted to experimentalists. So, even if the
results presented here arise from computer simulations, we mainly bypass the technical
details of the calculations in order to concentrate on the physics of the materials.

Nowadays, the best reference concerning the principles and applications of ferroelectric
compounds is the famous book of Lines and Glass [14]. Readers interested in the density
functional formalism can find a good introduction in the review of Payne et al. [55].
Additional references are also mentionned at the end of each Chapter, directly related to
what has been discussed. Some more informations can also be found in our PhD thesis
from which this manuscript is partly inspired (http://www.ulg.ac.be/phythema).

The course is made up of 5 Chapters and is organized as follows. In Chapter 1, we
briefly introduce and describe the density functional theory, which will be used in the
next Chapters. In Chapter 2, we report a brief description of the structural and elec-
tronic properties of both prototype materials. In Chapter 3, we introduce a key concept
in the understanding of ferroelectricity : the Born effective charges. It will be seen that
these charges are anomalously large in ABO3; compounds. This feature will be explained
in terms of transfers of charge induced by dynamic changes of orbital hybridizations. In
Chapter 4, we briefly comment on the electron localization in ferroelectric compounds,
and discuss how these results are compatible with the explanation of anomalous effec-
tive charges. In Chapter 5, we discuss the dielectric and dynamical properties of ABO;
compounds, themselves directly associated to the ferroelectric instability. Our purpose
will be to identify how these properties are directly associated to the electronic features.
The balance between dipolar and short-range forces will be quantified. The origin of
the transition will be assigned to giant dipolar forces induced by the anomalously large
Born effective charges. Full phonon dispersion curves will be obtained in the paraelectric
phase. The notion of chain-structure correlation will be discussed. The transferability of
force constants from one ABO3 compound to another will be pointed out as well as the
implication on the dynamics of mixed compounds.

Note that two more Chapters are expected to be introduced in a forthcoming version
of this course. The first one will be devoted to the concept of effective Hamiltonian and
its use to describe the evolution of the dielectric, piezoelectric and pyroelectric properties
of ABO3 compounds with temperature. The second is intended to make a brief review
of recent advances concerning the understanding of the behavior of ferroelectric ultrathin
films.



Chapter 1

Basics of the density functional
theory

1.1 Introduction

Within this Chapter, we propose a brief summary of the planewave pseudopotential den-
sity functional formalism within which most of the calculations reported all along the next
Chapters have been performed. We will not be exhaustive nor too technical. Our goal is
to introduce general concepts and define some widely used acronyms in order to provide
to the non expert reader a basic knowledge allowing him to understand and critically read
theoretical papers making use of the density functional formalism. In this way, we will
not discuss practical implementation.

Prediction of the electronic and geometric structures of solids requires calculations of
the quantum mechanical total energy of the system and subsequent minimization of that
energy with respect to the electronic and nuclear coordinates (variational principle). This
consists of a complex quantum mechanical many-body problem associated to interacting
electrons and nuclei. It is unaffordable in practice, and some approximations are required
to face it.

First, because of the large difference in mass between the electrons and nuclei and the
fact that the forces on the particles are the same, both in nature (electrostatic) and ampli-
tude, the electrons respond essentially instantaneously to the motion of the nuclei. Thus,
the nuclei can be treated adiabatically, leading to a separation of electronic and nuclear
coordinates in the many-body wave functions (Born-Oppenheimer approximation). This
reduces the many-body problem to the solution of the dynamics of the electrons in some
frozen-in configuration of the nuclei whose positions R, are considered as parameters.

Even with this simplification, the problem remains formidable due to the electron-
electron interaction. However, Density Functional Theory (DFT) developed by Hohenberg
and Kohn [30] and Kohn and Sham [31] provided some hope of a simple method for
describing the effects of electron-electron interactions. Hohenberg and Kohn proved that
the total energy of an electron gas is a unique functional of the electronic density. This
means that instead of seeking directly for the complex many-body wave function of the
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systems, we can adopt an intrinsically different point of view and consider the electronic
density as the fundamental quantity of the problem. The minimum value of the total
energy functional is the ground-state energy and the density yielding this minimum value
is the exact ground-state density. The theorem of Hohenberg and Kohn demonstrated
the existence of such a functional but did NOT provide its form. Kohn and Sham then
showed how it is possible to map the many-body problem onto another system of non-
interacting particles moving in an external potential, with the same exact ground-state
electronic density. In practice, the electronic density can be obtained from one-body
wave functions, self-consistent solution of a set of one-particle equations describing the
behavior of an electron in an effective potential. Again, the form of this potential is a
priori unknown but, as it will be discussed, can be efficiently approximated.

1.2 Kohn-Sham energy functional

Within this one-particle framework, the Kohn-Sham total energy functional for a set of
doubly occupied states ! 1); can be written :

BevilR ] = Z<w7 _%VQ ¢7:> + /Uext(r) n(r) dr
1 [ n(r) n(r
+ 5‘/%dr1drg+ﬂw[n] —FEZ'O”[R,{] (11)

where the successive terms represents, respectively, the electronic kinetic energy, the in-
teraction between the electrons and the static electron-ion potential ve., the electron-
electron Coulomb repulsion, the exchange-correlation energy, E,.[n] (this term contains
all the electron-electron interactions that go beyond the Coulomb term), and the Coulomb
energy associated with the interaction among the nuclei F;,,|R,]. The electronic density,
n(r), is given by

occ

n(r) = ZW(I‘)-%(I‘) (1.2)

For a given set of atomic positions R, the ground-state is obtained by minimizing
Eq. (1.1) under the following orthonormalization constraints :

(Vilth;) = bi;

This provides the total energy of the system and the associated electronic density.
In practice, the minimization of Eq. (1.1) is equivalent to solve self-consistently the

! Along the rest of the chapter we will assume spin-degeneracy
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following set of Kohn-Sham equations :

[_%VQ + US} Vi) = € [i)

Vs (I‘) — Uext (I‘) + f ‘:frjz‘ dry + 5?,:{};]} (1'3)

n(r) = 32 7 (r)¢i(r)

where the derivative of the exchange-correlation energy with respect to the density is
usually referred to as the exchange-correlation potential v,.(r) = §F,.[n]/on(r).

The Kohn-Sham equations represent a mapping of the interacting many-electron sys-
tem onto a system of noninteracting fictitious particles moving in an effective potential due
to the ions and all the other electrons. If the exchange-correlation energy functional were
known exactly, taking the functional derivative with respect to the density would provide
an exchange-correlation potential that included the effects of exchange and correlation
exactly. In practice, however, the form of FE,.[n] is unknown.

1.3 Usual approximate functionals

The exchange-correlation energy, E,.[n|, is expected to be a universal functional of the
density everywhere. However, Hohenberg and Kohn theorem [30] provides some moti-
vation for using approximate methods to describe the exchange-correlation energy as a
function of the electron density.

The first, and most widely used approach in this sense is the Local Density Approx-
imation (LDA) [31]. It assumes (i) that the exchange-correlation energy per particle at
point r, €,.(r), only depends on the density at this point and (ii) that it is equal to the
exchange-correlation energy per particle of a homogeneous electron gas of density n(r) in
a neutralizing background:

E.cn] = / n(r) . e£P4(r) dr (1.4)
with

LDA h
€re (1) = €5 [n(r)] (1.5)
The form of €"9™[n] used in the calculation may be borrowed from various sources. The
exchange part can be obtained analytically from the Hartree-Fock technique. It can be
shown that it scales like :

3

ehomin] = — 2 (3n2)1/3 /3 (1.6)
47

For the correlation part, one may rely on accurate values obtained by Ceperley-Alder [56]

from Monte-Carlo simulations of the energy of the homogeneous electron gas. In the



CHAPTER 1 : BASICS OF DFT 10

next Chapters, we use a polynomial parametrization of the previous data as proposed
by Teter [57]. Other approximations (Wigner, X-alpha, Gunnarson-Lundqvist, Perdew-
Zunger, Perdew-Wang ...) are also referred to as local density approximations. They rely
on the same exchange part but consider slightly different treatments of the correlation
term.

The LDA is probably one of the crudest approximation that we may do. It has
however the advantage of the simplicity. Moreover, it already allows to describe structural
and dynamical properties of materials with surprising accuracy [58, 59] ? : calculated
bond lengths and bond angles reproduce the experiment within a few percents; phonon
frequencies are usually obtained within 5-10 %. Well known exceptions are however the
cohesive energy and the dielectric susceptibility.

Different techniques were proposed that are going beyond the LDA. A first alternative,
but connected approach, is to build a “semi-local” functional that does not only depend on
the density at r but also on its gradient, or on higher order gradient expansion. Different
forms have been proposed that are summarized under the label of Generalized Gradient
Approximations (GGA). They are based on a functional of the type [60, 61]:

EGOA[n] = / n(x) . S n(r); [Va(e); Vn(r)] dr (1.7)
This kind of approximation improves the computed value of the cohesive energy. It can
also improve the description of bond lengths and lattice parameters even if the gradi-
ent correction usually overcorrects the LDA [62, 63] yielding longer values than the
experimental ones. Finally, the correction has a rather limited effect on the dielectric
constant [62]. The GGA remains a quasi-local approximation that cannot include any
long-range density dependency of Fy.[n].

Different other functionals also exist like the average density approximation (ADA) [64]
or the weighted density approximation (WDA) [64]. Tt was argued that WDA should be
intrinsically unable to improve LDA results [65]. For ABO3 compounds, it seems however
that this last technique is an interesting alternative to the LDA [66].

Without being exhaustive, let us finally mention that another interesting scheme con-
sists in a mixing of Hartree-Fock and local density functionals as justified from the adia-
batic connection formula [67]. This method is quite popular in quantum chemistry but is
not widely used by the community of physicists.

1.4 The periodic solid

1.4.1 Periodic boundary conditions

All along this course, we will be interested in periodic systems, built from a basic unit cell
that is periodically repeated in the three directions of space. In this context, the atomic

2The LDA exchange-correlation hole integrates to —1. This simple feature should be a first intuitive
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position R, . of atom s within unit cell @ can be conveniently dissociated as:
Ra,n - Ra + e (18)

where R, is a lattice vector and r, is the vector position of the atom within the unit cell.

A macroscopic solid would basically consists in the limit of a finite system of increasing
size. Since long, however, physicists do usually prefer to investigate solids from infinite
truly periodic systems defined by imposing Born-von Karman periodic boundary condi-
tions [68]. The approximation seems reasonable and was widely used because it presents
numerous conceptual and practical advantages. It leads to what we will refer to as a
“periodic-DFT”, in which the energy appears as a functional of the periodic part of the
density.

1.4.2 Bloch functions

In infinite periodic solids obtained by imposing periodic boundary conditions, the elec-
tronic wavefunctions have the Bloch form and can be written as the product of a plane-
wave function of wave vector k, by a cell periodic function wu,(r) :

wnk(r) _ (NQO)—l/Q eik.runk(r) (1.9)

where N is the number of unit cells repeated in the Born-von Karman periodic box, and
() is the volume of the basic unit cell. A normalization factor has been introduced, such
that the normalization condition imposed to 1, now writes in terms of wu,,:

when the scalar product of periodic functions is defined as:

(o) = — [ 1*(x)gx)dr. (1.11)

Qo Jq,

In our infinite solid, k may have any value. Basically, the Bloch theorem has reduced
the problem of calculating an infinite number of electronic wavefunctions to the deter-
mination of a finite number of electronic states but at an infinite number of k points.
Similarly to the fact that each electron of the solid must be taken into account, the occu-
pied states at each k point contribute to the electronic density and to the potential in the
bulk solid. However, as a consequence of the periodicity in real space, the k-space is also
periodic [68] so that, in practice, the only k-vectors to be considered are those which are
within the first Brillouin zone (BZ). From our conventions, the electronic density reads in
terms of the periodic functions :

occ

1 *
n(r) = ok /BZ Xm:s Uy () Ui (1) dk. (1.12)

where s is the occupation number of states in the valence band (in spin-degenerate systems
s = 2).
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1.4.3 Brillouin zone sampling

The use of Bloch functions has to be associated with integration over the Brillouin zone
and would a priori require to compute different quantities at a large number of k-points.
Fortunately, the electronic wavefunction at k points that are close to each other are almost
identical so that it is possible to represent the electronic wavefunction over a region of
k space by that at a single k point. Consequently, integrations over the entire Brillouin
zone can be conveniently replaced by sums on a limited number of k points.

Efficient sampling methods have been proposed by different authors [69, 70, 71] to
obtain accurately the density, the electronic potential and the contribution to the total
energy from the knowledge of the electronic states on a very restricted set of “special”
k-points. The study of ABO3; compounds typically required a 6 x 6 x 6 mesh of special
k-points. This is relatively dense in comparison with what is usually needed for other
typical insulators. In contrast, for metals, larger meshes are required in order to define
precisely the Fermi surface.

We note that the error induced by the k-point sampling is not the consequence of
any physical approximation but consists in a computational error. Its magnitude must
be checked and can always be reduced by increasing the size of the k-point mesh.

1.5 A plane-wave pseudopotential approach

1.5.1 Plane-wave basis set

The Bloch theorem relates the electronic wavefunction ¢, to a periodic function wu,,
that satisfies:

Unk (1) = Unk(r + R) (1.13)

for any vector R satisfying the lattice periodicity. As a consequence, u,x can be conve-
niently expanded in terms of a plane-wave basis set.

Typically, the Fourier transform of a periodic function is indeed identically zero except
on the reciprocal vector G defined as G.R = m.27, where m is an integer. The function
is therefore related to its Fourier transform by the following relationships:

Une(r) = Y ui(G) e’ T (1.14)
G
1 4
Uk (G) = A Unie(r) e P GT dPr (1.15)
0

In this context, the global electronic wavefunction can also be written as a sum of plane-
waves:

Yaie(r) = (NQ0) 2 ) i (G) € <G~ (1.16)
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From a mathematical viewpoint, the sum appearing in the previous equation is an infinite
one. However, in practical calculations this sum must be restricted to a limited number
of G vectors. The conventional choice is to consider only plane-waves that have a kinetic
energy smaller than a chosen cutoff energy: %|k + G| < Ey.

The plane-wave basis seems only very poorly suited to expand the electronic wave-
functions because a very large cutoff is a priori needed to describe the tightly bound core
orbitals or to follow the rapid oscillations of the valence wavefunctions in the core region
due to the strong ionic potential. In practice, a plane-wave basis set will only become
tractable when considering simultaneously the pseudopotential approximation that will
be described in the next Section. For all electron calculations, other expansions of the
electronic wavefunction must be preferred (LAPW, LMTO...).

The truncation of the infinite basis set at a finite cutoff energy introduces a second
computational error. Similarly to what was discussed for the k-point sampling, the ampli-
tude of such an error can always be reduced by increasing the value of the cutoff energy.

The plane-waves basis has the computational advantage to be associated to convenient
Fast Fourier Transform (FFT). Also, it will be particularly suitable for the calculation
of the response to external perturbations. However, one difficulty arises in practical
calculations at a finite cutoff due to the incompleteness of the basis set. Change in size
of the unit cell will modify abruptly the number G vectors inside the cutoff sphere, and
consequently, the number of plane-wave included in the basis set. As the total energy
is monotonically decreasing with the number of plane-waves, this phenomenon will be
associated to discontinuous jumps in the total energy. The values of the energy for
different unit cells, obtained at a fixed cutoff, are associated to slightly different basis
sets and cannot be directly compared: they require to include a correction factor usually
referred to as a “Pulay correction” [72, 73].

1.5.2 Pseudopotentials

Two major impediments have been identified to the use of a plane-wave basis set. They
were associated to the difficulty (i) of describing the tightly bounded core states and (ii)
of following the rapid oscillations of the valence bands orbitals inside the core region.
We now briefly explain how the first-problem may be avoided within the frozen-core
approximation. The second requires the use of pseudopotentials.

The frozen-core approximation is based on the following observations. In many sit-
uations, the physical and chemical properties of solids are essentially dependent on the
valence electrons. On the other hand, it is expected that the core electrons that do not
directly participate to the chemical bonding are only slightly affected by modifications of
the atomic environment. It may therefore reasonably be expected that the configuration
of the core electrons within the solid is equivalent to that of the isolated atoms. In term
of the density, the frozen-core approximation corresponds to assume that:

n(r) = n®(r) + n,(r) (1.17)

c
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where n°™(r) represents the atomic frozen-core charge density and n,(r) represents the

valence charge density. Within this approximation, the problem of treating the core
electrons is considered as being solved (i.e. it has been solved at the atomic level), while
the study restricts to the investigation of the behaviour of the valence electrons within
the ionic potential, partly screened by the core electrons.

We note that the segregation between core and valence electrons so introduced is not
necessarily similar to that usually considered by chemists, being in fact arbitrary. In
practice, electrons from deep energy levels can always be treated as valence electrons and
the partitioning must be performed in order to validate the frozen-core approximation.
For instance, in our study of BaTiOs, the 5s, 5p and 6s levels of barium, the 3s, 3p and
3d levels of titanium, and the 2s and 2p levels of oxygen have been treated as valence
states. For LiNbQOj3, niobium 4s, 4p, 4d and 5s electrons, lithium 1s and 2s electrons as
well as oxygen 2s, 2p electrons were considered as valence states.

The second problem, associated to the oscillation of the valence wave functions inside
the core region is solved from the pseudopotential approximation. The latter basically
consists in a mathematical transformation in which the ionic potential screened by the core
electrons is replaced by another fictitious potential such that the valence wavefunctions
remain unchanged beyond a given spatial cutoff distance but are replaced by smoothly
varying pseudo-functions inside the core region. The pseudopotential, generated for iso-
lated atoms, is built in such a way that the eigenenergies of the pseudo-problem remain
that of the real system. It is then expected that such a potential is transferable to the
solid or, in other words, that the similarity between the real and pseudo-problem remains
valid whatever the modifications of the ionic environment within which the frozen core
approximation remains valid.

At the beginning, the pseudopotential approach was relatively empirical. Now, it has
become a well-controlled approximation. The potentials are generated from first-principles
atomic calculations [59]. Their construction is submitted to a series of constraints that
ensure their transferability from one chemical environment to another: norm conserva-
tion [74, 75], extended norm conservation [76], chemical hardness conservation [77, 78]. In
this context, the pseudopotential is usually not a local potential anymore but has the more
general form of a non-local operator, commonly of a separable type [79, 80]. Recently,
some progresses were also made for the design of ultra-soft pseudopotentials requiring a
minimum number of plane-waves to expand the wave function [81, 82]. A good overview
of the pseudopotential concept may be found in the review of Pickett [59].

In our calculations on BaTiOj3, we adopted extended norm-conserving, highly trans-
ferable pseudopotential, as proposed by M. Teter [78, 57]. For the oxygen, in order to
increase the transferability, we included a chemical hardness correction [78]. For LiNbOs,
we used usual Troullier-Martins pseudopotentials.
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1.6 Merging of DFT and perturbation theory

Different quantities such as the interatomic force constants, the elastic constants, the
dielectric tensor, the Born effective charges, Raman intensities, phonon-phonon coupling
(...) are related to various derivatives of the total energy of the system with respect
to given perturbations (atomic displacement, macroscopic strain, electric field). As such,
they can be access using a perturbative approach.

For the ground-state, we have seen that it is equivalent to minimize a variational ex-
pression of the energy or to solve the set of KS equations in order to get the ground-state
wave functions, density and energy. Merging these DF'T approaches with perturbation
theory provides two different ways to determined the changes of density and energy in-
duced by a given perturbation.

In a previous section, we have presented two different alternatives to get the Kohn-
Sham total energy of the ground state and associated ground-state density: (i) a mini-
mization of the energy functional, imposing some orthonormalization constraints on the
wave functions, and (i7) the self-consistent solution of the one-particle Kohn-Sham equa-
tions.

Merging these DF'T approaches with perturbation theory provides two different ways
to get the changes of wavefunction, density and energy induced by a given perturbation.
The formulae that yield to this response are quite complex, and beyond the scope of
these notes. They will be not discussed here 2. We will simply mention that the change
of the eigenstates at linear order respect the perturbation can be obtained by: (i) the
minimization of a variational expression for the second derivative of the electronic part of
the total energy [43, 85], orthonormalizing the first-order changes in wavefunctions respect
the ground-state eigenstates (the variational approach), or (i7) solving self-consistently a
set of first-order Sternheimer equations [42, 86, 60] that comes from the expansion of the
set of Eq. refKS equations to first-order (Sternheimer approach).

In principle this perturbative approach can be set up to any order. In practice, calcula-
tions are usually limited to the computation of the first-order change in the wave-functions
allowing to access, thanks to the (2n+1) theorem [87] 4, successive derivatives of the en-
ergy (and related quantities) up to the third order.

1.7 Accessible quantities and usual accuracy

The density functional theory within the usual LDA or GGA approximations allows to
compute various physical properties with more or less accuracy. The basic quantities
directly accessible within DF'T are the ground-state total energy of the system and the
associated total electronic density.

3The reader interested can find further technical details in Ref. [[83, 84]] and references therein.
4This theorem says that the knowledge of the change in the wave functions up to n-order is sufficient
to know the change in the energy up to (2n+1)-order.
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The total energy allows to access to cohesive, surface and interface energies. As previ-
ously mentionned, within the LDA, the cohesive energy is usually badly described being
typically overstimated by 15-20 %. This is due to the fact that this approach is not
suitable enough to deal with isolated atoms, where the charge density is a rapidly vary-
ing function of the position. Consequently the atomic energies, ingredients to calculate
the cohesion energies, are not well reproduced. The values of the cohesion energies are
improved within the GGA aproximation. Nevertheless the error in energy differences
between different structures is much smaller than that in absolute-energy.

Relaxing the atomic degrees of freedom, it is also possible to perform structural op-
timisations and to determine cell shape, bond lengths and bond angles with an accuracy
usually of the order of a few percent (experimental values of the lattice parameters are
usually understimated within LDA by 1-2 %). These optimizations are easily performed
thanks to the calculation of the stress tensor and the atomic forces that are associated to
first derivatives of the energy with respect to the atomic positions or a macroscopic strain
and are therefore directly accessible from the ground-state wave functions thanks to the
Hellmann-Feynman theorem [88, 89].

Electronic density plots can be performed. Moreover, Kohn-Sham band structure are
also usually produce. Let us emphasize that it concerns the dispersion curves of the
fictitious Kohn-Sham particles that have no guarantee to be equivalent to those of the
real interacting electrons of the system (the only guarantee is that both real and fictitious
systems produce the same total density in “exact” DFT). In practice, it is observed that
the valence bands are relatively well described in DFT while the bandgap is usually largely
underestimated. This does not mean that the theory is wrong but that excited properties
such as the bandgap are beyond the scope of DFT which is a ground-state theory.

Using pertubation theory, various quantities related to successive derivatives of the
energy are also accessible. The case of the Born effective charges and interatomic force
constants will be illustrated in the next Chapters. The second derivative, the accuracy
is usually around 5 % with the experimental, except for the optical dielectric constant
which is often overestimated by 20 % in the case of ABO3; compounds °

1.8 Conclusions

To conclude, density functional theory has become a standard for the investigation of
the properties of solids and molecules. It allows to access various physical quantities
with an accuracy usually of few percents. Nowadays, it is considered as a powerfull
tool to complement experimental investigations. It allows to perform “computational
experiments” wherever the required parameters are unreachable, or the design of new
materials with some given desired properties before the real synthesis in the Labs. In the
next Chapters, we will illustrate, through selected examples, how it was useful to clarify
the behavior of ABO3; compounds.

This feature has been related to the lack of polarization dependence of usual local functional [90].
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Chapter 2

Ground-state properties

2.1 Generalities

In spite of their apparent similarities, ABOj3 ferroelectric oxides crystallize in various
forms. At high temperature, they cease to be ferroelectric and they have a highly sym-
metric reference paraelectric structure. When the temperature is lowered, they undergo
one or more phase transitions to ferroelectric states of lower symmetry.

A very important group of ferroelectrics is that known as the perovskites (from the
mineral perovskite CaTiO3). The ideal perovskite corresponds to a simple cubic unit cell
with space group Pm3m and 5 atoms located as illustrated in Fig. 2.1 : if the A atom is
taken at the corner of the cube, the B atom is at the center and there is an oxygen at
the center of each face ; alternatively, if the B atom is taken at the corner, the A atom
appears at the center and O atoms are located at the mid-point of each edge.

Figure 2.1: Two different views of the unit cell of the ABQOjs ideal cubic perovskite stric-
ture. The B atom (grilled pattern) is at the center of an octahedra composed of oxygen
atoms (white pattern). The A atom (dashed pattern) has 12 oxygen first neighbors.

As it appears more clearly in Fig. 2.2, in the perovskite structure, the B atom is at
the center of 6 oxygens first neighbors, arranged at the corners of a regular octahedron.
The octahedra are linked at their corners into a 3-dimensional framework, enclosing large

18
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Figure 2.2: Another view of the ABQOjs ideal cubic perovskite structure.

holes which are occupied by A atoms. Each A atom has 12 equidistant O atoms. Each O
atom is adjacent to 2 B-type and 4 A-type atoms.

The first simple perovskite identified as being ferroelectric is BaTiO3. As KNbOj,
it undergoes a sequence of three ferroelectric phase transitions from cubic to slightly
distorted structures successively of tetragonal, orthorhombic and rhombohedral symmetry.
Some other ferroelectric perovskites that were discovered later (like PbTiOj3) only have
one phase transition to a tetragonal ground-state.

A few substances are also referred to as multiple-cell perovskites. Their ground-state
can be obtained as a distortion of the perfect perovskite but result in a more complex
unit cell containing more than one formula unit. Although it is not impossible for such a
multiple cell to possess polar symmetry, it is physically less probable, and none of these
structures have been shown to be ferroelectric. Some of them are anti-ferroelectric such
as PbZrOs;.

Alternatively to the perovskite family, some ferroelectric oxides, such as LiNbO3, have
a trigonal paraelectric structure. It consists in a rhombohedral unit cell of R3¢ symmetry
with two formula units per unit cell. The positions of the 10 atoms in the rhombohedral
primitive unit cell are shown on Figure 2.3. The threefold axis is formed by a chain of
equidistant A and B atoms. Each B atom is located at the center of an octahedron formed
by 6 oxygen atoms.

As for the perovskites, the trigonal structure is composed of oxygen octahedra con-
taining the B atom and surrounded by the A atoms. However, in this case, both A and
B atoms only have 6 oxygens first neighbors.
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Figure 2.3: Primitive unit cell of the R3c trigonal structure of LiNbOs. Projections (a)
perpendicular and (b) parallel to the three fold axis.

LiTaOj3 has a structure similar to LiNbO3. Both of them undergo a single ferroelectric
phase transition when the temperature is lowered. Their ground-state has a structure of
R3c symmetry that will be described later.

An empirical criterium for the stability of the perfect perovskite-type structure was
put forward by Goldschmidt (1926), based on the rules he had previously derived for ionic
binary compounds. His model is based on the concept of ionic radius and the following
rules : (i) a cation will be surrounded by as many anions as can touch it, but no more;
(ii) all the anions must touch the cations and the anion-cation distance is obtained as the
sum of their ionic radii.

The perovskite structure is fully determined by the size of the oxygen octahedra con-
taining the B atoms, while the A atoms must fit the holes between the octahedra. Fol-
lowing the rules of Goldschmidt, this condition provides an ideal relation between ionic
radii :

rA4+Tro :\/5(1"3—1—7“0). (2.1)

In practice, this cannot always be exactly satisfied and the deviation can be measured
through a tolerance factor ¢ defined as follows :

fj__Tatro (2.2)

V2(rp +10)

Goldschmidt has shown that the perovskite structure is formed when the above con-
dition is satisfied (¢ &~ 1). When ¢ > 1, the structure is imposed by the A O distance
and the B atom is to small for the oxygen octahedron so that the structure will evolve
to a small polar distortion as in BaTiO3. At the opposite, when ¢t < 1, the A atom is
small in comparison to the hole between the oxygen octahedra : the A atom cannot afford
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bonding with 12 neighboring O atoms and the compound will evolve to a structure with
only 6 neighbors for the A atom as in LiNbOj.

The lattice constants and atomic positions of the ABO3; compounds can be experi-
mentally determined and numerous data are available. A structural optimization is also
easily performed within density functional theory (DFT). As discussed in Chapter , it
basically consists in determining the atomic configuration which minimizes the total en-
ergy of the system (or its electric enthalpy for the polar phases). The calculation is based
on the computation of three quantities directly accessible from the ground-state elec-
tronic wavefunctions : the total energy and its first-order changes with respect to atomic
displacements (the forces) and to macroscopic strains (the stress tensor).

In the remaining part of this section, we focus on the structure and electronic properties
of two prototype compounds : BaTiO3 and LiNbOj3. We describe the results we have
obtained with the ABINIT package ', a standard code for plane-wave/pseudopotential
DFT calculations. Structural relaxations have been performed within the local density
approximation (LDA) except when it is explicitely mentionned. Technical details are
reported in Ref. [91] for BaTiO3 and Ref. [92] for LiNbOj.

2.2 Crystal structure

2.2.1 Barium titanate

As previously stated, barium titanate cristallizes at high temperature in a paraelectric
cubic perovskite structure (Pm3m). When the temperature is lowered, it undergoes a
sequence of 3 ferroelectric phase transitions (Fig. 2.4).

Around 130°C, its structure transforms from cubic to tetragonal (P4mm). This phase
remains stable until about 5°C, where there is a second transformation to a phase of
orthorhombic symmetry (Pmm2). The last transition arises around —90°C. The low tem-
perature ferroelectric phase is thombohedral (P3m1). Each transition is accompanied
by small atomic displacements and a macroscopic strain. In the successive ferroelectric
phases, the polar axis is aligned respectively along the <100>, <110> and <111> di-
rections corresponding to the direction of the atomic displacements with respect to their
position in the reference cubic structure.

Paraelectric phase

In the cubic phase of BaTiO3, the positions of the atoms in the unit cell are imposed by
symmetry. Choosing the barium atom as reference, the atomic positions are (in reduced
coordinates):

Ba : (0.0,0.0,0.0)
Ti : (0.5,0.5,0.5)

LABINIT is a powerful DFT code developped in collaboration by different groups all over the world. It
is a free package accessible at the URL : http://www.abinit.org.
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Figure 2.4: The 4 phases of BaTiO3

O, : (0.5,0.5,0.0)
O, : (0.5,0.0,0.5)
O; : (0.0,0.5,0.5)

During a structural optimization performed from first-principles, the only degree of free-
dom that must be relaxed is therefore the lattice parameter a,. Its equilibrium value
can be determined as the one which minimizes the total energy. Equivalently, it can be
obtained as the value for which the hydrostatic pressure on the material is zero 2.

The results of our calculations are presented in Figure 2.5. We deduce for the equilib-
rium lattice parameter a value of 3.943 A. This result is similar to that reported from other
previous LDA calculations (a,=3.94 A from Ref. [93], a,=3.95 A from Ref. [94]). It only
slightly underestimates the experimental lattice constant of 4.00 A. We note that a better
agreement can be obtained within a “weighted density approximation” (WDA) [66, 95].
The bulk modulus, deduced from the curvature of the energy around its minimum, is val-
ued at 189 GPa, in close agreement with another value of 188 GGPa, deduced from results
reported by King-Smith and Vanderbilt [96].

For the cubic phase, the cohesive energy has also been obtained as the difference
between the energy per unit cell of the solid and the energy of the respective free atoms.
At the experimental volume, we estimated F.., at —38.23 eV /cell. A previous value equal
to —31.16 eV/cell was reported by Weyrich and Siems [97, 32]. The better agreement
of their result with the experimental value of -31.57 eV /cell is probably accidental, since

2Within the plane-wave technique we have used, the second approach requires an additional “Pulay
correction” [73] in order to compensate for the incompleteness of the finite basis set
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Figure 2.5: Determination of the optimized lattice constant of cubic BaTiOs.

Weyrich and Siems determined the free atom energies from non-spin-polarized LDA. In
our case, the spin-polarized correction decreased the value of E.., by 5.17 eV/cell.

Let us mention that the small underestimate of the lattice constant and the overesti-
mate of the cohesive energy we have reported above are typical of the LDA and similar
to what is also achieved on other ABO3; compounds.

Ferroelectric phases

In the ferroelectric phases, the specification of the unit cell requires more than one pa-
rameter. Moreover, the ionic positions are not fully determined by symmetry, but must
be relaxed simultaneously. The tetragonal, orthorhombic and rhombohedral structures
contain respectively 5, 6 and 5 atomic degrees of freedom.

A full structural optimization requires to relax together all these different degrees of
freedom. However, as it was pointed out by many authors [93, 98, 94, 99|, the ferroelectric
instability of ABO3 compounds is strongly sensitive to the volume. In this context,
the volume underestimation within the LDA, albeit small, appears problematic. We
attempted a full relaxation of the rhombohedral phase. However, in the final optimized
structure, the ferroelectric instability had nearly disappeared: due to the underestimate
of the lattice constant, the shift of the atoms from their centrosymmetric position became
anomalously small.

It was observed that the correct simulation of different properties of ABO3 compounds
(like the phase transition temperature [20]) requires to work at the experimental lattice
constants rather than at the LDA optimized one. As they are accurately obtained from X-
ray diffraction data [100], in the following calculations, we chose to adopt the experimental
lattice parameters. We note that results obtained by Singh [66] raise the hope that
problems associated to the LDA underestimate of the optimized volume are solved when
using a weighted density approximation (WDA).

In our computations, all the atomic positions have been relaxed concurrently until
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Table 2.1: Notation of atomic positions (in reduced coordinates) in the three ferroelectric
phases of Ba'TiOs, used in Tables 2.2 2.3 2.4.

Phase Atom Position
Tetragonal Ba (0.0, 0.0, 0.0)

Ti (0.5, 0.5, 0.5+ Aq_1;)

0, (0.5, 0.5, 0.0+Ar_o1)

0, (0.5, 0.0, 0.5+ A7)

O3 (0.0, 0.5, 0.5+ A7)
Orthorhombic ~ Ba (0.0, 0.0, 0.0)

Ti (0.5, 0.5+ Ao 71, 0.5+A0 1)

0, (0.5, 0.5+A0_01, 0.04A0_02)

O (0.5, 0.0+ A0_02, 0.5+A0_01)

O3 (0.0, 0.5+ A0 03, 0.54A0_03)
Rhombohedral ~ Ba (0.0, 0.0, 0.0)

Ti (O.5+AR,TZ', 0-5+AR7T1" O.5+AR,TZ')
O, (0.5+Ag 01, 0.54+Ar 01, 0.0+AR_02)
Oy  (0.54Ag 01, 0.0+AR 092, 0.54+Ar 01)
O3  (0.0+A%r 02, 0.5+Ar 01, 0.5+AR 01)

the residual forces on the atoms are smaller than 10~° Hartree/bohr. Similar theoret-
ical optimizations of atomic positions were reported previously for the tetragonal and
rhombohedral symmetry [94], but keeping the lattice parameters of the cubic phase. In
the present work, we perform the structural optimization at the experimental lattice pa-
rameters corresponding to each phase. Moreover, for the tetragonal and rhombohedral
symmetry, we also investigate the influence of the macroscopic strain, associated to the
phase transitions. Our calculations have been performed on a 6 x 6 x 6 mesh of special
k-points, that was checked by different authors to be sufficiently accurate [94, 101].

The notations adopted for the atomic positions in reduced coordinates are reported
for the different phases in Table 2.1. The Ba atom has been chosen as the reference and
remains localized at (0,0,0). In each phase, the Ti atom is slightly displaced from its
central position, along the polar axis. Due to the symmetry, only two oxygen atoms are
equivalent in the tetragonal (Oy and Ojz) and orthorhombic (O; and O,) structures. In
the rhombohedral phase, all the oxygen are equivalent, as in the cubic phase. Results of
the optimization are reported in Table 2.2, Table 2.3, and Table 2.4.

In the orthorhombic structure (Table 2.3) our atomic positions compare well with the
experiment. We probably slightly overestimate the Ti atom shift. However, there is a
large spread in the experimental Ti displacements, reported by Kwei et al. [100], so that
part of the observed discrepancy should be attributed to the experimental uncertainty.

For the rhombohedral phase (Table 2.4), our results are close to those of King-Smith
and Vanderbilt [94]. The difference observed for Ag o could be due to the better accu-
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Table 2.2: Lattice parameters (A) and atomic displacements (see Table 2.1) in the tetrag-

onal phase of BaTiOj.

agp Co Ar_1i  A7r_on Ar_oo Reference
3.994 4.036 0.0143 —0.0307 —0.0186 Present
3.986 4.026 0.015 —0.023 —0.014 Ref. [102]
3.994 4.036 0.0215 —0.0233 —0.0100 Ref. [100]

0.014 —0.0249 —0.0156 Ref. [103]

0.0135 —0.0250 —0.0150 Ref. [104]
- - 0.0135 —0.0243 —0.0153 Ref. [105]
4.00 4.00 0.0129 -0.0248 -0.0157 Present
4.00 4.00 0.0138 -0.0253 -0.0143 Ref. [94]

Table 2.3: Lattice parameters (A) and atomic displacements (see Table 2.1) in the or-

thorhombic phase of Ba'TiO;.

Present Ref. [100] Ref. [100] Ref. [102]
ag 3.984 3.984 3.981 3.990
by 0.674 5.674 5.671 5.669
Co 0.692 5.692 5.690 0.682
Ao_7;  0.0127 0.0079 0.0143 0.010
Ao_o1 —0.0230 —0.0233 —0.0228 —0.016
Ao_02 —0.0162 —0.0146 —0.0106 —0.010
Ao o3 —0.0144 —0.0145 —0.0110 —0.010

Table 2.4: Lattice parameters (A) and atomic displacements (see Table 2.1) in the rhom-

bohedral phase of BaTiOs.

g o Ar_7i Agr_o1 Ag_09 Reference
4.001 89.87° —0.011 0.0133 0.0192 Present
4.001 89.87° -0.013 0.011  0.018 Ref. [105]
4.004 89.87° —0.011  0.011  0.018 Ref. [106]
4.003 89.84° —0.013 0.011  0.019 Ref. [100]
4.00  90.00° —0.011 0.0129 0.0191 Present
4.00  90.00° —0.012 0.0105 0.0195 Ref. [94]
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racy imposed in our calculation 3. In addition, it is observed that the macroscopic strain,
small for this phase, has no influence on the atomic positions.

On the contrary, for the tetragonal distortion (Table 2.2), we observe that the elonga-
tion of the c axis favors a larger displacement of the Ti and O atoms. This result confirms
the important role of the macroscopic strain in the stabilization of the tetragonal struc-
ture [98, 107]. Keeping the lattice parameters of the cubic phase, our displacements are
close to those deduced by King-Smith and Vanderbilt, and in good agreement with experi-
mental data. However, considering the experimental tetragonal unit cell, we overestimate
the atomic displacements of Ti and O atoms. Similarly to the underestimation of the
lattice constant, this feature should be assigned to the LDA, which usually shortens the
bond lengths. This problem might be more stringent for the tetragonal structure for
which the Ti displacements are along a rather covalent bond.

2.2.2 Lithium niobate

Contrary to barium titanate, LiNbOj crystallizes at high temperature in a paraelectric
structure of trigonal symmetry (R3c). When the temperature is lowered, it undergoes
at 1480 K a phase transition to a ferroelectric ground state of R3c symmetry. The fer-
roelectric phase corresponds to a small distortion of the paraelectric state. Both phases
are thombohedral with 10 atoms in the unit cell. Their geometry can be described using
the primitive (rhombohedral) unit cell as mentionned previously in this Chapter. Alter-
natively, we can also consider a non-primitive hexagonal unit cell. This is the most usual
choice in the litterature which is therefore also adopted in the following part of this Sec-
tion. In the discussion of our results, the symbols a and ¢ correspond to the lengths of the
basis vectors of the hexagonal unit cell and the atomic positions are given in hexagonal
coordinates.

Paraelectric phase

The paraelectric phase belongs to the space group R3c. The positions of the 10 atoms in
the primitive rhombohedral unit cell were illustrated in Fig. 2.3. This unit cell is defined
by 3 vectors a’, b” and ¢’ of length a” and forming angle o’. Here, instead, we will consider
an hexagonal unit cell, build from the vectors a, b and ¢ and related to the primitive one
as sketched on Fig. 2.6. The ¢ vector is aligned along the three fold axis. The a and b
axis are perpendicular to it , have both the same length and define and angle of 120°.

In Fig. 2.7, we show the atomic positions in the hexagonal unit cell. As in Fig. 2.3,
we have chosen views in directions perpendicular and parallel to the three fold axis. In
Fig. 2.8 we show another view in a direction perpendicular to the b and ¢ vectors in
which LiNbOj3 appears composed of alternative planes of atoms. One is composed of Nb

3Contrary to us, King-Smith and Vanderbilt only relaxed the atomic positions until forces are less
than 1073 Hartree/Bohr. This criterion seems not sufficient to guarantee a well converged result, since
the forces computed at the experimental atomic positions are already of the order of 1073 Hartree/Bohr.
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Figure 2.6: Hexagonal and rhombohedral unit cell of LiNbO;
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Figure 2.7: Atomic positions in the hexagonal unit cell of LiNbOs. Views in directions
perpendicular and parallel to the three fold axis.
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atoms while the other one is contains both Li and O atoms. Two successive planes are
separated by a distance ¢/12.
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Figure 2.8: Atomic positions in the hexagonal unit cell of LiNbO3. View in a direction
perpendicular to b and ¢ vectors.

In summary, from Fig. 2.3, LiNbOj3 can be viewed as Nb-Li chains along the three-fold
axis, with each Nb at the center of an oxygen octahedra. Alternatively, from Fig. 2.8,
it can also be considered as alternating planes along the three-fold axis : the first one is
composed of Nb atoms while the other one contains both Li and O atoms.

In Table 2.5, we define the parameters that determine the atomic positions by reporting
the hexagonal coordinates of five atoms of the rhombohedral unit cell. The coordinates
of the other atoms can easily be obtained by using the symmetry operations of the space
groups R3c and R3c.

In the paraelectric phase, the positions of the niobium and lithium atoms are fixed
by symmetry while the positions of the oxygen atoms are determined by the internal
parameter z. The results of our structural optimizations are summarized in Table 2.6.
They are compared to the results obtained by Parlinski et al. [108] and Caciuc et al. [109]
as well as to the experimental values deduced from neutron diffraction on a powder [110].
The calculations have been performed with two different exchange-correlation functionals.
The GGA gives the closest agreement with the experiment whereas our LDA results
present errors similar to those of the previous DFT calculations (also performed within
the LDA).
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Table 2.5: Atomic positions (in hexagonal coordinates) in the two phases of litihium
niobate

Phase Atom Position

Paraelectric Nb; ( 0, 0, 0 )
Li; ( 0, 0, i)
O ( —%, —% + z, % )
09 ( % -, —x, % )
S T

Ferroelectric Nb; ( 0, 0, 0 )
Li; ( 0, 0, 1+z )
O, ( —3—u —34v, S—w )
O, ( 3-v, —u—v, H—-w )
O3 ( u+v, 3+u, HS-w )

Table 2.6: Lattice constants and atomic position parameter x (see Table 2.5) in the
paraelectric phase of lithium niobate.

a(A)  c¢(A) T
Exp. [110] 5.289 13.848 0.060
Cale. (LDA) [109]  5.138 13.499 0.049
Cale. (LDA) [108]  5.097 13.708 0.036
Present (LDA) 5.125 13.548 0.042
Present (GGA) 5.255 13.791 0.048
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Ferroelectric phase

The ferroelectric phase belongs to the space group R3c. It corresponds to a small dis-
tortion of the paraelectric phase as illustrated in Fig. 2.9 where the arrows indicate the
atomic displacements at the phase transition.

(a) | (b)
| A

.{t‘
¢ ® Nb
¢ Li
i O

Figure 2.9: Atomic displacements during the ferroelectric phase transition of LiNbOs.

During the structural optimizations, we held the niobium Nb; atom fixed at the origin.
The coordinates of the lithium and oxygen atoms are reported in the lower part of Table
2.5. Our results for the ferroelectric phase are summarized on Table 2.7. As for the
paraelectric phase, our values are close to those of Parlinski et al. [108]. Again, we tried
to improve the accuracy of the calculation using the GGA. However, this does not yield
a significative improvement: looking for example at the value of the parameter a, we
observe that the GGA tends to overcorrect the errors of the LDA, a fact already observed
in this kind of calculations [111, 112].

Comparing Table 2.6 and 2.7, we see that our values for the lattice parameters are
in better agreement with the experiment for the ferroelectric than for the paraelectric
phase. A possible explanation is that within our calculation is artificially performed at 0
K and we thus neglected the effects of the thermal expansion. As the paraelectric phase
of lithium niobate is only stable above 1480 K, these effects are more important for this
phase than for the ferroelectric one and the calculated parameters tend to be smaller than
the measured ones.

2.3 Chemical bond and electronic structure

ABOj3 compounds are usually classified as ionic materials. As such, barium titanate
is sometimes consider in simple models as a Ba2+T7Z4+O§2 crystal. If this picture is
essentially true, we must emphasize that on top of their main ionic character, the ABO3
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Table 2.7: Lattice constants and atomic position parameters (see notations of Table 2.5)
in the ferroelectric phase of lithium niobate.

a(A) c(A) z u v w
Exp. [110] 5.151 13.876 0.0329 0.00947 0.0383 0.0192
Cale. (LDA) [108] 5.086 13.723 0.0350 0.01497 0.0247 0.0186
Present (LDA) 5.067 13.721 0.0337 0.01250 0.0302 0.0183
Present (GGA) 5.200 13.873 0.0318 0.00973 0.0382 0.0199

compounds also present some covalent features. In the next Chapters, we will see that
it is precisely this small covalent interaction and the mixed ionic-covalent nature of their
bonding which is at the origin of their interesting properties.

A first empirical indication of the partial covalent character of their bonding arises
from the inspection of the lattice constants. On the basis of tabulated values for the
ionic radii (corrected by the appropriate coordination corrections proposed by Pearson)
it is possible to deduce a lattice constant of 4.16 A for BaTiOs. This result significantly
overestimates the experimental value around 4.00 A, therefore suggesting that the bond
length has been shortened by partial covalent interactions and that the bonding is not
purely ionic.

A better and more complete insight on the electronic properties of ABO3; compounds
can be obtained from the inspection of their electronic band structure. In what follows,
we discuss the Kohn-Sham electronic band structures of BaTiO3 and LiNbO3 as they were
computed for the different optimized structures.

2.3.1 Barium titanate

In Figure 2.10, we show the electronic band structure of the cubic phase of BaTiOj3. Its
shape corresponds to that expected for a rather ionic material. It is globally composed of
well separated sets of bands, located in the same energy regions than the different orbitals
of the isolated atoms. Each of these sets of bands has a marked dominant character and
is labeled by the name of the atomic orbital that mainly composes this energy state in
the solid.

The position of the different energy levels can be compared to the experimental
data [113]. The results presented in Table 2.8 show a good agreement with the ex-
perimental findings, despite a systematic underestimation of the energy separation from
the valence edge, a well-known characteristics of the LDA.

As previously mentionned, in spite of its mainly ionic character, BaTiO3 has also
some covalent features. First, there is a well-known hybridization between O 2p and
Ti 3d orbitals. The four electrons of the Ti 3d orbitals are not completely transferred
to the oxygen atoms, but remain partly delocalized on Ti. This clearly appears from
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Table 2.8: Top, middle and bottom values (eV) of the different electronic bands of cubic
and rhombohedral BaTiOs.

Band Ref. [113] Cubic Rombohedral
Ti 3d R +4.23 R +4.49
+2.98 +3.39
r +1.72 r +2.29

O 2p 0.0 R 0.00 R 0.00

—2.27 —2.21
—95.9 ' —454 r —4.42
Ba 5p A 941 X —940
—12.2 —10.02 —10.02
R —-10.63 R —10.61
O 2s X —15.56 X —15.52
—18.8 —16.20 —16.15
X -16.84 X —-16.78
Ba 5s R —24.46 R 2445
—27.0 —24.60 —24.59
I —24.73 o =24.72
Ti 3p M 3247 r —-3222
—34.4 —32.50 —32.25
X —32.53 X —32.28
Ti 3s R —55.89 R —55.60
—55.89 —95.60

' —55.89 ' —55.60
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Figure 2.10: (a) Brillouin zone of cubic BaTiOj;. (b) Kohn-Sham electronic band structure
of cubic BaTiO3 along different high symmetry lines of the Brillouin zone.

the inspection of the static ionic charges, obtained by integrating the electronic density
around each atom : the Ti charge is not of +4 but rather 2.50 3.00 [93, 114, 115].

In terms of band theory, the incomplete transfer of Ti 3d electrons to the oxygen ions
means that there is some admixture of Ti 3d character to the O 2p bands. This feature
was already clearly identified from the overlap integrals in early LCAO band structure
calculations on ABOj3 compounds [116, 117]. It was often considered as an essential
feature to explain the ferroelectricity in these materials [22]. It was confirmed by recent
experiments [113] and was also clearly illustrated from DFT by the analysis of partial
density of states (DOS) [97, 98, 107].

Less spectacular, the hybridization between Ba 5p and O 2p orbitals is sometimes
controversial. In simple models, Ba is indeed usually considered as ionic in BaTiO3. The
interaction of Ba with other atoms was however detected in LCAO calculations [118],
and even in DFT from partial DOS [97, 98]. Tt was discussed by Pertosa and Michel-
Calendini [118] who have shown that it has only small consequences on the band structure.
However, it might have a more significant influence on other properties. For instance, it
was suggested that its presence should enhance the Ti-O interaction [119]. More recently,
it was also invoked to explain the origin of some non-negligible contributions to the Born
effective charges [120], as it will be discussed in the next Chapter.

The computed bandgap is indirect (R — I') in cubic BaTiO3 and equal to 1.72 eV. The
direct gap at I" is of 1.84 eV. However, these values cannot be compared to the experiment
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due to the DF'T bandgap misfit *.

Due to a different reason, the identification of the experimental value of the bandgap
was also for long under discussion. In ABOj; perovskite materials, the interband ab-
sorption edge displays Urbach-rule behaviour [121]: the absorption coefficient increases
exponentially with increasing photon energy, so that no uniquely defined bandgap can
be extracted from absorption measurements. A realistic value of 3.2 eV was nevertheless
estimated by Wemple [121] in the cubic phase. It was attributed to the direct gap at the
[ point [122].

Going now from cubic the rhombohedral structure (Figure 2.11), significant changes in
the bands are observed, especially when considering the small atomic displacements and
macroscopic strains involved in the phase transition. First, the energy gap increases from
1.72 eV to 2.29 eV. This evolution is consistent with an intensification of the O 2p Ti 3d
hybridization, as expected when going from the cubic to a ferroelectric phase [33]. Such a
trend in the hybridization was confirmed from partial DOS for rhombohedral KNbO3 and
KTaOs3 [99]. As for BaTiOg, it was accompanied in that compounds by a small reduction
of the O 2p bandwidth. Moreover, we observe a small but significant chemical shift of
the Ti 3s (0.25 eV) and Ti 3p (0.29 eV) bands with respect to the Ba and O levels. This
feature corroborates a modification of the electronic environment of the Ti atom in the
rhombohedral structure.

The reinforcement of the covalent character is not a particular feature of the rhom-
bohedral phase. A modification of the O 2p — B d hybridizations have been observed
in the tetragonal structure of different ABO3 compounds [33, 98]. For indication, in our
calculation, the indirect gap between A and I' becomes equal to 2.27 eV in the tetragonal
phase. A similar evolution is expected when going from the cubic to the orthorhombic
phase.

2.3.2 Lithium niobate

In Figure 2.12, we report the Kohn-Sham band structure of the paraelectric phase of
lithium niobate obtained within the LDA. The notations of the high symmetry points
between which we have drawn the band structure correspond to those chosen in Ref.
[[123]]. As for BaTiOj3, we observe the presence of well separated groups of bands. Each
of these groups has a marked dominant character and has been labeled by the name of
the atomic orbital that mainly composes this energy state in the solid.

As previously discussed by Inbar and Cohen [124, 125], the chemical bonding in lithium
niobate has also a mixed covalent-ionic character. The Nb 4d and O 2p atomic orbitals
strongly interact to form the valence and conduction bands near the Fermi level while
the Li atoms completely loose their 2s electrons. In other words, the bonding between
niobium and oxygen atoms has a non-negligible covalent character while the bonding with
the lithium atoms is essentially ionic.

4The bandgap problem is a well-known feature of the DFT [58]. Let us recall that this discrepancy
only concerns the excitation energies; it does not influence the accuracy obtained on the ground-state
properties, that should be obtained correctly within DFT.
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Figure 2.11: Comparison of the Kohn-Sham electronic band structure of cubic and rhom-
bohedral BaTiO3 along different high symmetry lines of the Brillouin zone.
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Figure 2.12: (a) Brillouin zone of the paraelectric phase of LiNbOs. (b) Kohn-Sham
electronic band structure in the paraelectric phase of LiNbOs calculated within the LDA.

The transition to the ferroelectric state mainly affects the bands in the region close to
the Fermi level. In LDA, the indirect bandgap E, increases from 2.60 to 3.48 eV and the
spread of the O 2p bands reduces from 5.06 to 4.71 eV (Fig. 2.13). In GGA, we obtained
similar values for E; (2.51 and 3.50 eV) while the O 2p group is narrower than in LDA
in both the paraelectric (4.80 eV) and the ferroelectric phase (4.48 eV). We note that, in
spite of the well known DFT bandgap problem [58], the values of the E, in the ferroelectric
phase only slightly underestimate the experimental value of 3.78 eV [126]. For the deeper
bands the spread remains unaffected at the transition while the position with respect to
the top of the valence band is slightly shifted to higher energies. We conclude that the
only significant effect of the phase transition on the electronic properties is to modify the
hybridizations between O 2p and Nb 4d orbitals.
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Figure 2.13: Kohn-Sham electronic band structure in the paraelectric (lines) and ferro-
electric (dots) phases of LiNbOj calculated within the LDA.

2.4 Conclusions

To summarize, most ABO3 compounds cristallizes in the perovskite structure but some of
them, for which the tolerance factor of Goldschmidt is significantly smaller than 1, adopt
a trigonal symmerty. In all cases, the ferroelectric phase corresponds to a slight polar
distortion of the paraelectric reference structure.

The bonding in this class of compound is essentially ionic. However, it also exhibits
some covalent features. These essentially consist in a non-negligible hybridization between
B-metal d levels and oxygen 2p orbitals. At the phase transitions, there is an increase of
the bandgap and a narrowing of the O 2p and metal d bands.

2.5 References

A extensive review of the properties of ferroelectric compounds is given in :

o M. E Lines and A. M. Glass, Principles and applications of Ferroelectrics and related
materials, Ed. by W. Marshall and D. H. Wilkinson, Clarendon Press, Oxford
(1977).

The results presented in this Chapter have been discussed in the following references:



CHAPTER 2 : GROUND-STATE PROPERTIES 38

o Ph. Ghosez, X. Gonze and J.-P. Michenaud, Structural and electronic properties of
barium titanate from first-principles, Ferroelectrics 220, 1-15 (1999).

o M. Veithen and Ph. Ghosez, First-Principles study of the dielectric and dynamical
properties of lithium niobate, Phys. Rev. B, in press (to appear in 2002).



Chapter 3

Static and dynamical ionic charges

3.1 Introduction

For a long time, there has been a continuing interest in the definition of atomic charges
in solid state physics as well as in chemistry [127, 128, 129, 130]. This interest lies essen-
tially in the fact that the concept of atomic charge naturally arises in a large diversity
of frameworks and is frequently helpful for a simple description of solids and molecules.
The variety of contexts in which the charge is involved (IR spectrum analysis, XPS chem-
ical shifts analysis, theory of ionic conductivity of oxides, determination of electrostatic
potential, definition of oxidation states...) underlines its central role but also reveals a
concomitant problem: inspired by various models or by the description of various physical
phenomena, many different definitions have been proposed that, unfortunately, are not
equivalent [130].

Following a distinction already made by Cochran [127], it seems possible to classify
the different concepts into static and dynamical charges. The static charge is an intuitive
concept, usually based on a partitioning of the ground-state electronic density into con-
tributions attributed to the different atoms. It is an ill-defined quantity that depends on
the convention artificially chosen to affect a given electron to a particular ion [127, 128].
On the other hand, the dynamical charge is directly related to the change of polarization
(or dipole moment, for molecules) created by an atomic displacement. This change of
polarization is a quantity that can be experimentally measured, at least in principles,
giving the dynamical charge a well-defined character.

In order to clarify the concept of atomic charge, it was important to compare on
practical examples the numerical results obtained from its different definitions. Recent
studies of the statistical correlation between various atomic charges using a principal
component analysis have suggested that the different definitions are not independent but
correspond to different scales driven by a unique underlying physical factor [130]. If this
assertion seems plausible as far as static charges are concerned, we will argue that the
dynamical charge should not reduce to the same physical factor but should also depend
on an additional parameter: the rate of transfer of charge, influenced by the bonding
with the other atoms of the system and additionally, for large systems, by the condition

39
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imposed on the macroscopic electric field.

The Born effective charge tensor Z*(7)  alias transverse charge , that is at the cen-
ter of the present Chapter, is a dynamical quantity introduced by Born [131] in 1933.
In solid state physics, it is since a long time considered as a fundamental quantity be-
cause it monitors the long-range Coulomb interaction responsible of the splitting between
transverse and longitudinal optic phonon modes [131]. During the seventies, the Born ef-
fective charges were already investigated and discussed within empirical approaches (see
for example Harrison [132]). More recently, they became accessible to first-principles
calculations [42, 43, 35|, and accurate values have been reported for a large variety of
materials.

For the case of ABO3 compounds, old experimental data [133] and empirical stud-
ies [132] had suggested that the amplitude of the Born effective charges should deviate
substantially from the amplitude of the static atomic charge. Surprisingly, this result
remained in the dark until first-principles calculations confirmed that the components of
Z*1) are anomalously large in these oxides [134, 135, 136]. It was observed that the com-
ponents of Z*(T) can reach twice that of the nominal ionic charges. This result reopened
the discussion on the physics of the Born effective charges and different recent studies
tried to clarify the microscopic processes monitoring the amplitude of Z*(7).

In this Chapter, we first clarify the relationship between various atomic charges. We
then present results concerning BaTiO3 and SrTiOjz in order to illustrate how a careful
analysis of the Born effective charges can teach us interesting physics concerning these
compounds. It reveals the mixed ionic and covalent character of the bond [137, 138].
It allows to visualize the mechanism of polarization as electronic currents produced by
dynamical changes of orbital hybridizations [132, 138]. It also clarifies the origin of the
giant destabilizing dipole-dipole interaction producing the ferroelectric instability of these
materials [53].

In Section II and III, we contrast the concepts of static and dynamical charges and
we reintroduce the Born effective charge that is at the center of the present discussion.
In Section IV, we compare various results obtained within different frameworks for the
paraelectric phase of BaTiO3, SrTiO3z and LiNbO3. We also discuss the origin of the large
anomalous contributions in terms of local electronic polarizability and dynamical changes
of orbital hybridization. A decomposition of the role played by the different bands is
reported in Section V. Section VI is devoted to the evolution of the Born effective charges
in the three ferroelectric phases of BaTiO3 as well as in the cubic phase under hydrostatic
pressure. This points out the role of the anisotropy of the atomic environment on the
amplitude of Z*(*). Finally, in Section VII, we report the evolution of the effective charges
all along the path of atomic displacements from the cubic to the rhombohedral phase and
we estimate the spontaneous polarization of the three ferroelectric phases of BaTiOs;.
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Table 3.1: Static charges of BaTiO3 in the cubic structure.

Z Ba Zi Z Reference

Nominal +2 +4 -2

Empirical models +2.00 +0.19 —-0.73 Ref. [132
+1.40 +2.20 —1.20 Ref. [139
+2.00 +1.88 —1.29 Ref. [140

+1.48 +1.86 —1.11 Ref. [142
+2.00 +1.86 —1.29 Ref. [143
First-principles calculations 42.00 +2.89 —1.63 Ref. [93]
1212 4243 152 Ref. [114]
4139 4279 ~1.39 Ref. [115]

- [132]
o
+1.86 +3.18 —1.68 Ref. [141]
- [142]
. [143]

3.2 The concept of static charge

Intuitively, the atomic charge may first appear as a static concept. The charge asso-
ciated to an isolated atom is a well-defined quantity. The purpose of defining static
atomic charges is therefore to extend this notion to molecules and solids. For these cases,
the challenge basically consists to replace the delocalized electronic density by localized
point charges associated to each atom. This could a priori be performed from electronic
density maps obtained experimentally or theoretically. However, as already mentioned
by Mulliken [128] in 1935, “there are some difficulties of giving exact definition without
arbitrariness for any atomic property”. During the seventies, Cochran [127] similarly
emphasized that the partition of the electronic distribution into atomic charges can only
be done unambiguously when “boundary can be drawn between the ions so as to pass
through regions in which the electron density is small compared with the reciprocal of
the volume inclosed”. This is never the case in practice, and especially when there is
appreciable covalent bonding. For most of the solids and molecules, there is consequently
no absolute criterion to define the static atomic charge and a large variety of distinct
definitions have been proposed that are not necessarily quantitatively equivalent (see for
instance Ref. [129, 130]).

As an illustration, different approaches have been considered in order to evaluate the
amplitude of the static atomic charges of barium titanate. Some results are summarized
in Table 3.1, where different atomic charges are reported in comparison with the nominal
charges expected in a purely ionic material (+2 for Ba, +4 for Ti, -2 for O). Some of
them were obtained from empirical models; others were deduced from first-principles. The
static atomic charges of Ref. [132] were deduced by Harrison within his bond orbital model
using universal parameters and neglecting the interactions with the Ba atom. The atomic
charges reported by Hewat [139] were approximated from a model initially designed by
Cowley [144] for SrTiO3. The charges reported by Khatib et al. [141] have been obtained
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in a shell-model context. In two references, Turik and Khasabov [142, 143] estimated the
charges from the Madelung constant thanks to a fit of the crystal energy with shell-model
parameters. Michel-Calendini et al. [140] proposed charges from a population analysis of
the Xa electronic distribution of a TiOg cluster, assuming a charge of 42 on Ba. Cohen
and Krakauer [93] deduced the atomic charges from a fit of the DFT-LDA electronic
distribution by that of overlapping spherical ions (generated according to the potential
induced breathing model) for different ionic configurations. Xu et al. [114] reported values
deduced from a Mulliken population analysis of a self-consistent OLCAQO calculation '. In
another reference [115], Xu et al. proposed different values by integrating the electronic
charges in spheres centered on the ions, and partitioning rather arbitrarily the remaining
charge outside the spheres following a method proposed in Ref. [145, 146].

The results of Table 3.1 are not quantitatively identical and illustrate that there is
no formal equivalence between the different procedures used to define the atomic charge.
However, in agreement with an analysis reported by Meister and Schwartz [130] for the
case of molecules, we observe that the values of Table 3.1 have some common features, sug-
gesting that the different charges are not independent but should correspond to different
scales driven by a common factor.

In particular, all the calculations reveal that the charge transfer from Ti to O is not
complete. If BaTiO3 was a purely ionic crystal, the 3d and 4s electrons of Ti would be
entirely transferred to the oxygen atoms, yielding a charge of +4 on titanium. However,
due for instance to the partial hybridization between O 2p and Ti 3d states [119, 113,
117, 147, 148, 97, 98], these electrons remain partly delocalized on the Ti atom so that
the static charges on the Ti and O atoms are smaller than they would be in a purely
ionic material. This delocalization is illustrated in Figure 3.1, where we have plotted the
partial electronic density associated to the O 2p bands. For the Ba atom, the situation
is not so clear than for titanium but most of the studies suggest similarly that the 6s
electrons are not fully transferred to the oxygen.

From the previous examples, it is clear that, strictly speaking, the static charge does
not give a quantitative information. In the study of mixed ionic-covalent compounds,
it remains however a useful concept to discuss qualitatively the transfer of charges from
one atom to the other. As a general rule, the partial covalence reduces the amplitude
of the static charge. Comparison of a specific static charge in the different phases of a
given material or in different compounds can therefore give a relevant information on the
evolution of the chemical bond [115].

3.3 The concept of dynamical charge

As emphasized by Harrison [132], “whenever an ambiguity arises about the definition of
a concept such as the atomic charge, it can be removed by discussing only quantities that

'We note the unphysical charge on Ba. It is the result of a negative Mulliken population and reflects
the inadequacy of the Mulliken population analysis which assumes an equal share of overlap between
each pair of atoms.
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Figure 3.1: Ti-O plane cut in the partial electronic density coming from the O 2p bands
in the cubic phase of barium titanate.

can be experimentally determined, at least in principles”. If there are some ambiguities
to determine the charge to be associated to a given atom, the charge carried by this atom
when it is displaced is directly accessible from the induced change of polarization (or
dipole moment for molecules). As it is now discussed, the dynamical charges are defined
by the change of polarization induced by an atomic displacement; from the viewpoint of
Harrison, they appear therefore as more fondamental quantities.

3.3.1 Role of the macroscopic electric field

In molecules, the change of dipole moment in direction /5 (pg) linearly induced by a small
displacement of atom r in direction « (7,,) is uniquely defined. The proportionality
coefficient between the dipole moment and the atomic displacement has the dimensionality
of a charge and is usually referred to as the atomic polar tensor (APT) :

8pg
* = 3.1
K,a 87_’{7(1 ( )

This concept was introduced by Biarge, Herranz and Morcillo [149, 150, 151] for the inter-
pretation of infra-red intensities measurements. Later, Cioslowski [152, 153] introduced
a scalar charge in connection with this tensor : it is the generalized atomic polar tensor
(GAPT) defined as one-third of the trace of the atomic polar tensor.

In periodic systems, equivalent atoms appear in the different unit cells and the def-
inition of the charge can be generalized. A dynamical charge tensor is conventionally
defined as the coefficient of proportionality at the linear order between the macroscopic
polarization per unit cell created in direction # and a rigid displacement of the sublattice
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of atoms k in direction «, times the unit cell volume €2 :

0Ps

0T a

K,a3

(3.2)

We note that €23.P can be interpreted as a dipole moment per unit cell. As one k atom
is displaced in each unit cell, in the linear regime, this definition is equivalent to Eq.
(3.1) : it corresponds to the change of dipole moment induced by an isolated atomic
displacement. However, contrary to the case of molecules, in macroscopic systems, the
previous quantity is not uniquely defined. Indeed, the change of polarization is also
dependent on the boundary conditions fixing the macroscopic electric field £ throughout
the sample. Basically, we can write :

OP; OPs  OE;
=0 0 ==
w0 O ey = OE  OTha

- — 0

(3.3)

As the electrostatics imposes a relationship between macroscopic polarization, electric
and displacement fields :

D, =&, +47P, = Z € ;i (3.4)
J

we can deduce the following equivalent expression :

0. 55, .
=P g, Z(% 5) 9 (3.5)

Kb 4 0w

Depending on the condition imposed on the macroscopic electric field, different concepts
have historically been introduced 2.

The Born effective charge [131]  alias transverse charge, Z* refers to the change
of polarization that would be observed under the condition of zero macroscopic electric
field, so that the second term appearing in the previous equation vanishes :

(T)

AN

K,af

(3.6)

0
OTra ey

The Callen charge [155] — alias longitudinal charge, Z*(*) — is defined from the change
of polarization under the condition of zero macroscopic displacement field

Z*(L) O

kaf

(3.7)

0 -
aTK’aa D=0

?Besides the different definitions of dynamical charges reported in this Chapter, let us note that
another related charge is sometimes also introduced, which is defined as Z*(*) /y/e. This charge can
reveal useful in the study of AN B8~N compounds in the sense that it is directly accessible from LO-TO
splitting data without any hypothesis on the amplitude of the dielectric constant. In more complex
materials, as ABO3 compounds, the extraction of the charges from the splitting is not straightforward
but requires to introduce some hypothesis. This has been made by Gervais et al. [154] who estimated the
amplitude of Z*(T)/{/e% in BaTiOs.
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Introducing in Eq. (3.5) the relationship between field £ and polarization P, deduced
from Eq. (3.4) under the condition of vanishing displacement field, Born and Callen
charges can be related to each other thanks to the knowledge of the optical dielectric
tensor € :

* * €3, — 0 J OP;
F & Tk, | p=g
————

Z*(L)

K,

so that finally [156] :

*(T) 0o *(I)
Zuot = D5 Zuat (3.9)

J

For the case of isotropic materials, we recover the well known equality : Zi") = e 75",

Even if they are both related to the change of polarization induced by an atomic displace-
ment, Born and Callen charges appear as two distinct quantities and will be significantly
different in materials where €* is different from unity.

Basically, an infinite number of charges could be defined corresponding to different
boundary conditions, relating P and £. One of them is the Szigeti charge [157, 158]
7*5)defined as the change of polarization under the condition of vanishing local field,
Eloe, at the atomic site:

0Ps

0
aTﬁ’a Eloc=0

A

’{‘7aﬂ o

(3.10)

The concept of local field will be discussed in Chapter 5. Let us already mention that, con-
trary to Born and Callen charges, Z*(%) was sometimes considered as a model-dependent
concept in the sense that the local field is not observable as the macroscopic field but
require some assumptions to be estimated. In the particular case of an isotropic material,
the condition of vanishing local field can be written as follows:

4
&m:8+-§P:0 (3.11)

Introducing this condition in Eq. (3.5) :
€ —1) 47 OP

@m::@m_L____% (3.12)
A 3 0T |g, —o
Z:(S)
so that we find :
AR @ Z:(5) (3.13)

In calculations of the dynamical properties of crystals, the contribution from the long-
range Coulombic interaction to the atomic forces is usually restricted to dipolar forces
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and is included through a term : F? = Z:Me. From Eq. (3.13), it can be checked

that this force can be alternatively written in terms of local quantities : F,ff = Z:,(S)Sloc.
In shell-model calculations, this second formulation is usually preferred. Indeed, from
its definition, Z*(%) only includes the effects of charge redistribution resulting from short-
range interactions and it is therefore conveniently assimilated to the static charge [17, 140].

From the previous discussion, it appears that the amplitude of the dynamical charge
in macroscopic bodies is sensitive to the condition imposed on the macroscopic electric
field. Considering finite clusters of increasing size, we deduce that the amplitude of the
dynamical charge, reducing to the APT for a microscopic body, will tend to a different
value when the macroscopic limit is taken, depending from the shape of the cluster.
We investigate now this observation in more details, and provide a unified treatment
of dynamical charges in periodic solids and clusters, sufficiently large for the macroscopic
quantities (£, P, €™, ...) to be defined.

Following the well-known practice for the study of dielectric bodies [159], we consider
that the cluster has a macroscopic ellipsoidal shape. In this case, the macroscopic field
within the cluster present the practical advantage to be homogeneous. In absence of
any applied external field, it reduces to the depolarizing field related to the macroscopic
polarization thanks to the depolarization coefficients n, [159] . If we assume in what
follows that the principal axes of the ellipsoid are aligned with the axes of coordinates,
we have the following relationship :

where the geometry imposes : > .n; = 1. Following the same procedure as previously,
the dynamical charge Z*(") of a given atom & in an ellipsoid of volume €2 can be written
as :

« oP =0 0E;

ZiG = Qo= +Q Z 21) 9, (3.15)
’ 0.0 g~ OTea g ——4mn; P,
(€5, — 5ﬂ ) P,
Z:0) N~ g )y O (3.16)
ngrfj)
and we have the general relationship :

*(T o) *(F

Zﬁ,(aﬂ) = Z[(€6j o 557)777 + 557] Zﬁ,(aj) (317)

J

In this expression, the presence of the depolarization coefficients emphasizes the influence
of the shape of the cluster on the amplitude of Z*(¥). The above-mentioned sum rule on
the depolarization coefficients forbid to impose the condition of zero electric or displace-
ment fields simultaneously in the three directions. However, we have the following three
interesting cases.
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First, we consider an extremely oblate ellipsoidal (slab-like) cluster and take the macro-
scopic limit. Along the z direction perpendicular to the surface, n, — 1, while, along the
two other directions, n, = n, — 0. The dynamical charge for the ellipsoid is therefore
related to the Born effective charge through the following expression:

Z*(T) fore) Z*(E)

K,ox 1 0 €.z K,0x
ZZ0 =101 € z:\0) (3.18)
Zia 00 € Zi)

For uniaxial systems with no off-diagonal terms in the dielectric tensor, we note that the
cluster charge along the direction perpendicular to the slab becomes identified with the
Callen charge, while that in the slab plane reduces to the Born effective charge. We will
come back to this discussion in Chapter 7, devoted to thin films.

Differently, for an extremely prolate ellipsoidal (needle-like) cluster aligned along the
z direction (for which n, — 0 and n, = n, — 1/2), we have the following relationship:

Zg; %(e;;;; +1) 1 lee Z%j;
Zﬁ,,ay = ?622 5(61?; + 1) 0 ZH,(IEI/ (319)
72 ) €% 3€y 1 74 )

Here also, the charge along the z direction will reduce to the Born charge in uniaxial
systems.

Finally, for a spherical cluster, the symmetry imposes ny = ny = ng = 1/3, so that
Eo = —47P/3. For the case of an isotropic material, we recover therefore the condition
of vanishing local field and 7 becomes equivalent to 7. Therefore, we obtain the
interesting result that in isotropic compounds, the Szigeti charge appears as a well-defined
quantity and is simply the dynamical charge observed in a spherical cluster.

To summarize, the concept of dynamical charge in macroscopic systems is not uniquely
defined : it depends on the relationship between £ and P. In each case, the charge was
however expressed in terms of two basic concepts, Z**) and ¢*. In this Section, we
focused on the term that includes the dielectric constant, and that describes the part of
the electronic charge redistribution induced by the presence of a macroscopic field. In the
next Section, we will discuss the physical processes responsible of the amplitude of Z*(™).

3.3.2 Dynamical changes of orbital hybridizations

During the seventies, a large variety of semi-empirical models were proposed to investigate
the underlying physical processes driving the amplitude of dynamical charges. Without
being exhaustive, let us mention the interesting treatments of Lucovsky, Martin and Burn-
stein [160] who decomposed Z*(") in a local and a non-local contribution, of Lucovsky and
White [161] discussing Z*(™) in connection with resonant bonding properties, or the bond
charge model of Hiibner [162]. The most popular and sophisticated of these approaches re-
mains however that of Harrison [132, 163, 164, 165] within his bond orbital model (BOM).
A similar theory was developed independently by Lannoo and Decarpigny [166].
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The BOM basically consists in a simplified tight-binding model, where the Hamil-
tonian is limited to the on-site and nearest-neighbour terms. The on-site elements are
identified to free atom terms value, while the interatomic elements are taken as universal
constants times a particular distance dependence. Among other things, these parameters
determine the transfer of charge between the interacting atoms. As noted by Dick and
Overhauser [167], the charge redistribution produced by the sensitivity of the overlap
integrals on the atomic positions is at the origin of an “exchange charge polarization”.
Similarly, in the Harrison model, the dependence of the parameter on the bond length are
at the origin of dynamical transfer of charges and monitors the amplitude of Z*) that
can become anomalously large as it is illustrated in the following examples.

Let us first consider a diatomic molecule XY, composed of two open shell atoms, where
Y has the largest electronegativity. The interatomic distance is v and the dipole moment
p(u). These observables allow us to identify a convenient static charge Z(u) = ”(:), while
the dynamical charge is defined as :

Z*(u) =

(3.20)

In the last expression, Z* appears composed of two terms. The first one is simply the static
charge. The second corresponds to an additional dynamical contribution: it originates in
the transfer of charge produced by the modification of the interatomic distance. Within
the BOM, this last contribution is associated to off-site orbital hybridization changes and
is deduced from the universal dependence of the orbital interaction parameters on the
bond length. We deduce that the difference between Z(u) and Z*(u) will be large if Z(u)
changes rapidly with u. It can even be non-negligible when 0Z(u)/0u is small, when the
charge is transferred on a large distance u.

Moreover, this simple model naturally predicts anomalous amplitude of the dynamical
charges, i.e. a value of Z*(u) not only larger than the static charge Z(u) but even larger
than the “nominal” ionic charge. As the distance between X and Y is modified from 0 to
some 7, the distance corresponding to a complete transfer of electrons from X to Y, the
dipole moment evolves continuously from p(0) = 0 (since there is no dipole for that case)
to p(u). Interestingly,

./0“ Z*(u) du = [p(u) — p(0)] =u Z(u) (3.21)

so that: _
1 u
— / Z*(u)du = Z(u) (3.22)
0

u

From the last relationship the mean value of Z*(u) from 0 to @ is equal to Z(u) (the
“nominal” ionic charge). Consequently, if Z(u) changes with u, Z*(u) must be larger
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than Z(u) for some u between [0,u]. The difference between Z*(u) and the nominal
charge Z(u) is usually referred to as the anomalous contribution 3.

Switching now from a molecule to a linear chain ...-Y-X-Y-..., and displacing coherently
the X atoms by du, shortened and elongated bonds will alternate all along the chain.
For Harrison [132], the interaction parameters will be modified such that “the covalent
energy increases in the shorted bond, making it less polar by transferring electron to the
positive atom”. Inversely, electronic charge will be transferred to the negative atom in the
elongated bond. These transfers of charge will propagate all along the chain, so that even
if the net charge on the atom is not modified, a current of electrons will be associated to
the atomic displacement. The direction of this electronic current is opposite to that of the
displacement of positive atoms, so that it reinforces the change of polarization associated
to this displacement and may generate an anomalously large dynamical charge. In our
example, we have implicitely considered a truly periodic system under the condition of
zero macroscopic electric field so that the associated dynamical charge is Z*). Under
other conditions, the amplitude of the transfers of charge would be additionally influenced
by the presence of the field as discussed in the previous Section. We note that, contrary
to what was observed for the static charge, consequences of the covalence effects are to
increase the amplitude of Z*(7).

The previous model can finally be extended to three dimensional solids. For this case,
however, the calculation of the dynamical contribution may become questionable when
the identification of the charge transfers is restricted to some specific bonds [168]. As it
will be discussed in Sections 3.5 and 3.6 the Harrison model remains however a meaningful
picture of practical interest to interpret more accurate results.

Up to now, we focused on a “delocalized” model within which the electronic charge
redistribution induced by an atomic displacement is visualized by transfer of charge in-
duced by off-site changes of hybridization. In the past, various shell-models have however
also been developed to investigate the dynamical properties of crystals. In these calcu-
lations, an accurate description of Z*(") was mandatory in order to reproduce correctly
the splitting between longitudinal and transverse optic modes in the vicinity of the I’
point. Contrary to the BOM, the shell-model is “local” and treats the charges within the
Clausius-Mosotti limit. The previous discussion in terms of a static and dynamical contri-
bution to Z*(7) remains valid. However, the dynamical contribution results there simply
from the relative displacement of the shell charge as a whole with respect to the atom. It
is attributed to the polarizability of the electrons in the local field at the atomic site. In
the language of the BOM, such a displacement of the electronic cloud can be understood
in terms of on-site changes of hybridizations. This approach contrasts with the model
developped by Harrison but can also yield plausible Born effective charge amplitudes [120].

It must be emphasized that it is not possible to discriminate a priori between localized
and delocalized models. Within the recent theory of polarization, it has been clarified that

3Nominal and static charges may differ widely due to covalency effects. As the static charge is ill
defined, one usually prefers to define the anomalous contribution in reference to the nominal charge.
The difference between Born effective charge and static charge is sometimes referred to as the dynamical
contribution.
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Figure 3.2: Schematic representation of the two basic mechanisms that can explain the
displacement of the Wannier center of a band under atomic displacement : (a) local
polarizability, (b) interatomic transfers of charge.

for the purpose of understanding polarization problems, “the true quantum mechanical
electronic system can be considered as an effective classical system of quantized point
charges, located at the centers of gravity associated with the occupied Wannier functions
in each unit cell” [36]. Consequently, the correct description of the Born effective charges
does not require to reproduce correctly all the features of the valence charge distribution
but only the displacement of its Wannier center (see Ref. [169]). As schematized in
Fig. 3.2, antagonist models can reproduce a similar displacement, of the Wannier center.
In real materials, both local polarizability and transfers of charge do probably contribute
to the charge reorganisation. It will be emphasized later, in this Chapter and in Chapter
4, how first-principles investigations can help to identify the dominant mechanism.

In conclusion, this Section has shown that Z* is related to the static charge (see
Eq. 3.20) but does not restrict to it: Z* may also include an additional, important,
dynamical contribution. Whatever the mechanism of the charge redistribution (localized
or delocalized), the amplitude of the dynamical contribution cannot be estimated from
the inspection of the electronic density alone. So, we partly disagree with Meister and
Schwarz [130] who suggested that all the charges including the GAPT are driven by
the same underlying parameter. In what follows, based on first-principles calculations, we
illustrate on different examples that Z*(*) may become anomalously large and independent
of the amplitude of the static charge Z. Moreover, two atoms with similar Z can also
exhibit strongly different Z*(*).
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3.4 A first-principles approach

In the previous Section, the Born effective charge tensor Z; 5 was defined as the coefficient
of proportionality relating the change in macroscopic polarization to a collective nuclear
displacement

OPs

OTa | e—g

’{‘7aﬂ

(3.23)

This standard definition of Z*, Eq. (3.23), emphasizes the response with respect to the
collective nuclear displacement. However, a thermodynamical equality relates the macro-
scopic polarization to the derivative of the electric enthalpy F with respect to a homoge-
neous electric field. Similarly, another relationship connects the forces on the nuclei to the
derivative of the electric enthalpy with respect to atomic displacements. Combining these
expressions, Z* can be alternatively formulated, either as a mixed second-order derivative
of the electric enthalpy,

* 9P

Bl 980T

or as the derivative of the force felt by a nucleus x with respect to an homogeneous
effective electric field £, at zero atomic displacements :

(3.24)
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The three previous definitions — Eqs. (3.23), (3.24), and (3.25) — are formally equivalent.
However, each of them can provide a different method the compute the effective charges.

A brief review of the most commonly used first-principles approaches for computing
the Born effective charges has been reported in Ref. ( [169]). Going beyond semi-empirical
approaches, ab initio techniques allow accurate prediction of Z*(™) in materials where its
amplitude is not necessarily directly accessible from the experiment. Going further, the
first-principles approaches are also offering a new opportunity to clarify the microscopic
mechanism modulating the amplitude of Z*(") without any preliminary hypothesis. As
it will be illustrated in the following sections, it reveals particularly useful to understand
the origin of anomalously large Z*(*) in ABO3 compounds.

The results presented here have been obtained in the framework of the density func-
tional formalism as described in Chapter 1. The exchange-correlation energy has been
evaluated within the local density approximation, using a Padé parametrization [57] of
Ceperley-Alder homogeneous electron gas data [56]. Integrals over the Brillouin-zone
were replaced by a sum on a mesh of 6 x 6 x 6 special k-points [71, 170] (10 points in
the irreducible Brillouin zone). The “all electron” potentials were replaced by the same
ab initio, separable, extended norm-conserving pseudopotentials as in Ref. [135]. The
wavefunctions were expanded in plane waves up to a kinetic energy cutoff of 35 Hartree
(about 4100 plane waves).

As a second derivative of the total energy, the Born effective charges have been de-
duced from linear response calculations [42], using a variational formulation [43, 83, 84]



CHAPTER 3 : IONIC CHARGES 52

Table 3.2: Born effective charges of Ba'liO3 in the cubic structure.

Z50 Z;(iT) Zg(f) ZE(HT) Reference

Ba
Nominal +2 +4 -2 -2
Experiment +29 +6.7 24 4.8 Ref. [133]
Models (Shell model)  +1.63 +7.51 —2.71 —3.72 Ref. [120]

(SCAD model ) 429 +73 —22 5.8 Ref. [174]
First-principles (Linear response) +2.77 +7.25 —2.15 —5.71  Present
(Berry phase)  +2.75 +47.16 —2.11 —5.69 Ref. [136]

to the density functional perturbation theory. The decomposition of individual contribu-
tions from separate groups of occupied bands has been performed following the scheme
described in Ref. [169]. The parameters used for the calculations guarantee a convergency
better than 0.5% on Z*(1) as well as on each of its band-by-band contributions.

3.5 The paraelectric phase of ABO; compounds

3.5.1 Perovskite compounds

The Born effective charge tensors of perovskite ABO3; compounds have been at the center
of numerous investigations [134, 135, 136, 137, 138, 120, 171, 172, 101, 173]. In the cubic
phase, they are fully characterized by a set of four independent numbers. The charge
tensor of the A and B atoms is isotropic owing to the local spherical symmetry at the
atomic site. For oxygen, the local environment is tetragonal and two independent elements
Oj and O must be considered, referring respectively to the change of polarization induced
by an atomic displacement parallel and perpendicular to the B-O bond. In Table 3.2, we
summarize the results obtained within different approaches for the cubic phase of BaTiOs.

The first reliable estimation of Z*(") in BaTiOj; is probably due to Axe [133], from
empirical fitting to experimental mode oscillator strengths 4. In ABO; compounds, Z*(7)
cannot be determined unambiguously from the experiment. However, within some realistic
hypothesis, Axe identified the independent elements of the effective charges of BaTiO3 and
already pointed out their two essential features. First, the oxygen charge tensor is highly
anisotropic. Second, the charges on Ti and O} contain a large anomalous contribution
(i.e. an additional charge with respect to the nominal ionic value of +2 for Ba, +4 for Ti
and -2 for O).

Both these characteristics are confirmed by the first-principles calculations. Our ab

4Let us mention that an early investigation of the Born effective charges of BaTiO3 was performed by
Last in 1957 [175], but without identifying any anomaly. Another discussion was reported in Ref. [176]
but without separating the respective values of Z*(7).
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Table 3.3: Born effective charges of various ABO3 compounds in their cubic structure.

ABOj; Z;(T) Z;;(T) ZS(HT) Z:)(I) Reference
nominal 2 4 -2 -2
CaTiO3; 258 7.08 -5.65 -2.00 Ref. [136]
SrTiO; 2.56 7.26 -5.73 -2.15 Present
254 7.12 -5.66 -2.00 Ref. [136]
2.55 7.56 -5.92 -2.12 Ref. [173]
2.4 7.0 -5.8  -1.8 Ref. [133]
BaTiO; 277 725 -5.71 -2.15 Present
275  7.16 -5.69 -2.11 Ref. [136]
BaZrOs; 273 6.03 -4.74 -2.01 Ref. [136]
PbTiO3 390 7.06 -583 -2.56 Ref. [136]
PbZrO;  3.92 585 -4.81 -2.48 Ref. [136]

nominal 1 5 -2 -2

NaNbO3; 1.13 9.11 -7.01 -1.61 Ref. [136]

KNbO; 0.82 9.13 -6.58 -1.68 Ref. [134]
1.14 923 -7.01 -1.68 Ref. [136]
1.14 937 -6.86 -1.65 Ref. [172]

nominal - 6 -2 -2

WO; - 12.51 -9.13 -1.69 Ref. [177]

initio results, computed from linear response, are also in excellent agreement with those of
Zhong et al. [136], obtained from finite differences of polarization. The charge neutrality
sum rule, reflecting the numerical accuracy of our calculation, is fulfilled to within 0.02.
We note that the values of Z*(") are also qualitatively reproduced from a shell-model
calculation [120] and accurately predicted within the SCAD model [174].

The anomalous amplitude of the dynamical charge, reported in this Section, is not
a specific feature of BaTiO4. Similar computations of Z*(*) were performed on different
perovskite ABO3 compounds and they all reproduce the same characteristics than in
BaTiO3. A non exhaustive list of these results is reported in Table 3.3. We observe
that the choice of the A atom has a rather limited influence on Z;;(T) and Z:)(\\T)v which
appear closely related to the B atom. While the nominal ionic charge of Ti and Zr is
+4 in these compounds, the Born effective charge is between +7.08 and +7.56 for Ti,
and approximately equal to +6.03 for Zr. For Nb, the ionic charge is +5, while the Born
effective charge is between +9.11 and +9.37. Extending the investigations to WOj in the
reference cubic phase (defect perovskite structure), the ionic charge on W is equal to +6,
while the Born effective charge reaches the much larger value of +12.51. For the class of
perovskite ABO3 compounds, it can be checked that Z;;(T) evolves quasi linearly with the
nominal charge of the B atom [177].

For materials containing Pb, the previous considerations remain valid but there are
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additional anomalies concerning Z:(T) and Zé(j). This feature is due to the more covalent
bonding of lead with oxygen that was illustrated in Ref. [98, 107]. In what follows, we

will not be concerned with these lead compounds.

3.5.2 Lithium niobate

We also calculated the Born effective charge tensors in LiNbOj3. Table 3.4 summarizes the
results for Li;, Nb; and the three O, Oy, O3 oxygen atoms. Due to the low symmetry,
the full tensors must be considered. At the last line, we mention the eigenvalues of the
symmetric part of Z that are identical for all the oxygens. The labels of the atoms cor-
respond to those defined in Chapter 2. The tensors are reported in cartesian coordinates
with z along the trigonal axis.

Table 3.4: Born effective charges (in atomic units) of Nby, Lij, Oy, Oy and Oj in the two
phases of lithium niobate. The last line gives the eigenvalues of the symmetric part of Z,
(identical for all the oxygens).

paraelectric phase ferroelectric phase

Liy 1.15 0 0 1.19 -0.25 0
0 1.15 0 0.25 1.19 0

0 0 1.11 0 0 1.02

Nb, 8.28  2.07 0 7.32  1.65 0
-2.07  8.28 0 -1.65 7.32 0

0 0 917 0 0 694

0O, -1.80 0 0 -1.62 0.31 -0.17
0 -4.48 2.46 0.23 -4.06 1.79

0 232 -3.43 -0.13  1.85 -2.66

O -3.81 -1.16 -2.13 -3.22 -1.15 -1.46
-1.16 -2.47 -1.23 -1.23 -2.46 -1.04

-2.01 -1.16 -3.43 -1.53 -1.04 -2.66

O3 -3.81 1.16 2.13 -3.68 0.96 1.63
1.16 -2.47 -1.23 0.88 -2.00 -0.75

2.01 -1.16 -3.43 1.67 -0.81 -2.66

O (eig.) -6.40 -1.51 -1.80 -5.33 -1.41 -1.60

Analysing the charges reported in Table 3.4, we observe that Z7, is nearly isotropic
and that the diagonal elements have a value close to the nominal charge of the lithium
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atom (+1). At the opposite, the amplitude of Z}, is highly anomalous in the sense that
it is significantly larger than the nominal charge expected in a purely ionic crystal (45).
The niobium charge is slightly anisotropic with a significantly different value along the
trigonal axis. For the oxygen atoms, the anisotropy is much stronger. This feature appears
clearly form the inspection of the tensor eigenvalues. The highest eigenvalue is strongly
anomalous (-6.4 for the paraelectric phase, to be compare to the nominal charge of -2)
and the inspection of the associated eigenvector reveals that it is the charge associated
to an oxygen displacement (nearly) along the Nb—O bond. In contrast, the two other
eigenvalues (associated to oxygen displacement in the plane perpendicular to the Nb-O
bond) are smaller than -2.

Most of our observations on LiNbOj are comparable to what has been reported for
related perovskite compounds like KNbOj3 [101, 136] or NaNbOj3 [136]. For instance, the
Nb charge in the paraelectric phase for a displacement along the Nb O bond is respectively
equal to 8.75, 9.11 and 9.23 in LiNbOj3, NaNbOj3 [136] and KNbOj [136] while the Li, Na
and K charges are equal respectively to 1.11, 1.13 and 1.14.

3.5.3 Origin of the anomalous contributions

The approximate reciprocity between O and B anomalous contributions suggests that
they should originate in a global transfer of charge between B and O atoms as described in
Section 3.3.2. In Ref. [132], Harrison had in fact already suggested the existence of giant
Born effective charges in perovskite materials. Being unaware of the earlier results of Axe,
he had however no experimental evidence to corroborate his semi-empirical calculations.

In Ref. [90], we report results obtained within the Harrison model (it follows the
method described for KCI in Ref. [132], p. 334.). For SrTiO;, from the universal tight-
binding parameters of Harrison, we get a value of —8.18 for ZZ(HT), making plausible the
giant anomalous effective charges only by focusing on the dynamical changes of hybridiza-
tion between occupied O 2s O 2p states and the unoccupied metal d states. In BaTiOs,
the hybridization between O 2p and Ti 3d orbitals is a well known feature, confirmed
by various sources (experiments [119, 113], LCAO calculations [117, 147, 148] and DFT
results [97, 98]). In this context, it was therefore realistic to focus on O 2p - B d hy-
bridization changes to explain intuitively large anomalous contributions [136].

At the opposite, it may therefore appear surprizing that model calculations which do
not explicitly include transfers of charges are able to predict correctly the amplitude of
the Born effective charges. For instance, in Table I, we observe that the values of Z*(T)
are qualitatively reproduced by a shell-model calculation [120]. A similar agreement
between ab initio and shell model results was highlighted for KNbOj [178]. In both cases,
the calculation was performed within the “polarizability model” introduced by Bilz et
al. [23], which includes an anisotropic and non-linear polarizability of the O atoms. In
the same spirit, at the level of the SCAD model, the Born effective charges are accurately
reproduced while there is no explicit transfer of electrons between the different atomic
sites. As discussed in Section 3.3, antagonist models can be invoked to explain the origin
of anomalous contributions as soon as they globally reproduce a similar displacement of
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the Wannier center of the valence charge distribution. What appears as a macroscopic
current along the Ti O chain within the BOM shows itself as an unusual polarizability of
the oxygen atoms within the shell model.

It was not possible to discriminate unambiguously between localized and delocalized
model until Posternak et al. [138] proposed a convincing proof of the crucial role of
“off-site” hybridizations. Based on first-principles calculations, they demonstrated for
KNbOj3 that the anomalous contribution to the charge of Nb and O disappears if the
hybridization between O 2p and Nb 4d orbitals is artificially suppressed. In a similar spirit,
the inspection of the Wannier functions of BaTiO3 and the analysis of their deformation
under an atomic displacement reported by Marzari and Vanderbilt [179] confirm the
predominant role played by the Ti 3d orbitals and the explanation introduced by Harrison.
In Chapter 4, we will see that the evolution of the electron localization tensor at the phase
transition is also in favor of off-site hybridization.

In the next Section, we propose a band-by-band decomposition of the Born effective
charges [137, 120]. This technique appears as a tool of paramount importance to clarify
the microscopic origin of anomalous contributions. Identifying the dynamical transfer of
charges without any preliminary hypothesis on the orbitals that interact, it will allow to
generalize the basic mechanism that was proposed by Harrison.

3.6 Identification of dynamical changes of hybridiza-
tion

In ABO3 compounds, the electronic band structure is composed of well separated sets
of bands. The hybridizations between the orbitals of the different atoms are relatively
small and each band can be identified by the name of the main atomic orbital which
contributes to this energy level in the solid. The Born effective charge is defined by
the change of polarization associated to a specific atomic displacement. Our purpose
will be to identify the contribution of each well separated set of bands to this change of
polarization [137, 120].

3.6.1 Reference configuration

In Ref. [169], we have described how band-by-band contributions to Z*() can be separated
from each others. Moreover, it has been demonstrated that the contribution to 7™

K,a
from a single occupied band n can be interpreted as a change of polarization Q,APg :ﬁ
—2.Q,Adg where Adg is the displacement in direction 5 of the Wannier center of band n,
induced by the unitary displacement of the sublattice of atoms x in direction a.

In order to understand the origin of the displacement of the Wannier center of each
band, it is helpful to define a reference configuration that corresponds to what we would
expect in a purely ionic material. In such fictitious material, each band would be composed
of a single non-hybridized orbital and the Wannier center of each band would be centered

on a given atom. In absence of any hybridization, when displacing a given sublattice of
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atoms x, the Wannier center of the bands centered on the moving atoms would remain
centered on it, while the position of the center of gravity of the other bands would remain
unaffected. The contributions of these two kinds of bands to Z;" would therefore be —2
and 0 electrons, respectively.

In the real material, the anomalous contribution of a particular band m to a given
atom k is defined as the additional part with respect to the reference value expected in
absence of any hybridization: it reflects how the Wannier center of band m is displaced
relatively to the atoms when the sublattice x moves °. Considering each band as a com-
bination of atomic orbitals, such a displacement of the Wannier center of a band with
respect to its reference position must be attributed to hybridization effects: it is associ-
ated to the admixture of a new orbital character to the band. When the orbitals which
interact are located on different atoms (“off-site” hybridization), the dynamical changes
of hybridization can be visualized as transfers of charge. If the interacting orbitals are on
the same atom (“on-site” hybridization), the mechanism much looks like a polarizability.

Rigorously, our band-by-band decomposition is performed within DFT and formally
only concerns the Kohn-Sham particles. It seems however that the results are rather
independent of the one-particle scheme [180] used for the calculation so that the results
presented here should give a good insight on the physics of the ABO3; compounds.

3.6.2 BaTiO;

Let us first apply the band-by-band decomposition to barium titanate. The band structure
of BaTiOj3 has been discussed in Chapter 2 (Fig. 2.10). Results of the decomposition of
Z*T) in the theoretical cubic structure of BaTiO; are reported in Table 3.5. The first
line (Z,) brings together the charge of the nucleus and core electrons included in the
pseudopotential. The other contributions come from the different valence electron levels.
The sum of the band-by-band contributions on one atom is equal to its global effective
charge while the sum of the contributions to a particular band from the different atoms
is equal to —2 (within the accuracy of the calculation), the occupancy of this band.
Focusing first on the titanium charge, we observe that the Ti 3s contribution (—2.03)
is close to —2, confirming that the Ti 3s electrons follow the Ti atom when moving,
independently from the change of its surrounding. At the opposite, it is shown that
the giant anomalous charge of titanium essentially comes from the O 2p bands (42.86).
It corresponds to a displacement of the Wannier center of the O 2p bands in opposite
direction to the displacement of the Ti atom. This observation is in perfect agreement
with the Harrison model: it can be understood by dynamical changes of hybridization
between O 2p and Ti 3d orbitals, producing a transfer of electron from O to Ti when the
Ti-O distance shortens. This explanation was confirmed recently from the inspection of
the O 2p Wannier functions [179]. Beyond the previous observations, we note however

5Depending from the structure and from the interactions, the initial position of the electron Wannier
center is not necessarily on an atom. However, in the cubic perovskite structure, symmetry imposes to
the Wannier centers to be located on an atom so that the anomalous contribution exactly describes the
displacement from such a centered position.
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Table 3.5: Band by band decomposition of Z*") in the optimized cubic phase of BaTiOs.
The contributions have been separated into a reference value and an anomalous charge
(see text).

Band AN 7D z8) z5)  Total
Z, +10.00  +12.00 +6.00 +6.00  +40

Ti 3s 0+0.01 —-2-0.03 0+ 0.00 0+4+0.02 —=2.00
Ti 3p 04+0.02 —-6-0.22 0—0.02 0+0.21 —6.03
Bab5s —-2-0.11 0+ 0.05 0+ 0.02 0+0.01 —=2.01
O 2s 0+0.73 0+023 —-2-023 —-2-251 —6.01
Babp —6—1.38 0+ 0.36 0+ 0.58 0-013 —5.99
O 2p 0+ 1.50 0+28 —-6-050 —-6-331 —-17.95
Total +2.77 +7.25 —2.15 —5.71  40.01

that there are also small anomalous charges from the Ti 3p, O 2s and Ba 5p bands.
These contributions are not negligible. The positive anomalous charges correspond to a
displacement of the center of the Wannier function of the O and Ba bands in the direction
of the closest Ti when this atom has moved. Some of these features go beyond the Harrison
model, within which anomalous contributions to Z;(,;T) in Table 3.5 would be restricted
to the O 2p and O 2s bands. They suggest other kind of hybridization changes, that will
be now more explicitly investigated.

Focusing on barium, the global anomalous effective charge (+0.77) is small compared
to that of Ti and this feature was first attributed to its more ionic character [136]. This
ionicity is inherent to the Harrison model [132] and was confirmed in some ab initio
studies [98, 107]. Surprisingly, our decomposition reveals however that the anomalous
charges of the O 2s (4+0.73) and O 2p (+1.50) bands are not small at all. They are
nevertheless roughly compensated by another Ba 5s (+0.11)and Ba 5p (+1.38) anomalous
contributions. This result suggests that there are dynamical changes of hybridization
between Ba and O orbitals as it was the case between O and Ti, except that the mechanism
is here restricted to occupied states. This basically corresponds to a unitary transform
within the subspace of the occupied states which is unable to displace the global Wannier
center of the wvalence charge. Our result so supports the hybridization of Ba orbitals,
in agreement with experiment [119, 113], LCAO calculations [147, 148] and DFT [97]
computations. Similar compensating contributions were recently observed in ZnO which
has conventional Born effective charges [180] and in a series of alkaline-earth oxides [181].

We note that a confusion sometimes appears that should be removed: the amplitude of
the anomalous contributions to Z*() is not related to the amplitude of the hybridizations
but to the rate of change of these hybridizations under atomic displacements. It is clear
that, in BaTiOj3, the Ba 5p contribution to the O 2p bands is smaller than the contribution
from the Ti 3d orbitals [97, 98]. However, the high sensitivity of this relatively weak
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Figure 3.3: Kohn-Sham electronic band structure of SrTiOs.

covalent character under atomic positions is sufficient to produce large band by band
anomalous contributions to Z*(™). From that point of view, the Born effective charge
appears therefore as a sensitive tool to identify the presence of even small hybridizations.

Finally, concerning the oxygen, even if O and O, are defined respectively for a dis-

placement of O in the Ti and Ba direction, it seems only qualitative to associate ZB(HT) with

Z:;(Z.T) and Zg(f) with Z;;(GT) as suggested in Ref. [136]. The O 2p anomalous contributions
to Ti and Oj do not exactly compensate. Moreover, O 2p contribution to Z;;(GT) does not
come from O, only but has equivalent contributions from O). This seems to confirm the
idea of Bennetto and Vanderbilt [168] that in 3D materials, transfers of charges are not
necessarily restricted to a particular bond, but is a rather complex mechanism that must
be treated as a whole.

To summarize, our study has clarified the mixed ionic-covalent character of BaTiOs:
it clearly establishes that the covalent character is not restricted to the Ti-O bond but
also partly concerns the Ba atom. Moreover, it leads to a more general issue. It illustrates
that the presence of a large anomalous charge requires a modification of the interactions
between occupied and unoccupied electronic states. The contributions originating from the
change of the interactions between two occupied states correspond to unitary transforms

within the subspace of the valence charge : they compensate, and do not modify the global
value of Z*™),

3.6.3 SrTiOg

The same analysis is now performed on SrTiOj. Its band structure (Fig. 3.3) is very
similar to that of BaTiOs, except that the Ti 3p and Sr 4s bands are energetically very
close to each others. Consequently, they strongly mix and it should be relatively mean-
ingless to separate their respective contributions. The Sr 4p and O 2s states are in the

same energy region but can be separated, contrary to what was observed in a study of
SrO [181].
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Table 3.6: Band by band decomposition of Z*") in the experimental cubic phase of
SrTiOs. The contributions have been separated into a reference value and an anomalous

charge (see text).

(1)

Band Z 75D z5) o,  Total
Z, +10.00  +12.00 +6.00 16.00  +40
Ti 3s 0+001 —2-003 0+0.00 0+0.03 —1.99
or s } 24002 —6-018 0-003 04023 —7.99
Ti 3p

O 2s 0+308 0+002 —2-131 —2-048 —6.00
Sr 4p 6311 04037 0+142 0010 6.0
O 2p 0+056 04308 —6—012 —6—2341 —18.01
Total +2.56 +7.26 —2.15 —5.73  +0.01

The result of the decomposition is very similar (Table 3.6) to that reported for BaTiOsj.
There is still a giant contribution to Z;}S;T) from the O 2p bands. On the other hand, while
the Ba 5p bands were approximately centered between O 2s and O 2p bands in BaTiOs3,
the Sr 4p electrons are closer to the O 2s bands and mainly hybridize with them in SrTiOs;.
This phenomenon produces large but compensating contributions from Sr 4p and O 2s
bands to Z;(TT). Such an evolution is in agreement with the picture that anomalous
contributions originate from off-site orbital hybridization changes.

3.6.4 LiNbO;

In spite of its different structure, the amplitude of the effective charges in LiNbO3 can
be explained following the same line of thought as for perovskite compounds. The Li
atom is close to a fully ionized configuration and only carries its nominal charge. At the
opposite, there is a partly covalent interaction between Nb and O which is responsible
for their anomalous effective charges and for the strong anisotropy of the oxygen tensor.
During an atomic displacement, the parameters that determine the covalent interactions
between the Nb 4d and O 2p atomic orbitals (the hopping integrals) vary. This variation
produces a dynamical charge transfer between the niobium and the oxygen atoms which
is at the origin of the anomalous part of 7}, and Z,.

The essential role played by the O 2p bands can be emphasized from the analysis
of the contribution of the different isolated sets of bands (as identified in Figure 2.10)
to the global niobium charge. The results of the decomposition for the Nb charge are
summarized in Table 3.7. The full tensor is considered. The first line (Z.,.) brings
together the nucleus and core electrons contributions. The last line corresponds to the
total charge. The second column refers to the isotropic nominal value that would be
expected in a purely ionic compound.
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Table 3.7: Band by band decomposition of the Born effective charge of the niobium atom
(LDA calculation).

Bands Nominal paraelectric phase ferroelectric phase
Leore 13.00 13.00 0 0 13.00 0 0
0 13.00 0 0 13.00 0
0 0 13.00 0 0 13.00
Nb 4s -2.00 -2.04 0.03 0.00 -2.06  0.02  0.00
-0.03  -2.04 0.00 -0.02  -2.06  0.00
0.00 0.00 -2.02 0.00 0.00 -2.04
Li1s 0.00 0.01 -0.01 0.00 0.01  -0.00 0.00
0.01  0.01 0.00 0.00 0.01 0.00
0.00 0.00 0.00 0.00 0.00 0.00
Nb 4p -6.00 -6.42  -0.06  0.00 -6.49 -0.05  0.00
0.06 -6.42 0.00 0.05 -6.49 0.00
0.00 0.00 -6.37 0.00 0.00 -6.35
O 2s 0.00 0.57 0.09 0.00 0.60 0.10 0.00
-0.09  0.57  0.00 -0.10  0.60  0.00
0.00 0.00 0.58 0.00 0.00 0.50
O 2p 0.00 3.14  1.89 0.00 2.25 1.45 0.00
-1.89  3.14  0.00 -1.45  2.25  0.00

0.00 0.00 3.89 0.00 0.00 1.71
Total 5.00 8.26  2.07 0.00 730 1.62 0.00
-2.07 826 0.00 -1.62  7.30  0.00

0.00  0.00 9.08 0.00 0.00 6.83
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Focusing first on the deep Nb 4s and Li 1s levels, we do not identify any significant
anomalous contribution, in agreement with the fact that these electrons do not participate
to the bonding. To the contrary, the anomalous O 2p contribution is very large and mainly
responsible for the total anomalous charge. This can be explained by dynamical changes
of the Nb 4d orbital contribution to the O 2p bands producing a dynamical transfer of
electrons from O to Nb when the Nb O distance shortens. We note finally small and
compensating anomalous contributions at the level of the Nb 4p and O 2s bands : they
reveal the existence of hybridizations between these levels.

3.6.5 Other examples

From the two previous results that concern ferroelectric materials, it might be suggested
that not only the dynamical hybridization of the valence bands with unoccupied d-states
but also the particular structure of ABO3 compounds plays a major role in determining
Z*T) | For instance, the anomalous charge could partly originate in the local fields at the
atomic sites, known to be anomalously large at least in this cubic perovskite structure [15]

It is interesting to observe that anomalous charges are not restricted to ferroelectric
solids but were also detected in a series of alkaline-earth oxides of rocksalt structure (CaO,
SrO, BaO) [182, 181] or even Al,Ru [183, 184], all examples where the unoccupied d-states
seem to play a major role. Interestingly, two materials belonging to the same structure
can present completely different charges. This was illustrated for the case of TiO, rutile
and SiOy stishovite [185, 186]: while relatively conventional charges were observed on Si
(+4.15) and O (-2.46) along the Si-O bond in stishovite, giant effective charges, similar
to those of BaTiO3, were obtained on Ti (47.33) and O (-4.98) along the Ti-O bond in
rutile. Similarly, no anomalous charge was reported for MgO (ZE(T) = —2.07), presenting

the same rocksalt structure than BaO (ZS(T) = —2.80) [181]. In the same spirit, the same
atom in different environments can present similar dynamical charge, as illustrated for
Z:;(Z.T) in BaTiO3 and TiO, [186], or for Z;(TT) in BaZrOj3 [136] and ZrO, [187]. Also, in
the family of ABO3; compounds, giant effective charges are observed on Ti in CaTiOj
(72 = 7.08, [136]) but not on Si in CaSiO; (Z4") = 4.00, [188)).

We observe that the presence of partly hybridized d-states seems the only common
feature between the materials presenting giant anomalous effective charges, listed up to
date. This feature finds a basic justification within the BOM of Harrison: the interaction
parameters involving d-states are indeed much more sensitive to the interatomic distance
than those involving, for example, s and p orbitals [132]: They will therefore be associated
to larger dynamical transfers of charge and will generate higher Z*(7).

3.7 Sensitivity of Z*7) to structural features

In the litterature, calculations of Z*(7) essentially focused on the cubic phase of ABO,
compounds [134, 135, 136, 137, 138, 120, 171, 172]. On the basis of an early study
of KNbOj3 [134], it was concluded that the Born effective charges are independent of the
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Table 3.8: Born effective charges in the three ferroelectric phases of Ba'liOs. Tensors are
reported in cartesian coordinates, with the z-axis along the ferroelectric direction. For Ba
and Ti, the tensors are diagonal and only the principal elements are mentioned. For O,
full tensors are reported. The eigenvalues of the symmetric part of Z*") are mentioned
in brackets; the eigenvector associated to the highest eigenvalue approximately points in
the Ti direction. In the cubic phase, we had: Zj<') =729, z:{") =274, 72D = 575

o
and Z\1) = —2.13.

Tetragonal Orthorhombic Rhombohedral

Z;7) (42.72 4272 +2.83 ) (4272 4281 4277 ) (4279 +2.79 +2.74)

ZzU (4+6.94 +6.94 +581 )  ( +6.80 +6.43 +5.59 )  ( +6.54 +6.54 +5.61)

ze\ ~1.99 0 0 ~204 0 0 ~2.54 -0.99 +0.63
0 ~1.99 0 0 —3.63 +1.38 —0.99 —3.68 +1.09
0 0 —473 0 +1.57 =317 +0.72 +1.25 —2.78
[ 199 -1.99 -473] [ -191 -204 -489] [ -1.97 -1.98 —505 ]
z:) -214 0 0 -2.04 0 0 —2.54 +0.99 +0.63
0 —5.53 0 0 —3.63 +1.38 +0.99 -3.68 —1.09
0 0 —1.95 0 +1.57 —3.17 +0.72 125 —2.78
[ 195 -214 -553] [ -191 -204 -489] [ -1.97 -1.98 —505 ]
Z50 ~553 0 0 ~544 0 0 —4.25 0 -1.26
0 ~2.14 0 0 ~1.97 0 0 ~1.97 0
0 0 —1.95 0 0 201 ~144 0 278
[-1.95 -214 -553] [ -1.97 -201 —544] [ -1.97 -1.98 —505 ]

ionic ferroelectric displacements (i.e. they remain similar in the different phases). Another
investigation in the tetragonal phase of KNbO3; and PbTiO3 [136], seemed to confirm that
7Z*(T) are quite insensitive to structural details.

These results were surprising if we remember that anomalous contributions to Z*(™)
are closely related to orbital hybridizations, these in turn, well known to be strongly
affected by the phase transitions [98, 107]. We will see in this Section that, contrary to
what was first expected, Born effective charges in BaTiOj3 are strongly dependent of the
structural features.

We first investigate the sensitivity of the Born effective charges to the ferroelectric
atomic displacements [120]. For that purpose, we compute Z*(7) in the three ferroelectric
phases at the experimental unit cell parameters, with relaxed atomic positions as reported
in Chapter 2. Table 3.8 summarizes the results for a cartesian set of axis where the z-



Figure 3.4: Born effective charge of Ti atoms in the direction of the shortest Ti-O bond
length (d,.;,,) as a function of this interatomic distance, for the cubic (square), tetragonal
(lozenge), orthorhombic (circle) and rhombohedral (triangle) phases.

axis points in the ferroelectric direction. The Ba and Ti charge tensors are diagonal
in each phase for this particular choice. In the case of O, we note the presence of a
small asymmetric contribution for the lowest symmetry phases. The eigenvalues of the
symmetric part of the tensor are also reported. In each phase, the eigenvector associated
to the highest eigenvalue of O approximately points in the Ti-O direction and allows to
identify the highest contribution as O). The other eigenvalues can be referred to as O,
by analogy with the cubic phase.

Although the charges of Ba and O remain globally unchanged in the 4 phases, strong
modifications are observed for Ti and Oy: for example, changing the Ti position by 0.076A
(2% of the unit cell length) when going from the cubic to the rhombohedral phase, reduces
the anomalous part of Z}gT) by more than 50% along the ferroelectric axis (Table 3.8).
Equivalent evolutions are observed in the other ferroelectric phases. Similar changes were
detected in KNbOj3 [101] as well as in LiNbOj (see Table 3.4) in spite of its different
structure.

In the isotropic cubic structure, Harrison had explained the large value of Z*(*) in
terms of the Ti-O bond length. For the anisotropic ferroelectric phases, it should be
intuitively expected that the shortest Ti-O distance d,,;, in the structure will dominate
the bonding properties. It is therefore tempting to transpose the Harrison model to
understand the evolution of Z*(*) in terms of the distance d,;,. In Fig. 3.4, the amplitude
of Z:;(Z.T) in the direction of the shortest Ti-O bond length of each phase is plotted with
respect to d,,. A similar graph can be obtained for O. For the different phases, at
the experimental lattice parameters, we observe that the anomalous parts evolve quasi
linearly with d,,;,.

Independently from the previous calculations, we also investigated the evolution of
Z*) under isotropic pressure (Table 3.9). In contrast with the changes observed with
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Table 3.9: Evolution of the Born effective charges of BaTiOs under isotropic pressure in
the cubic phase.

a (N Zy) oz’ Z5D z5]
3.67  +295 +7.23 —2.28 —5.61
3.94 4277 +725 —2.15 —5.71
400 4274 4729 213 575
440 4260 +7.78 —2.03 —6.31

respect to the atomic displacements, the charge appears essentially insensitive to isotropic
compression. In particular, in the compressed cubic cell at 3.67 A where the Ti-O distance
is the same as the shortest Ti-O bond length in the tetragonal structure ¢, Z;}S;T) remains
very close to its value at the optimized volume. This new element clearly invalidates the
expected dependence from Z*) to d,in.

The fundamental difference between the cubic and tetragonal structures lies in the
fact that in the cubic phase every Ti-O distance is equal to the others, while in the
tetragonal phase, along the ferroelectric axis, a short Ti-O bond length (d:,) is followed
by a larger one (d,.;) which breaks the Ti-O chain in this direction. In order to verify
that it is not this large Ti-O distance which, alternatively to d,,;,, is sufficient to inhibit
the giant current associated to the anomalous charges, we also performed a calculation
in an expanded cubic phase where a, = 2.d,,,,: we observe however that the Ti charge is
even larger than in the optimized cubic phase.

We conclude from the previous investigations that the amplitude of Z*) in BaTiOy
is not dependent on a particular interatomic distance (dpin, dmaez) but is more critically
affected by the anisotropy of the Ti environment along the Ti—O chains. In agreement with
this picture, Wang et al. [101] reported recently an insensitivity of Z*() to a tetragonal
macroscopic strain in KNbO3. Also, the charges reported by Bellaiche et al. [189] in mixed
a compound as PZT, where the ionic environment becomes anisotropic, seem to confirm
our results.

A band by band decomposition of Z;(iT) (Table 3.10) points out that the difference
between the cubic and tetragonal phases is essentially localized at the level of the O
2p bands (41.48 instead of +2.86) while the other contributions remain very similar.
This suggests an intuitive explanation. In the cubic phase the O 2p electrons are widely
delocalized and dynamical transfers of charge can propagate along the Ti-O chain as
suggested by Harrison. In the tetragonal phase, the Ti-O chain behaves as a sequence
of Ti-O dimers for which the electrons are less polarizable. This smaller polarizability is
confirmed by a similar reduction of the optical dielectric constant along the ferroelectric

6In the tetragonal phase, shortened and elongated Ti O bonds alternate along the ferroelectric axis.
The shortened bond corresponds to an interatomic distance of 3.67 A in our optimized tetragonal struc-
ture.
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Table 3.10: Band by band decomposition of Z;}S;T) in different structure of BaTiOz. The
contributions have been separated into a reference value and an anomalous charge (see
text).

Band i Zy; ;. 2y

(cubic - 3.67 A)  (cubic - 3.94 A) (tetragonal - exp) (cubic - 4.40 A)
Ly +12.00 +12.00 +12.00 +12.00
Ti 3s -2 —-0.07 —2-0.03 —2—-0.05 —2+0.01
Ti 3p —6 —0.43 —6 —0.22 —6 —0.26 —6 —0.07
Ba 5s 0+0.09 0+0.05 0+0.05 0+0.02
O 2s 0+0.27 0-+0.23 0+0.25 0-+0.19
Ba 5p 0+0.64 0+ 0.36 0+0.34 0+0.13
O 2p 0+2.73 0+ 2.86 0+ 1.48 0+ 3.50
Total +7.23 +7.25 +5.81 +7.78

direction. This analysis seems plausible from the Wannier function analysis reported by
Marzari and Vanderbilt [179].

We note that a behavior similar to the perovskite is observed in LiNbQOj, even if the
explanation is not so straightforward due to its more complex structure : In Table 3.7,
the reduction of the Nb charge at the phase transition originates in a neat decrease of the
O 2p contribution.

Finally, let us mention that if the evolution of Z*") is relatively weak under isotropic
pressure, it would be wrong to consider that the dynamical properties of BaTiOj3 are
insensitive to the volume: small changes are observed that are of the same order of
magnitude than for other compounds like SiC [190, 191]. The direction of the evolution
is however different. Moreover, the evolution of the different charges is even not identical:
while the absolute value of Z;;(GT) and Zg(f) decreases with increasing volume, the inverse

behaviour is observed for Z;\") and Z;)(\?)-

Here also, the band by band decomposition (Table 3.11) reveals some hidden features.
In the compressed cubic phase, the anomalous part of the Ba 5p , Ba 5s and Ti 3p
bands are 50% larger than in the optimized cubic cell. This suggests an evolution of the
interactions between occupied orbitals that is coherent with the modification of the inter-
atomic short-range forces observed independently [53]. At the opposite, in our expanded
cubic phase, most of the anomalous contributions to Z;(f) and Z;(?;T) have disappeared
in agreement with the picture of a more ionic material. The O 2p contribution, is the
only one that remains surprisingly large. Comparing to the value obtained for the cubic
phase at the experimental volume, its evolution was even more important than the linear
dependence upon the bond length, expected from the Harrison model.
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Table 3.11: Band by band decomposition of Z;(f) in the optimized cubic phase of BaTiO3
and in an expanded cubic structure. The contributions have been separated into a refer-
ence value and an anomalous charge (see text).

Band Z50 Z5"

(cubic - 3.94 A)  (cubic - 4.40 A)
Ly +10.00 +10.00
Ti 3s 0+ 0.01 0—0.01
Ti 3p 0+ 0.01 0+ 0.01
Ba 5s -2 -0.11 —2+40.00
O 2s 0+0.73 0+0.37
Ba 5p —6 —1.38 —6 —0.44
0 2p 0+ 1.50 0+ 0.66
Total +2.77 +2.59

3.8 Spontaneous polarization

The spontaneous polarization (P;) of the ferroelectric phases can be determined by in-
tegrating the change of polarization along the path of atomic displacement from the
paraelectric cubic phase (taken as reference) to the considered ferroelectric structure. If
the effective charges were roughly constant, this integration should be approximated by:

1
_ «(T)
P, = o Eﬂ AR (3.26)

However, we have seen, in the previous Section, that the Born effective charges are strongly
affected by the atomic displacements. It is therefore important to investigate their evolu-
tion all along the path of atomic displacements from one structure to the other.

We performed the calculation for a transformation from the cubic to the rhombohedral
structure. The rhombohedral macroscopic strain is very small and was neglected 7 :
our calculation was performed by displacing the atoms to their theoretically optimized
position in rhombohedral symmetry, when keeping the cubic lattice parameters. The
result is reported in Figure 3.5, for Z;}S;T) along the ferroelectric direction. A similar
curve can be obtained for Zg(”T). We observe that the evolution of Z*(") is approximately
quadratic close to the cubic phase. However, it becomes rapidly linear, and remains linear
for displacements even larger than those associated to the ferroelectric distortion.

"The Born effective charges obtained for the rhombohedral structure when neglecting the strain (i.
e. when keeping a cubic unit cell) are the following: Z;;(QT}] = +2.79, Z;;(Z;3 = +2.79, Z;(i?] = +6.54,
Z}(ﬂ)q = +5.61, Zg(’z) = —1.97, Z(*)ﬂ’) = —5.05. These values must be compared to those reported in
Table 3.8, where the rhombohedral strain was taken into accounts. It can be checked that the effect of
this strain is negligible.
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Figure 3.5: Evolution of the amplitude of Z;(iT) in the < 111 > direction all along the
path of atomic displacements from the cubic (A = 0) to the rhombohedral (A = 1) phase.
The distortion of the cubic cell has been neglected.

Expecting a similar evolution of the dynamical charges for the tetragonal and or-
thorhombic displacements, an estimation of the spontaneous polarization in the ferroelec-
tric phases can be found when using Eq. (3.26) with a mean effective charge determined
from its value in both phases. Using a mean charge estimated from the values in the para-
and ferro-electric phases, we obtain the spontaneous polarizations presented in Table 3.12.

Our results are only in relative agreement with the experiment [192, 139] and suggest
different comments. Firstly, we would like to mention that part of the discrepancy must
be assigned to the theoretical overestimation of the computed ferroelectric displacements,
discussed in Chapter 2 : when using the experimental displacements of Ref. [105], we
recover a better estimation of P; as in Ref. [136]. The dispersion of X-rays diffraction
data makes however difficult the exact identification of the ferroelectric displacements.
Secondly, another part of the error could be due to the lack of polarization dependence of
the LDA [193]. Finally, we note that there is also some uncertainty on the experimental
value of P;.

3.9 Conclusions

In this Chapter, we first analyzed the links between different definitions of atomic charge.
We have shown that, contrary to the static definitions, dynamical effective charges also
depend on the electronic charge reorganisation induced by an atomic displacement. The
amplitude of this dynamical contribution is monitored not only by the bonding with
the other atoms but also, for large systems, by the condition imposed on the macro-
scopic electric field. A unified treatment of the concept of dynamical charge in molecules,
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Table 3.12: Spontaneous polarization in the three ferroelectric phases of BaTi(Os in

pC/em?. The results were deduced from Eq. (3.26) when using either Z*(") from the cubic
phase (Cubic) or a mean charge (Mean) defined as (an(L)n =0.68x 27 +0.32%x 75

cubic erro) :
Results are reported for the experimental (Exp) and theoretical (Theo) atomic ferroelec-

tric displacements.

Z*T)  Positions Tetragonal Orthorhombic Rhombohedral Reference

— - 26.3 30.7 33.5 Exp. [192]
Cubic Exp 30 26 44 Ref. [136]
Cubic Theo 36.35 42.78 43.30 Present
Mean Theo 34.02 39.68 40.17 Present
Mean Exp 28.64 36.11 Present

large clusters, and truly periodic systems has been presented, in which the Born effec-
tive charge and the optical dielectric constant appear as the two fundamental quantities.
The microscopic origin of the dynamical contribution has been discussed in terms of local
polarizability and delocalized transfers of electrons.

Based on various first-principles results, we have then emphasized that the Born ef-
fective charges are anomalously large in the family of ABO3; compounds: their amplitude
can reach more than twice that of the nominal ionic charges. This feature was explained
in terms of interatomic transfers of charge, produced by “off-site” dynamical changes of
hybridization. For BaTiO3 and SrTiOj, we have brought to light complex dynamical
changes of hybridization, concerning not only Ti and O but also Ba and Sr orbitals. The
hybridizations restricted to occupied states generate however compensating anomalous
contributions so that, finally, the total value of Z*(7) is essentially affected by dynamical
changes of hybridization between O 2p and Ti 3d orbitals.

As a more general issue, it appears that the existence of partial hybridizations between
occupied and unoccupied states is an important feature for candidate to large anomalous
Born effective charges. Moreover, the dynamical transfers of charge are expected to be
larger when such a hybridization involve d states, for which the interactions parameters
with other orbitals are particularly sensitive to the interatomic distance.

Investigating the evolution of Z*™) to the structural features, we have shown that
they are strongly affected by the ferroelectric atomic displacements and much less sen-
sitive to isotropic pressure. The results have clarified that the amplitude of Z*™) is not
monitored by a particular interatomic distance but is dependent on the anisotropy of the
Ti environment along the Ti-O chains.

Finally, the effective charges were used to estimate the spontaneous polarization in
the ferroelectric phases of BaTiO3. For that purpose, their evolution was investigated all
along the path of atomic displacements from the cubic to the rhombohedral structure and
reveal a highly non-linear character.

All along this Chapter, we only focused on the microscopic mechanisms that govern
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the amplitude of the Born effective charges. In Chapter 5, it will be emphasized that
the anomalously large Born effective charges produce a giant LO-TO splitting in ABOj
compounds, specially for the ferroelectric phonon mode [136, 53]. Moreover, it will be
demonstrated that this feature is associated to the existence of an anomalously large
destabilizing dipole-dipole interaction, sufficient to compensate the stabilizing short-range
forces and induce the ferroelectric instability [53]. In materials where polar modes play a
major role, the Born effective charge appears therefore also as a “key concept” to relate
the electronic and structural properties.

In the next Chapters we will simplify the notations : Z* (without additional subscript)
will refer to the Born effective charge except when it is explicitely mentionned.
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Chapter 4

Electron localization

4.1 Introduction

From a pure phenomenological point of view, our understanding of the electronic prop-
erties of crystalline solids is quite clear: the inner electrons are chemically innert and
localized on the nucleus while the outer ones are responsible for the cohesion between
atoms. In insulators, they are confined to a particular bond while they are free to move
through the whole system in metals.

At the opposite, in a microscopic description based on quantum mechanics, the elec-
tronic wavefunctions have the Bloch form and are delocalized on the whole crystal. This
picture is valid for the inner electrons as well as the outer ones, for insulators and metals.
In order to describe the properties of these systems we have to refer to their excitation
spectrum and to the fermionic nature of the particles.

These two approaches allow to understand a huge number of physical phenomena but
it does not seem trivial to make a connection between them. In particular, it appears
difficult to define a ”center of gravity” for the electronic wavefunctions as well as their
degree of localization because of the extended nature of the Bloch functions. In confined
systems like molecules, these properties are simply related to the expectation values of
the position operator and its square. But in crystalline solids the operators z and 2
are incompatible with the usually adopted Born von Karman boundary condidions and
cannot be used. Even a description based on locallized Wannier functions [194] (WF)
does not solve this problem because of their nonuniqueness.

During the last decade, the modern theory of polarization [35, 36, 34] and the apper-
ance of many body phase operators [195, 196] allowed these difficulties to be overcome.
While the former theory identifies the center of the electronic distribution to a Berry phase
of the Bloch functions, the latter one leads to a unified treatment of polarization and lo-
calization. It shows that electron localization is a property of the many-body ground-state
wavefunction, an idea already emphasized by W. Kohn in 1964 [197]. It also permits one
to define a characteristic localization length [198] that is finite in insulators and diverges
in metals. In order to describe anisotropic media, this length has been generalized to a
localization tensor [199, 200] that is the basic quantity we are dealing with in this Chapter.

71
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In this Chapter, we will investigate the degree of electron localization in lithium nio-
bate (LiNbQOj3). Similar results have been obtained on various oxides including BaO and
BaTiO;3 as well as PbO and PbTiO3. In the next section we will summarize the formalism
of the localization tensor and show how it can be decomposed into contributions coming
from the different groups of bands forming the energy spectrum of a solid. These tech-
niques will then be applied to study the degree of electron localization in the two phases
of LiNbOj. In the discussion we will make a comparison with the evolution of the Born
effective charges and the electronic structure of this compound.

4.2 Background and Formalism

4.2.1 Localization tensor

Our electronic structure calculations are performed in the framework of density functional
theory (DFT). In an infinite crystal on which we impose periodic Born von Karman
boundary conditions the one particle orbitals are of the Bloch form

U1 (r) = €KTuy (r). (4.1)

Their choice is not unique. An equivalent set of wavefuntions can be obtained from a
unitary (gauge) transformation [85]

N
1L;k> = Z Unmk 1) (4.2)
m=1

where N is the number of doubly occupied bands. For the ground-state the most natural
choice is the so called ”diagonal gauge” where the Hamiltonian is diagonal

<“‘mk|Hk|“nk> = Enk5nm (43)

and where its matrix elemets are the Kohn-Sham eigenenergies.
In an insulating crystal, the localization tensor can be computed from the Bloch
functions and their first derivatives with respect to their wavevector [199, 200]

VC N ou k ou k N ou k ou k
— k n n _ n n
T TORE /de {Z< Ok ‘ Ok > 2. < Ok, “k> <“k Ok >

n=1 n,n'=1
(4.4)
where V, is the volume of the primitive unit cell in real space and «,  are two carte-
sian directions. The derivatives 6(,;;6"’“> are computed from a linear response approach to

DFT [83]. As for the ground-state wavefunctions we have a gauge freedom. The calcula-
tions are most easily performed within the so called parallel gauge (subscript 'p’) where
the first order wavefunctions are orthogonal to the subspace of occupied states

<?l,nk

8umk
ok,

> =0 mmn =1, ...,N. (4.5)
P
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4.2.2 Band by band decomposition

As stated above, the localization tensor is related to a kind of second moment of the
electronic wavefunctions. From standard statistics, it is known that when we take the
sum of two scalar random variables their variances do not simply add but there is a
supplementary term that enters the sum: their covariance. It indicates how these two
variables are related and it is zero if they are independent. In this case the total two
dimensional probability density function can be written as the product of two scalar
functions, each beeing associated to one variable only. Based on this argument, we propose
a decomposition of the localization tensor on the different groups of bands composing the
energy spectrum of a solid: Suppose that the band structure is formed of NV, isolated
groups that contain n; bands. The localization tensor of a particular group is defined as

) V. ou, k ou, k ou, k ou, k
) = ———— dk ne | _n2 ) _ n , , n
<’I“a7"ﬁ>c(7) ni(27r)3 ‘/;Z {HEE; < Bka 8]% > Z < Bka U,k U,k 8]%

n,n'€i
(4.6)
where the sums have to be taken over the bands of group 7. The covariance of two groups

iand j (i # j) is given by the relation
ou
un,k> <un,k ‘ al:ﬂk> . (4.7)

-V, ou,,
(raraeliid) = 5 s / ) deZ <W“

Its origin comes from the fact that the total, many-body wavefunction is a Slater deter-
minant of the one-particle orbitals and not simply their product. Using these definitions,
the total tensor, associated to the whole set of occupied bands, can be written as

(raTs)e an { (rars)c(t) + Z (TaTs)e )} ) (4.8)
J#

This global quantity is independent of the gauge chosen to calculate the ground-state
and first-order wavefunctions. On the contrary, the above defined decomposition is only
meaningful if there is no admixture between the wavefunctions associated to different
groups of bands. That means that the Hamiltonian matrix and its first-order perturbation

expansion Hl(c]) have to be diagonal. This is the case of the ground state wavefunctions

calculated within the diagonal gauge (4.3) but not of their derivatives obtained within
the parallel gauge (4.5). In order to give a physical sense to the different terms in Eq.
(4.8) we have to apply a gauge transformation to the set of first-order wavefunctions that

diagonalizes Hl(c]) [169].

4.3 Results and discussions

4.3.1 Technical details

As in the previous Chapter, our results are obtained thanks to the ABINIT package. For
bulk LiNbOj, the wavefunctions were expanded in plane waves up to a kinetic-energy
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cutoff of 45 Hartrees and the Brillouin zone was sampled using a 6 x 6 x 6 Monkhorst-
Pack mesh of special k-points. All calculations are performed at the optimized lattice
constants and atomic positions as they are reported in Chapter 2.

We also computed the localization tensor for the isolated atoms Nb, Li and O by
placing each atom at the origin of a periodic supercell of 20 Bohrs. As this theory
only applies to systems where the highest occupied state is separated from the lowest
unoccupied level by a finite gap, we did not perform the calculations on the neutral atoms
with partial filling of the atomic orbitals. We used instead the ionic configurations Li™
and Nb3T. For the oxygen atom, the most natural choice was the O?~ ion. Unfortunately,
such a system is difficult to describe in the LDA so that we fixed the occupation of the
states 2p,, 2p, and 2p, to 4/3 in order to get accurate values for the O 2s state.

4.3.2 Band by band decomposition of the localization tensor

The electronic properties of lithium niobate have been presented in Chapter 2. Its band
structure is composed of well separated groups of bands (Fig. 2.12). In Table 4.1, we
summarize the band by band decomposition of the localization tensor in the two phases.
As the dielectric tensor in uniaxial crystals, this quantity is diagonal when it is expressed
in the principal axes. Its eigenvalues (r,7,). (two times degenerate) and (rr). refer
to cartesian directions perpendicular and parallel to the optical axis. The first five lines
give the variance (r,r3)(i) (see Eq. (4.6)) for each of the five groups of bands shown
in Fig. 2.12. They are compared to the localization tensors of the corresponding atomic
states calculated on isolated atoms. The last three lines give the total variance

~ Z (rars)(
the total covariance

ZmZn] rars) (2, 7)
=1

and the localization tensor calculated on the whole set of valence bands from Eq. (4.8).
We see that the bands Nb 4s, Li 1s and O 2s present a degree of localization similar to the
associated atomic orbitals in the two phases. The Nb 4p electrons are more delocalized
in the crystal but these values are also quite unaffected by the phase transition. The only
appreciable variation concerns the element (7 7). of the O 2p group which decreases of
about 6.4 %.

As it was shown earlier [199, 200], the localization tensor is related to the spread of
the so called "maximally localized WE” [179]. Another quantity related to these WF is
the spontaneous polarization [35, 36, 34] which depends on the displacement of the WF
centers during the phase transition. LiNbOj exhibits a particularly large spontaneous
polarization. Experimentally [201, 202], a value of 0.71 C/m? has been measured while
we obtained a value of 0.80 C/m? from a Berry phase calculation. By combining this
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Table 4.1: Band by band decomposition of the localization tensor (Bohr?) in the two
phases of lithium niobate and for the inner orbitals of the Nb, Li and O atoms. The
elements (r v, ). and (rr)). refer to two cartesian directions perpendicular and parallel
to the threefold axis. The tensors calculated on the isolated atoms are isotropic and
defined by their eigenvalues (r?)..

Bands Atom Paraelectric phase Ferroelectric phase

(rP)e  riri)e  (rmrpe  (rairi)e  {myrpde
Nb 4s 0.479 0.514 0.514 0.516 0.514
Li1s 0.158 0.167 0.164 0.166 0.165
Nb 4p 0.576 0.721 0.719 0.728 0.714
O 2s 0.892 0.879 0.870 0.893 0.848
O 2p 1.488 1.515 1.483 1.418
Tot. variance 1.110 1.123 1.111 1.066
Tot. covariance -0.388 -0.384 -0.395 -0.377
Tot. tensor 0.722 0.738 0.716 0.689

result with the localization tensors in Table 4.1 we see that the WF centers are strongly
affected by the phase transition while their spread remains quite constant. We also have
performed calculations on other ABO3; compounds where we obtain similar results: the
localization tensor varies only slightly during the phase transtions.

It is interesting to compare the values in Table 4.1 to the band by band decomposition
of the Born effective charge of the Nb atoms reported in Chapter 3. In Table 4.2 we recall
the eigenvalues of the symmetric part of Z3;,.

For the Nb 4s and Li 1s bands, 7}, is nearly equal to its nominal value. This and the
fact that the localization tensors for these two groups are close to the atomic ones allow
us to conclude that the corresponding atomic orbitals are inert and do not contribute to
the chemical bonds in LiNbOs.

For the Nb 4p and O 2s bands, we observe small anomalous contributions indicating
non negligible interactions of the originalatomic states. This is coherent with the local-
ization tensor of the Nb 4p bands which is larger than for the isolated Nb®* ion. For the
O 2s bands however we do not observe any sizeable delocalization.

The largest anomalous contributions come from the O 2p bands. During the transition
to the ferroelectric state, their contributions to Zy,, and Z3; present an important
decrease of 28 % and 56 %. This and the observation concerning the evolution of E,
made in Chapter 2 suggest a strong variation of the Nb 4d - O 2p hybridization during
the phase transtion. In spite of these important changes, the localization tensor of the O
2p bands varies only slightly (6.4 %) suggesting that the second moment of the electronic
distribution is less sensitive to the details of the covalent interaction than Z* and E,. It is
interesting to note that not only E, varies during the phase transition but also the spread
of the O 2p bands. This latter quantity presents a change (6.9 %) that is similar to what
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Table 4.2: Band by band decomposition of Zj;, in the two phases of lithium niobate.
Reported are the eigenvalues (in atomic units of charge) of the symmetric parts of the
tensors. The elemets Zy, | and Z,, refer to two catesian directions perpendicular and
parallel to the threefold axis.

Bands Paraelectric phase Ferroelectric phase

Nominal AT Zz*w;” AT Z;/bu
L eore 13.00 13.00 13.00 13.00 13.00
Nb 4s -2.00 -2.04 -2.02 -2.06 -2.04
Li1s 0.00 0.01 0.00 0.01 0.00
Nb 4p -6.00 -6.42 -6.37 -6.49 -6.35
O 2s 0.00 0.57 0.58 0.60 0.50
O 2p 0.00 3.14 3.89 2.25 1.71
Tot. 5.00 8.26 9.08 7.30 6.83

we observe for the localization tensor of the O 2p group.

4.3.3 Charge transfer versus local polarizability

The relative insensitivity of the localization tensor to the phase transition contrasts with
the evolution of the Born effective charges and, at first sight, may appear surprizing.
However, as it is now discussed, it is compatible with the simple Harrison model introduced
in the previous Chapter. Let us emphasize that results similar to those reported above
have been obtained for cubic perovskites such as BaTiO3 so that they are not related to
the specific structure of lithium niobate.

As illustrated in Fig. 4.1, the Born effective charges are related to the unusually high
slope of the polarization in the graph of P versus ferroelectric atomic displacements. The
decrease of Z* from the paraelectric to the ferroelectric phase originates in the non-linear
behavior of P in this graph and in particular to the decrease of the slope. Along the same
path of displacements, and contrary to P, the localization length is only slightly varying
and tends to decrease.

To clarify these evolutions we can discuss a simple one-dimensional model . For
simplicity, let us consider a Ti—O chain of atoms intended to mimick what happens in
BaTiO3. The atoms are at a distance a from each others. In Fig. 4.2, we report a
schematic view of electronic density associated to the O 2p Wannier function. We can
investigate separately the behavior expected from the two extreme cases of (a) charge
transfer and (b) local polarizability introduced in the previous Chapter to explain the
origin of anomalous effective charges

Whithin the Harrison model (panel a), this density is centered on an oxygen atom
but, due to small hybridizations with Ti 3d orbitals, is also slightly delocalized on the
two neighbouring Ti atoms. When the oxygen atom is displaced by a quantity Ar,
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Figure 4.1: Schematic evolution of (a) the macroscopic polarization and (b) the local-
ization length along the path of displacements from the paraelectric to the ferroelectric
phase. The Born effective charges are proportional to the slope of P in panel (a).

the central part of the density follows the atom while, due to changes of O 2p — Ti 3d
hybridizations, there is a charge transfer of electrons from one Ti atom to the other which
is responsible for a large displacement A < x > > A7 of the center of gravity of the
Wannier function and the anomalous value of the Born effective charge. However, during
the oxygen displacement, the second moment of the central part of the density remains
unaffected. Moreover, the electrons delocalized on the Ti atoms are transfered from one
side of the unit cell to the other but, roughly speaking, remain at a distance a of the O
atom so that, for those electrons, the second moment remains essentially unaffected. More
correctly, a small reduction proportional to the atomic displacement is expected because
most of the electrons on the Ti atoms are now at a distance a — A7 from the oxygen.

Alternatively, within a shell model (panel b), the electronic charge is expected to be
located on the oxygen. During an atomic displacement, there is no transfer of charge but
the anomalous value of Z* originates in the unusual polarizability of the oxygen atom.
This means that the electronic charge is globally displaced by a quantity A < z > > Ar.
This however would produce an increase of the second moment of the electronic density.

The results of the previous Section are more compatible with the first explanation and
appear therefore as an additional proof of the validity of Harrison’s model. We note that
this model predicts an highly asymmetric charge density in the ferroeloectric phase and
therefore suggests that the third moment of the density is anmalously high.

4.4 Conclusions

In this Chapter, we briefly summarized the formalism of the localization tensor and shown
how this quantity can be decomposed into contributions coming from the different groups
of bands composing the energy spectrum of a solid. This formalism has then been applied
to investigate the degree of electron localization in the two phases of LiNbOj3. Our results
were compared to the electronic structure and the Born effective charges of this compound.

We observed that the deepest levels Nb 4s and Li 1s are chemically innert while the
atomic states Nb 4p and O 2s present weak covalent interactions that generate small
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(a) <~ A<x>

Figure 4.2: Schematic view of the electronic density associated to the O 2p Wannier
function along a one dimentional Ti O chain berore (full line) and after (dashed line) the
oxygen atom is displaced in case of (a) charge transfer and (b) local polarizability. When
the atom is displaced by Ar, the center of gravity of the Wannier function is displaced
by A <z >.

anomalous effective charges and that delocalize the Nb 4p electrons. The O 2p bands
are the only group that presents an appreciable change of electron localization during
the phase transition. This variation is small compared to what we observed for E, and
Z3%, but of the same order of magnitude as the variation of the spread of these bands.
These results suggest that the localization tensor is less sensitive to the details of the
electronic structure of a compound than are for example the Born effective charges. This
insensitivity is compatible with the Harrison model in which the electrons of the O 2p
bands are partly delocalized on the Ti atoms.

4.5 References

A good review of the concepts of Berry phase and geometric quantum distance is given
in the following course :

o R. Resta, Berry’s Phase and Geometric Quantum Distance : macroscopic polariza-
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(année académique 1999-2000). A electronic version of this course is accessible at
the URL : http://www-dft.ts.infn.it/~resta/publ/notes2000.ps.gz.

The results presented in this Chapter are discussed in:

o M. Veithen, X. Gonze and Ph. Ghosez, FElectron localization in lithium niobate, In
”Fundamental Physics of Ferroelectrics”, AIP CP | ed. R. E. Cohen (AIP, Melville,
2002), in press.
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Chapter 5

Lattice dynamics

5.1 Introduction

BaTiOj3 is well known to exhibit a ferroelectric instability and since long there have been
considerable efforts to understand the microscopic origin of its successive phase transi-
tions [14]. Among all these works, the most gratifying explanation is probably due to
Cochran [17] who realized that the problem could be interestingly recast in the frame-
work of lattice dynamics '. Within a shell-model approach, he associated the ferroelectric
transition with the softening of a transverse optic phonon, originating in the near cancel-
lation of Coulomb and short-range interactions. The destabilizing role of dipolar forces
had been previously pointed out by Slater [15], but it appeared more coherently within the
shell-model. In spite of the qualitative character of Cochran’s investigations, the delicate
balance between short-range repulsions and long-range destabilizing electrostatic forces is
still now usually referred to as the origin of the ferroelectricity [93, 98, 44].

Cochran, when introducing the concept of “soft mode”, was the first who associated
the ferroelectric instability to the lattice dynamics. Consequently to his work, the lattice
dynamics of ABO3 compounds has been subject to various investigations. A large number
of experiments have been performed in order to confirm the existence of a soft ferroelectric
mode in BaTiO3 (and other ABO3; compounds. They include infra-red [203, 204, 205, 206]
and Raman [207, 208, 209, 210, 211, 212, 213, 214] measurements of the I' phonon modes as
well as various neutron diffraction data [215, 216, 217, 218, 219, 220|. These experiments
focused on the temperature behaviour of the soft phonon and were mainly concerned by
the low frequency modes.

Simultaneously, theoretical phonon dispersion curves of BaTiO3 were deduced from a
fit of the experimental data using different shell models. Let us mention the pseudo-ionic
model developed by Gnininvi and Bouillot [221] or the rigid-shell model used by Jannot et
al. [220]. These models were however not particularly suited to describe the ABOj crystals.
During the seventies, Migoni, Bilz and Béuerle [22] pointed out that the behaviour of the
ferroelectric soft mode in the oxidic perovskites originates from an unusual anisotropic

'A similar approach was taken independently by Anderson [18].
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polarizability of the oxygen that, in turn, may be connected to hybridization between O 2p
and B d states. A more sophisticated “polarizability model” [23, 24] was then introduced
in order to include the specific physical features of ABO3; compounds. The application of
this model to BaTiO3 was reported by Khatib et al. [141]. In their work, they obtained a
full phonon band structure and investigated the temperature behaviour of the ferroelectric
soft mode. However, their interesting results still remained at a semi-empirical level.

Since a few years, theoretical advances have enabled one to determine the phonon
frequencies of solids from first principles. The phonon frequencies at the I' point have
been computed for various ABO3 compounds using frozen phonon or linear response
techniques. Going further, ab initio phonon dispersion curves are now available for nu-
merous compounds (KNbOj3 [222], SrTiO; [173], BaTiO3 [223], PbTiO; [91], PbZrO3 [91],
LiNbO3 ).

In this Chapter, we will first reintroduce some basics concerning the lattice dynamics
of ionic crystals. We shall then summarize results concerning different ABO3; compounds,
paying a particular attention to the case of BaTiO3;. We will report on the phonon
frequencies at the I point in the cubic and rhombohedral structure. The phonon disper-
sion curves will then be deduced in the cubic phase and the interatomic force constants
analysed. Finally, the behavior of BaTiO3 will be compared to that of other perovskite
compounds and the lattice dynamics of mixed compounds will be discussed. These results
will allow to address some fundamental questions concerning the ferroelectric instability.

First, the different quantities involved in the Cochran model are directly accessible
from our first-principles calculations. This will enable us to investigate the concomitant
role played by Coulomb and short-range interactions in a more general context, going be-
yond Cochran’s results [53]. In this framework, we will be able to highlight the connection
between the electronic and dynamical properties.

Second, the analysis of the phonon dispersion curves will suggest that the appearance
of the ferroelectric instability requires some specific correlations of the atomic displace-
ments. This feature will be investigated with the help of the interatomic force constants.
Our results will be contrasted with some experimental evidences. They will be discussed
in connection with the existing “8-sites” model [27, 224] and the model of Hiiller [28].

Third, the lattice dynamics and structural instabilities of the perovskite ABO3 com-
pounds can be very different in spite of their identical structure at high temperature.
From the inspection of the interatomic force constants, we will point out that all these
compounds are very similar and that their different behavior originates in small differences
of only few key quantities.

5.2 The dynamical equation

In Chapter 1, we have reported atomic positions for the ions. Implicitely, we have con-
sidered that the position R{ of atom & in unit cell a is fixed and given by :

R’ = (R" + R,.) (5.1)
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where R® is the vector defining the position of unit cell @ and R, gives the position of the
atom within the unit cell. In fact, these R are mean positions around which the atoms
can oscillate.

In the present Chapter, we consider that the instantaneous position R%(#) of atom &
in unit cell @ may be of a small deviation 7%(¢) around the mean position :

Ri:(t) = (R"+R,)+T15(1). (5.2)

The movement of the ions will be treated thanks to classical equations of motions. We
shall consider ionic displacements that are small compared with the interionic spacing,
so that it remains possible to work in the harmonic approximation. Moreover, we shall
remain in the adiabatic approximation, in which it is considered that the electrons are in
their ground-state for any instantaneous ionic configuration.

In the harmonic approximation, the total energy of a periodic crystal with small lattice
distortions from the equilibrium positions can be expressed as

arm a 0 EP-H a
E:+1 ({R } e+1 + Z Z a Tnan?’ﬁ (53)
aka br'B 67_ 87—

where 72 is the displacement along direction « of the atom « in the cell a (with vector
R?), from its equilibrium position R*+ R,. The classical equations of motion for the ions

are then:
07 O Eharm 0°E,.;
Mﬁ ko e+i — e+ o 5.4
ot dre, bz;j (aﬂ,manm,J Th's (5:4)

We have 3 equations of motions of this type (one for each direction) for each atom in the
crystal. We seek a general solution of the form:

Tea(t) = 11p, (Rar)e ™! (5.5)
Due to the lattice periodicity, the matrix of the second derivative of the energy appearing
in Eq. (5.3) is invariant against a rigid body translation of the crystal by a lattice
translation vector. Coherently with this property, we can propose a more explicit solution
of the form:

T2 (1) = Mg (Ka) ¢'aRa o=ivmt (5.6)

Ro

for which the vibrations of the ions have been classified according to a wave vector q.
This approach is strictly equivalent to that taken for the electrons through the Bloch
theorem. For an infinite solid, it will allow to replace the problem of solving a infinite set
of coupled equations (Eq. 5.4) by another problem of 3 x N,; equations (where N, is the
number of atoms per basic unit cell) to be solved for an infinite number of wave vector
q. For a finite solid composed of N unit cells, only g-vectors compatible with Born-von
Karman boundary conditions must be considered. In practice, we will see later that the
full dispersion curves can be deduced from calculations on a very small set of g-vectors.
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A few definitions are now introduced. The matrix of the interatomic force constants
(IFCs) in real space is defined as

2E .
Om,n/ﬂ(a; b) = (Q) 7 (5_7)

b
ore, 0t 5

while its discrete Fourier transform takes the following form:

~ 1 . B
Oﬁa,ﬁlﬂ(q) - N Z Cﬁa,n’ﬂ(a, b)eilq (Ra Rb)
ab
= ) Craws(0,0)e 9™, (5.8)
b

where N is the number of cells of the crystal in the Born-von Karman approach. This
last quantity is connected to the dynamical matrix Dy, . 5(q) by

Dycaes(a) = Creaws(@)/ (M Mp)'/? . (5.9)

From these definitions, the movement of the ions can be described in terms of the
following dynamical equation:

Z Croa8(A) g (5'8) = Mty Nimg () - (5.10)
k'S

Equivalently, the normal modes of vibrations are solution of the following eigenvalue
problem:

Z Dna,n’ﬂ(q)fqu(’flﬂ) = w3nq7mq(ﬁa) - (511)
K'B

The square root of the eigenvalues of the previous equations w,,q are the phonon fre-
quencies at wave vector q, while v,,q4 are their associated phonon eigenvectors. The 7,4
are usually referred to as the phonon eigendisplacements. They are normalized such
that < n|M|n >= 1, where M = M., is the mass matrix. Phonon eigenvectors and
eigendisplacements are therefore related by: v = v/M.n.

Let us emphasize that w? are the eigenvalues of the dynamical matrix and are therefore
directly related to the second derivatives of the energy with respect to the atomic positions.
When the reference crystalline phase of interest is stable and the associated mean position
of the atoms corresponds to a minimum of energy, the curvature of the energy surface
around this minimum is always positive as well therefore as w? and the phonon frequencies.
At the opposite, when the reference ionic configuration is unstable and related to a more
stable phase through a double-well energy profile for a given pattern of ionic displacements,
the curvature of the energy at the origin, along this path of displacements, will be negative.
This yields a negative w? and an imaginary phonon frequency 2.

2This imaginary frequency is associated, within the harmonic approximation, to atomic displacements
increasing exponentially with time. In practice, this does not happen and the ions are stabilized in
another structure by the anharmonicities.
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Within the harmonic approximation, an imaginary phonon frequency corresponds
therefore to a crystal instability and the associated phonon eigendisplacement pattern
provides the path of displacements along with the energy is decreasing. In this context,
the computation of the phonons appears therefore as an interesting tool to identify and
characterize structural instabilities. In this study, it will reveal of paradigm importance.

5.3 First-principles calculations

From the dynamical equation, the basic ingredient to be known to compute the phonon
frequencies is the dynamical matriz. To determine this matrix, different theoretical ap-
proaches can be considered.

In semi-empirical shell-models (like the model of Cochran [17] discussed later in this
Chapter or the polarizability model of Bilz [23]), the crystal is described in terms of atoms
composed of an ionic core and an electronic shell, each of these having their own charge
and being connected to each others and neighboring atoms by springs. The interactions
to be considered are chosen a priori and unambiguously define the form of the dynamical
matrix. However, each pair interaction is described with one or more parameters that need
to be adjusted to reproduce the correct dispersion curves. Consequently, the method is
helpful to understand the shape of the dispersion curves from a microscopic simple model
but is not predictive.

Using a first-principles approach, it is possible to compute the total energy of a crys-
tal as a function of the atomic positions and therefore to determine the phonon band
structure a priori with an accuracy usually around 5 % with the experimental data. The
dynamical matrix is constructed by computing directly the change of the total (electronic
and ionic) energy under atomic displacements. This can be done using a so-called frozen
phonon technique : finite atomic displacements are frozen in the structure and the second
derivative of the energy is extracted (either from the curvature of the energy or from finite
differences of the atomic forces). The approach is straightforward at the Brillouin zone
center. For non-I" phonons, a supercell must be considered compatible with the g-vector
of interest.

Alternatively, the second derivative of the energy can also be determined using per-
turbation theory as discussed in Chapter 1. This method requires some additional im-
plementation efforts 3 but presents the advantage that it allows to keep the simplicity of
a single cell calculation whatever the q-vector which is considered and that can even be
incommensurate with the crystal lattice.

All the results reported here have been obtained using a variational formulation [83, 84]
of the density functional perturbation theory [42].

31t is relatively straightforward for plane-wave codes but it not so easy with ultra-soft pseudopotentials
or using LAPW techniques
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5.4 Ionic crystals

5.4.1 Introduction

The chemical interactions between atoms in a crystal are expected to produce relatively
short-range forces. However, in ionic compounds, there is an additional Coulomb inter-
action between charged species which has a long-range character.

Let us consider for simplicity a lattice of point charges Z, in vacuum, the force between
a given pair of atoms is derivable from a two-body potential which depends only on the

magnitude of the separation d = ||R® — R?,|| between the atoms :
Zy Ly
VO (d) = : (5.12)
d
It can be checked that this gives rise to interatomic force constants of the form [225]:
00 dndg
Chbs(a,b) = ZHZK,(? -3 ) (5.13)

This demonstrates that the interatomic force constants associated to the Coulomb in-
teraction exhibit a long-range 1/d* behavior. This distance dependence is typical of a
dipole-dipole interaction (as emphasized in the DD superscript used all along this Chap-
ter) and may appear surprizing because we are dealing with point charges. Physically, it
can be viewed as arising from the fact that when a given charge Z" is displaced by a dis-
tance 7, the difference of charge configuration after and before displacement corresponds
to a dipole made of charges +7, at a distance tau. When two atoms are displaced, two
such dipoles are induced so that the Coulomb interatomic force constants take the form
of a dipole-dipole interaction. We will see in Section 5.6.2 that, in a real solid, we keep a
very similar expression. However, the charge to be considered in Eq. (5.13) is the Born
effective charge tensor and the screening must be included through an additional 1/e.
factor.

In practical calculations, the long-range character of the Coulomb interaction can be
correctly treated by summing interactions up to infinite distances thanks to the use of
Ewald summation techniques [226] and should appear has a rather technical point. How-
ever, a good understanding of the Coulomb interaction is helpful to clarify the specific
behavior of ionic crystals and some of the theoretical investigations on ferroelectric per-
ovskite that are reported later in this Chapter.

In this Section, we first recall the definition of some basic concepts such as the macro-
scopic electric field, the depolarizing field, the local field and we establish the relationships
between them 4. We also make the connection between macroscopic quantities (obeying
to the equations of the electrostatics) and microscopic concepts (useful to describe the
local behavior of the atoms). We recall the origin of the splitting between longitudinal
and transverse optical mode in the long-wavelength limit and deduce an expression for
the static dielectric tensor.

1A good review of these concepts (from which this Section is mainly inspired) is given in the book of
Ashcroft and Mermin [68].
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5.4.2 Macroscopic and microscopic electric fields

When viewed at the atomic scale, the charge density n(r) of any insulator is a rapidly
varying function of position, reflecting the microscopic atomic structure of the crystal. On
the same atomic scale, the electrostatic potential v(r) and the electric field £™™(r) =
—Vu(r) also have strong and rapid variations since they are related to n(r) by

V.EMero(r) = 47 n(r). (5.14)

On the other hand, in conventional electromagnetic theory of insulators, the charge
density n*°(r), potential ¢(r), electric field £(r) and electric displacement field D (r)
show no such rapid variations. In the case of an insulator bearing no excess charge, the
Maxwell equations yield :

V.D(r) =0, (5.15)
in addition with
D(r) = &(r) + 47P(r). (5.16)
This implies that the macroscopic electric field satisfies :
V.E(r) = —4r V. P(r). (5.17)

where P(r) is the macroscopic polarization.

As first derived by Lorentz, microscopic and macroscopic quantities can be related to
each others. The macroscopic electric field £(r) is defined to be an average of £™™(r)
over a region about r of characteristic size ry that is small at the macroscopic scale , but
large compare to characteristic atomic dimensions:

E(r) = /dr' gmicro(p — ') f(x'), (5.18)
where f is a slowly varying pair function, normalized to 1 and which vanishes for r > ry.

Beyond these assumptions, the theory is independent of the properties of the weight
function f. This implies that

V.E(r) = /dr' V.E™TO(r — ') f(v') = 47 /dr' n(r —r')f(r'), (5.19)

and also that
V.P(r) = —/dr' n(r—r1')f(r"). (5.20)
In conclusions, macroscopic and microscopic quantities are directly related to each

others. Consequently, the relationships imposed by Maxwell equations translate into
equivalent constraints at the microscopic level.
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5.4.3 Macroscopic field within a dielectric

Contrary to what happens for a metal, the electric field inside an insulator is not neces-
sarily zero because charge cannot flow freely in it. As a first step, it is important to define
what we call the macroscopic field.

Let us assume that an insulator is placed in an external electric field &,,,. The field
polarizes the material and the macroscopic field, £, within the sample is different from
Eapp- It will be the sum of the external applied field &,,, with the so-called depolarizing
field gdep .

E = Eupp + Edey (5.21)

where &4, is the field associated to the macroscopic polarization P (i.e. the field produced
by the induced dipoles within the sample in a Clausius Mosotti model).

From the electrostatic, it is well known that the macroscopic field induced by a uniform
polarization is equivalent to the field induced, in the vacuum, by a charge density o = n.P
at the surface of the sample (here, i is a unitary vector perpendicular to the surface and
pointing outside). It follows that for a thin platelet sample in a perpendicular external
field, the depolarizing field perpendicular to the surface simply writes :

gdep,L = *47T‘O'| = *47T'PL (522)

Similarly, for an ellipsoid with its principal axis along the cartesian coordinates, it can
be checked that an homogeneous external field will induced an homogeneous polarization
and that the associated depolarizing field writes [227] :

g:z:,dep - *nazlpma gy,dep - *’ny,Pya gz,dep - *nz,Pz; (523)

where the n;’s are called the depolarizing factors. They depend on the shape of the
ellispoid. They are positive, inversly proportional to the length of the principal axis of
the ellipsoid and satisfy n, +n,+n, = 1. In the case of a sphere : n; = 47 /3. In the case
of a platelet, we recover : n, = 47 and ny = 0. In the case of a needle, we get n, = 27
and nj = 0.

The measurable electric field inside a dielectric, which is also the field appearing in
Maxwell equations is the total macroscopic field £. Tt is therefore the sum of the (eventual)
applied field &,,, with an additional depolarizing field £4.p; = —n;P;, the amplitude of
which depends of the macroscopic shape of the sample. It can be non-zero even in absence
of external field when the polarization is non-vanishing as it can happen when atoms are
displaced in an ionic crystal.

5.4.4 Local electric field

Since each ion in a solid as microscopic dimensions, its displacement and distortion from
equilibrium position will be dependent of the force due to the microscopic field at the
position of the ion (diminished by the contribution to the field from the ion itself). This
field is frequently called the local field, &,..
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It is important to realize that the local electric field at an atomic site can be different
from the macroscopic electric field. As an example, let us consider a macroscopic simple
cubic cristal of spherical shape, composed of well separated polarizable atoms at each site
and in an external field oriented along z. The macroscopic field within the sample simply
writes :

47
€= T, (5:21)
The local field at the center of the crystal is defined as the sum of (i) the applied field
and (ii) the field produced by the dipoles p = p,z induced on each atom by the external

field :
5[0(: - gz,app + gz,dip- (525)

&, dip 1s obtained from a sum on the different sites :

3(pr1)z7 - ri2pz
gz,dip - E 7“5 (526)
i i
32 — (27 +yi +2)
= p. ) -

r;

L0 2
- pZZ—Zy— (5.28)

Because, the 3 directions x, y, z are equivalent by symmetry in this simple example, &, 4,
sums up to zero so that the local field is simply € = &, 4p,. It differs from the macroscopic
field.

As the local field appears as a useful concept, we can try to obtain its expression at a
given site of a crystal non necessary of cubic symmetry. We will consider that the solid
has the shape of an ellipsoid. The local field is the sum of the applied field induced by
external sources and the field produced by all the induced dipoles inside the sample. The
latter can be decomposed in three terms if we consider our sample as composed of two
regions:

(5.27)

1. a mear spherical region composed of all the atoms within a small fictive sphere
centered on the site of interest;

2. a far region composed of the part of the crystal outside from the sphere and assim-
ilated to a continuum.

We write :
gloc - gapp + gdep + gﬁorentz + gint (529)

where:
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1. &qpp 1s the usual applied external field ;

2. E4ep is depolarizing field induced by the surface charge density o = n.P at the
surface of the ellipsoid ;

3. Erorent> 18 the Lorentz field induced at the surface of the internal sphere by the
polarization in the far region ;

4. &, is the internal field, produced by the individual dipoles within the internal
sphere.

The sum of the internal and depolarization field correspond to the macroscopic field £.
Moreover, the Lorentz field is the electric field produced by the charge density o = n.’P
appearing at the surface of the internal sphere and, as such, it simply writes

4
5Lm"entz - ?ﬂlp (530)

In general, the local field therefore writes (independently of the symmetry of the crystal) :
4
gloc =&+ ?W,P + gint (531)

If we now assume a crystal of cubic symmetry, the internal field induced by the dipoles
within the internal sphere will be zero (as demonstrated above in this Section) so that we
finally obtain the well-known Lorentz relation :

4
Eroe = € + %P (5.32)

This result is widely used in the theory of dielectrics. It is very important to remember the
assumptions underlying it, particularly that of cubic symmetry about every atomic site.
We note that for a crystal of spherical shape, the Lorentz field compensate exactly the
depolarizing field so that &, = £,pp, as obtained in the simple example at the beginning
of this Section.

Let us emphasize that &, is the total microscopic field at the atomic site. In addition
to the eventual external field, it summarizes the field produced by all the individual
dipole all over the material (generated by the external field and/or atomic displacements).
To compute the force on an atom it is therefore equivalent to sum individual Coulomb
interactions or to treat them globally through the local field they generate at a given
atomic site. As it will be illustrated later, this latter approach is sometimes preferred in
shell-models.

5.4.5 Dielectric constant and local polarizability

The dielectric constant € of a dielectric medium is a macroscopic quantity defined from
the macroscopic field as :

_5+47r73

z =1+4nyx (5.33)

€
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and the susceptibility x is defined as

e—1
47

X = (5.34)

These macroscopic concepts can be related to microscopic quantities. The polarizabil-
ity a; of an atom 7 is the quantity which relates the induced dipole moment to the local
electric field on the atom :

Pi = Qi €y (5.35)
The local field is
. 2
glzoc = % P (536)

and the polarization is the dipole moment per unit volume :

1

Combining the last three expressions we get the well-known Clausius — Mossotti rela-
tion :

€e—1 47
- i 5.38
€+ 2 39020 ( )

i

where )y is the volume of the unit cell and the sum over ¢ extends to atoms within the
unit cell. This relationship connects the local atomic polarizability to the macroscopic
dielectric constant. We notice that it is based on the Lorentz relation to relate macroscopic
and local fields. It makes therefore implicitely the assumption of cubic symmetry.

Theories treating the Coulomb interaction through the local field will make use of local
quantities such as the local polarizability and the Szigeti charge. Theories working with
the macroscopic electric field will consider instead the macroscopic dielectric constant and
the Born effective charges.

5.4.6 Long-wavelength optical modes in ionic crystals

In ionic crystals, long-wavelength longitudinal and transverse optical modes exhibit differ-
ent frequencies. This particular feature is a direct consequence of the conditions imposed
by the Maxwell equations on the macroscopic field in both cases.

In a long-wavelength (q &~ 0) optical mode, the oppositely charged ions in each unit cell
undergo oppositively directed displacements, giving rise to a non-vanishing polarization
density P. Associated with this polarization, there will in general be macroscopic electric
and displacement fields related by :

D=c&=E+4rP (5.39)
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In the absence of free charge, we have :
V.D =0. (5.40)
Furthermore, £7"° and consequently £ are the gradient of a potential ® :
VxE=Vx-Vp=0. (5.41)

In a cubic crystal, D, £, P are parallel to each others. If they have the spacial depen-
dence,

D = Re(Dye'*"); € = Re(Eye'™); P = Re(Pye'd™); (5.42)
then, Eq. (5.40) reduces to q.Dy = 0, or
D=0or D, E P Lq (5.43)
while, Eq. (5.41) reduces to q x & = 0, or
E=0or D,E Pl q (5.44)
In a longitudinal optical (LO) mode, P is parallel to q so that D must vanish and
E=—41P (e=0) (5.45)
In a transverse optical (TO) mode, P is perpendicular to q so that £ must vanish and
E=0 (e=o0) (5.46)

It can now be understood why longitudinal and transverse frequencies differ in the
long-wavelength limit. This is in fact because the atoms experiences different electrostatic
restoring forces. If we evaluate the local field, we obtain for a LO mode :

4 8
E0=E+ T P=—"P (5.47)
oc 3 3
while for a TO mode :
4
gro = %P (5.48)

In longitudinal modes, the local field acts to reduce the polarization; it therefore produces
an additional restoring force which produces a stiffening of the mode. At the opposite,
in TO modes, the local field acts to support the polarization and produces therefore a
softening.

®This is not strictly through since the right side of the Maxwell equation V x & = —(1/¢)0B /0t needs
not to be negligible. However, a rigorous electrodynamic treatment leads to conclusions very similar to
what is reported here.
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5.4.7 The LO-TO splitting

From the previous discussion, we expect the frequencies of the zone-center LO modes to
differ from those of TO modes due to the different condition on the macroscopic electric
field. This field is related to the polarization field associated to phonon modes with a
polar pattern of displacement and only such polar (IR active) modes will be splitted.

In order to get better insight on the LO-TO splitting, the interatomic force constant
matrix can be conveniently separated into two parts °

Crapwsla = 0) = Cr. 5(a=0) + ACLO, 5(q — 0) (5.49)

RO,K

KO ,K

ionic contributions previously reported, but from which the interaction with the macro-
scopic electric field has been excluded. The second contribution AC’LO?H,ﬁ(q — 0) is an
additional term that treats correctly the interaction with the eventual macroscopic electric
field. The amplitude of this term depends explicitely of the direction taken to approach
the I' point.

Separating the contribution involving the macroscopic electric field from the other
contributions, the driving force induced on atom 0Ox in a surrounding of displaced atoms

may be written as 7 :

FOK,a = — Z CZ{IOK’ﬂ O b 7_ Iﬂ + ZZK 6’ (‘:ﬂl (550)
b,k',B B’

The first term C° 5(q = 0) is the IFC matrix, obtained as a sum of the electronic and

so that the equation of motion for the ions becomes:

O*ATE,
My~ = =) Cr0L5(0,D) T,ﬂ+z " e (5.51)
b,k',3

The amplitude of electric field £5 must now be determined. It can be deduced from
conditions on the electric field and displacement field derived from Maxwell’s equations.
The change of electric field associated to the appearance of a phonon is directed along
4= (¢2:9y,9:): € =|€|.qs- The induced displacement field is given by :

D, = Eq+47 P, (5.52)

The macroscopic polarization is related to atomic displacements and macroscopic electric
field through:

Py 873
Pa = Y a—|g 0 Th g+ \T o |€] g5 (5.53)
B

b,.;,,g L "B

= O Z k' ,Ba K’B +ZXQ6 |5| as (554)
br{,ﬁ

6Matematically, a divergence problem arises at q = 0 so that this decomposition is also performed in
the calculations to compute LO modeq at the I' point.

TAn alternative expression (ZN Ba . Eloe,p) can be used for the interaction with the electric field. As
highlighted in Chapter 3, both are strictly equivalent
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so that

Z saT ﬁ+|5|2aﬂqﬁ (5.55)

O b,

Along direction q, the component of the displacement field must be preserved so that we
have the condition: q.D = 0. From ¢,.D, = 0, we deduce:

4 k! ’ Z,:/ o qa’
|5|:——”Z" L Tt Lot Gt (5.56)

QO Za’ﬁ’ qa’G(x’ﬁ’qﬂ’

From this equation, it appears that the macroscopic electric field associated to the phonon
(€) is connected to the polarization field induced by the atomic displacement (Z*.Ar)
thanks to the dielectric constant (e ). Introducing this result in equation (5.51) we get:

82 a
atQ == Z A Iia n’ﬂ(o b)
b,x',8
4 ! K,B8'a ! o Z:’o/’ a
WZg( B %)ZOO( g 4 )] (5.57)
QO Zo/ﬂ’ qa’€a/ﬁ/qﬁ’

so that the additional contribution to the IFC matrix for the LO modes can finally be

written as: ) *
4_71’ Zﬂ’ (Zﬁyﬁ'a Qﬂ’) Z(x’ (Zn’,a’ﬂ QQ’)
% > Qo€ 0 '

It is this term that is added in order to compute the LO-TO splitting in the limit of the I’
point. Note that for LO modes, the full dynamical matrix including this AC’,ESK,ﬂ(q — 0)
must be diagonalized. When there are more than one polar modes, this additional term

can mix them up so that LO and TO eigenvectors are not necessarily identical.

ACIO /B(q — 0) -

KO ,K

(5.58)

5.4.8 Static dielectric constant

When a insulator is placed in a static homogeneous electric field (such as that existing
between the plates of a capacitor), the field will polarize the material and many important
consequences of the resulting internal distortions can be deduced if one knows the static
dielectric tensor, egﬁ, of the material. The calculation of egﬂ is therefore an important
aim of any microscopic theory of insulators.

The dielectric constant is directly related to the suceptibility :

P,
&

(5.59)
(5.60)
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If the electric field is static (or sufficiently slowly varying), the ions can relax so that the
change of polarization is the sum of ionic and electronic contributions :

BP BP 87' ’
0 = 1+4 oty 2 |e_g—=2b
€ap + W(agﬂ| =0+ 2 Do le—o o€, )
47 OTypr
= €5+ — g 75 o — 5.61
€aﬂ + QU K,B8'a agﬂ ( )

K76’

The only unknown in the previous equation is the derivative of the atomic positions with
respect to the field. This can be worked out since the ions will relax until the force they
feel becomes equal to zero. This condition can be imposed on Eq. (5.50) :

=) CrO(0,b) T+ Z Z: g Ep =0 (5.62)
bk,

In order to get a familiar expression for the dielectric constant, we can choose to express

the atomic displacements in terms of the TO modes eigenvectors which define a complete

basis (12, — 70 9"). This provides the following equivalent condition :

Wi Tt DY Zh s e €5 =0 (5.63)

or

ZZ 0f 77527 (5.64)

wTOz Ko

Introducing this in Eq. (5.61), we finally get :

fap = a6+ ZZZ:/M 5(6)7 Z i Thot)

% K,B'
4 Sz aﬁ
= e°° 9.65
QO Z wTO? ( )

where we have defined the mode oscillator strength as

Sias = O Zi 0 (S Zi i), (5.66)

’{’ﬂ’y ’{‘77

This quantity requires the knowledge of the Born effective charges and phonon eigenvec-
tors, two quantities directly accessible from our calculations.

In order to exhibit a large dielectric constant, the material must have modes combining
large oscillator strength (favored by large Z*) and small frequencies (soft modes). We will
see that these two conditions are not necessarly independent since, as it will be illustrated
later, large Z* produce a strong destabilizing Coulomb interaction producing a softening
of the phonon frequencies.
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Table 5.1: Phonon frequencies (¢cm~') at the I point for cubic BaTiO;. The LO-TO
splitting has been computed with the help of the scissors corrected dielectric constant.

Mode Exp.[203] @,=3.67TA a,=3.94A a,=4.00A Ref. [136]
F,(TO1) soft 214 1132 219 1783
Fi,(LO1) 180 250 180 159 173
Fru(TO2) 182 206 184 166 177
Flu(LO2) 465 513 460 447 453
F1,(TO3) 482 737 481 453 468
Fi,(LO3) 710 1004 744 696 738
F, 3064 308 288 281 —

® This value has been measured in the tetragonal phase.

5.5 BaTiO3; phonon modes at the I' point

As a first step, we investigate the lattice dynamics of barium titanate at the I" point in its
cubic and rhombohedral structures. We consider cubic phases at the experimental and
theoretically optimized volumes corresponding to a lattice parameter a, equal respectively
to 4.00 and 3.94 A. We will also study a compressed cubic phase with a,=3.67 A. For the
rhombohedral phase, we adopt the experimental unit cell parameters and relaxed atomic
positions, as described in Chapter 1.

There are 12 optic phonons in BaTiO3. In the cubic phase, at the I' point, we have
three modes of Fj, symmetry and a silent mode of F,, symmetry, each of them triply
degenerated. Going to the rhombohedral phase, each triply degenerated Fj, mode (resp.
F5,) gives rise to a mode of A; (resp. Ay) symmetry and a doubly degenerated mode of
E symmetry.

5.5.1 Cubic phase

Our phonon frequencies in the cubic phase, as well as experimental and other theoretical
results, are reported in Table 5.1. Our values are in good agreement with the experi-
ment [203] and another calculation by Zhong et al.[136]. In particular, we identify the
instability ® of the TO1 mode that corresponds to the vibration of Ti and Ba against the
O atoms. The phonon frequencies change by a noticeable amount when going from the
experimental to the optimized volume. This behavior is different to the one previously
observed for other physical quantities like Z7. This sensitivity is particularly large for the
soft TO1 mode : Its instability even disappears in our compressed cubic phase.

The eigendisplacements associated with the Fi,(7T'0) modes are described in Table 5.2,

8 An instability is associated to a negative curvature of the energy hypersurface which yields an imag-
inary phonon frequency.
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Table 5.2: Phonon eigendisplacement patterns for the Fy,(T'O) mode of the cubic phase
of BaTiO3. In comparison with results of Cohen and Krakauer (CK), we report values at
the experimental (V.,,) and optimized (V,,) volume, as well as for a compressed (Vomp)
cubic phase. Eigendisplacements 1 are normalized such that (n"°|M|nt°) = 1, with M
in atomic mass units.

Mode Volume Ba Ti 01 02 03
F1,(TO1) Vg -0.002 -0.096 0.158 0.071 0.071
Vopt -0.002 -0.098 0.137 0.087 0.087
Veomp -0.028 0.121 0.026 -0.074 -0.074
Ref. [107] -0.006 -0.091 0.144 0.091 0.091
Fi,(TO2) Vg -0.055 0.080 0.068 0.081 0.081
Vopt -0.055 0.082 0.071 0.077 0.077
V comp -0.047 0.017 0.085 0.133 0.133
Ref. [107] -0.054 0.088 0.053 0.075 0.075
Fiu(TO3) Veu 0.002  0.032 0.170 -0.124 -0.124
Vopt -0.001  0.018 0.18 -0.116 -0.116
Vcomp 0.002 -0.040 0.224 -0.061 -0.061

Ref. [107] -0.003 0.022 0.186 -0.115 -0.115

They are in agreement with those obtained by Cohen and Krakauer [107] from a frozen
phonon calculation. These eigenvectors remains relatively similar at the experimental and
optimized volume. By contrast, there is a mixing between the three Fy,(70) modes in
the compressed cubic phase so that not a single one corresponds to the unstable mode of
the optimized cubic cell (see also Table 5.3).

The correlation between the LLO and TO modes can be measured by the overlap matrix
between their respective eigenvectors. A priori, the eigendisplacements of the LO modes
(n*©) do not necessarily corresponds to those of the TO modes (n7?), because of the
long-range Coulomb interaction. The overlap matrix reported in Table 5.3 ( (n7?|M |n©),
where M is such that M = M6, and M, is the mass of atom k) establishes however
that the mixing is very small: we observe a one-to-one correspondence. Interestingly,
the softest TO mode, Fy,(TO1), is associated with the hardest LO mode, Fi,(LO3),
suggesting a giant LO-TO splitting [136]. The same kind of results has been reported for
KNbOj3 [136, 101], even if the overlap between LO and TO modes was not so large for
that compound.

The amplitude of the LO-TO splitting lies essentially in the value of the mode effective
charges. This quantity is defined as

* TO
Zn,ﬂ Zﬁ,,aﬁ 775,6
(n™Cn")

Zio = H (5.67)
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Table 5.3: Overlap matrix elements between the eigenvectors of the Fy,(TO) modes of
the optimized cubic phase and those respectively of the associated Fi,(LO) mode and of
the F1,(TO) mode of the compressed cubic phase.

vopt
F,(TO1) F,(TO2) F,(TO3)
Fi,(LOT) 0.17 -0.99 0.01
Vopr  F1,(LO2) -0.36 -0.07 -0.93
Fi,(LO3) 0.92 -0.16 0.37
Fi,(TO1) 0.71 -0.54 0.46
Veomp Fru(TO2) -0.49 -0.84 -0.22
Fi,(TO3) -0.51 0.07 0.86

Table 5.4: Mode effective charge and respective partial contribution due to each atom for
the F1,(TO) modes of the optimized cubic phase.

Mode Partial contribution due to Mode charge
Ba Ti OH OL OL Z}()
Fi.,(TO1) 0.03 3.42 377 0.90 0.90 9.02
F1,(TO2) 0.92 -3.66 248 1.02 1.02 1.79
F,(TO3)  -0.01 -0.53 428 -1.01 -1.01 1.74

The mode charges are reported in Table 5.4 where we identify the respective contribution
due to each atom. We observe that the very large Z7,,,, responsible of the strong Coulomb
interaction of this mode, originates essentially from the large Born effective charges on Ti
and Oy, that combine according to the specific pattern of eigendisplacement associated to
this mode. In comparison, for the TO2 mode, Ti and O contributions remain large but
cancel out so that the global charge is smaller.

As a consequence of the observed similarity between eigenvectors, we can predict ficti-
tious LO frequencies on the basis of the Born effective charges, by the simple approximate

U.)2 (q — 0) - 0)2 + 4_7T (Za qa(Zn,ﬁ Z:,()/ﬂ nzg))Q
L.O TO QO Zaﬁ o 63% (]5

9This equation allows to compute the splitting within the hypothesis that the eigenvector was not
modified by the interaction with the macroscopic electric field. Note that the additional contribution on
the right hand is always positive. It should also be conveniently expressed in terms of the mode oscillator
strengths introduced later.

formula ?

(5.68)
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Table 5.5: Phonon frequencies (cm~') at the T' point for rhombohedral BaTiOs.

Mode Mode

A(TO1) 168 E(TO1) 161
A(LOT) 180 E(LO1) 173
A (TO2) 265 E(TO2) 205
A (LO2) 462 E(LO2) 438
A (TO3) 505 E(TO3) 461
A (LO3) 702 E(LO3) 725
A, 274 E 293

where () is the volume of the unit cell, @ and [ indices denote the space direction and
k labels the atom within the unit cell. We find values respectively of 701, 214 and 508
ecm~!' in close agreement with real 1O frequencies (180, 460 and 744 ¢cm™'). This result
emphasizes again the giant LO-TO splitting of the unstable mode (113i — 701 cm™!) in
comparison to that of the two other modes (184 — 214 cm™!, 481 — 508 cm™!). This
unusual splitting is associated to a particularly strong Coulomb interaction that will be

discussed later.

5.5.2 Rhombohedral phase

The phonon frequencies of the rhombohedral phase are reported in Table 5.5. The only
other result we found is experimental [211] and localizes the phonon frequencies in three
regions (100-300 cm™', 480-580 cm ™', and 680-750 cm™'), in qualitative agreement with
our values.

There is no unstable mode in the rhombohedral structure. If we compare the eigen-
vectors to those of the cubic phase, we observe that they are very similar in both cases.
This is illustrated for the A; mode in Table 5.6. Similar overlaps are obtained for the F
modes. They point out that A;(7702) and E(T'02) originate from the hardening of the
soft mode.

If we compute the overlap matrix between LO and TO modes (Table 5.6), we observe
that the mixing produced by the Coulomb interaction is larger than in the cubic phase.
Moreover, the ferroelectric A;(T'0O2) mode is the most closely associated with the A;(LO3)
mode.

In this phase, the mode effective charges of the A; (resp. E) modes are respectively of
2.79 (4.48), 6.99 (8.41) and 2.33 (1.99). The TO2 modes, originating from the soft TO1
mode of the cubic phase, continue to couple strongly with the electric field but the smaller
Born effective charges makes their mode effective charge smaller. This is particularly true
for the A; modes polarized along the ferroelectric direction.

All the computed phonons are stable in the rhombohedral phase, and we can obtain
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Table 5.6: Overlap matrix elements between the eigenvectors of the A;(TO) modes of the
rhombohedral phase and those respectively of the associated A;(LO) modes and of the
F1,(TO) mode of the optimized cubic phase.

A,(TO1) A,(T02) A, (T03)

AL (LOT) 0.96 0.29 0.02
A (LO2) -0.15 0.56 -0.81
A (LO3) 0.25 -0.77 -0.58
F,(TO1) 0.13 -0.97 0.19
P, (TO2) -0.99 -0.13 -0.01
F,(TO3) -0.02 -0.18 -0.98

the low frequency (infra-red) dielectric tensor by adding to e, the ionic contribution
(evaluated here in the harmonic approximation, without damping). The expression is the
generalization of that we have obtained in the static case :

. 4 Si,aﬂ
as(W) =5+ 5= (5.69)
The value of the dielectric constant along some direction q = (¢, gy, ¢.) is evaluated from:

€a(w) = Y dacas(w)as (5.70)
o

We obtain for the static dielectric constant (w = 0) a value of 33.09 along the ferroelec-
tric axis and of 68.89 perpendicularly to it. In both directions, the main ionic contribution
comes from the TO2 modes (73% and 62% respectively). This is another manifestation of
the large effective charge of this mode. The large anisotropy of the static dielectric tensor
is associated with the smaller value of Z* and €., along the ferroelectric direction.

The determination of the low frequency dielectric constant is sometimes associated to
a measurement of the reflectivity R(w) of optical waves normal to the surface, with their
electric field along an optical axis of the crystal q, and defined as:

(5.71)

The result is presented in Fig. 5.1 !° for q aligned along the ferroelectric direction.
Unfortunately, no experimental data can be compared to our theoretical results.

'0The saturation to one observed for the curve of Fig. 5.1 is due to the absence of damping.
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Figure 5.1: Infrared reflectivity of rhombohedral BaTiOs, with q along the ferroelectric
direction.

5.6 Origin of the ferroelectric instability

In the previous Section we have reported first-principles results concerning the I' phonons
of BaTiO3. We have characterized the unstable mode in the experimental cubic phase.
It seems now important to investigate the microscopic origin of the structural instability
and the reason of its disappearance in the rhombohedral phase or in our compressed cubic
structure.

5.6.1 The model of Cochran

During the sixties, Cochran [17] investigated the dynamics of ABO3 compounds within
a shell model approach and he related the ferroelectric transition to the softening of a
transverse optic phonon at the I'" point. In his model, the interatomic forces are sepa-
rated into two parts: the short range forces and the long range Coulomb (dipole-dipole)
interaction. In this framework, he was able to isolate the contribution of each kind of
force on the frequency of the transverse modes and to identify the structural instability
with the possible cancellation of the two terms. This competition between forces, first
suggested by Slater [15], is still now usually invoked to explain the microscopic origin of
the ferroelectricity [93, 98, 44].

The polarizable ion model of Cochran is a simple application of the lattice shell-model.
For simplicity, it will be described here in the simple case of a one-dimensional lattice. It
can be easily generalize for three dimensional systems.

Linear atomic chain

Let us consider the atomic chain of Fig. 5.2. Each unit cell of lattice parameter a contains
two atoms : one cation of mass m, and static charge +7 and one anion of mass m_ and
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static charge —Z. The anion consists of a spherical electronic shell of negligible mass '
and charge —Y coupled to an ion core of charge +X and mass m_. The charge neutrality
imposes the relation X —Y = —Z. The cation is connected to the anion-shell by a spring
of force constant f. The anion core and shell are connected through a spring of force
constant k. For the j-th cell, the relative displacements of the cation, anion-core and
ion-shell are respectively u, (j), u_(j) and v(j).

cell (3-1) cell j cell (j+1)

e e al
gl L)

R
oW W

Figure 5.2: Shell-model of Cochran with a polarizable anion : the case of a linear diatomic
chain.

Microscopic approach
Equations of motion

When the atoms are displaced from their equilibrium positions they experience forces
due to (i) the short-range interactions with the neighboring atoms described by core-
shell springs and (ii) a long-range Coulomb interaction. As usual within a shell-model
approach, the latter is described by the product of the core or shell charge by the local
field induced by all the other atoms. The resulting equations of motion for cores and shell
are :

myiiy(j) = [flo(i) +00 +1) = 2us ()] + ZEec
m_i () = k() — ()] + Xbu (5:72)
0 = flus() +us(G=1) =200)] + klu(5) = v(5)] = Y Eioc

' This assumption is equivalent to the adiabatic approximation
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For a periodic chain, the displacements, solutions of these equations, have the general
form :

u+(j) — U+ei[q.(ja)fwt]; u,(j) — Ufei[q-(ja)fwt}; v(j) — Veila-Ga)—wt] (5_73)

In what follows we will focus only on I' modes such that ¢ = 0. Introducing, for this
specific case, the displacements in the equations of motion, we get:

mw’U, = FU+W)— ZE4.
m_wU. = kW — XE,, (5.74)
0 = FU+W)4+EW —=Y&,

where we have defined F =2f, U =U, —U_and W = U_ — V. The last equation yields
relative core-shell displacement

FU - Y&,

W=—
k+F

(5.75)

so that only the displacements of the two ion cores must be explicitely considered. We
obtain therefore two equations describing the movement of the two ions:

myw?Uy = OU — Z5E1. (5.76)
m_wU. = —®U+ Zi&ise (5.77)

We have introduced a global effective force constant between both ions

Fk

= 5.78
F+Ek ( )

including both short-range interactions and intra-ionic forces, and the Szigeti charge '

F

AR A
s F+k

Y (5.79)
which is an effective dynamical charge including the static charge and the effect resulting
from core-shell deformations.

The energy of the ionic chain is invariant under translation so that only the relative
displacement U of both type of ions is important. Introducing the reduced mass p =
mym_/(my +m_), we finally obtain the following equation of motion for relative anion-
cation displacements:

pw’U = OU — Z:E. (5.80)

12The dynamical charge appearing here is the charge experienced in the local electric field. From the
discussion of Chapter 2, it corresponds therefore to the Szigeti charge. This will appear more clearly
from Eq. (5.82) where it is shown that it corresponds to 9P /90U in zero local field.
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To solve this equations and identify the frequencies w still requires to identify the rela-
tionship between the local field and the atomic displacements.

Local field, atomic polarizability and Szigeti charge

From Eq. [5.48]-[5.47], the local field is directly related to the macroscopic polariza-
tion :

4
&w:—gvP (5.81)

with 7 = 1 for transverse modes and to —2 for longitudinal modes. The polarization can
be decomposed into ionic and electronic contributions :

P = Pi+P.

! 1 ()
U ) e 5.82

This allows to write the total polarization as the sum of two terms :

1,1
P = QZSU + ﬁae&oc (583)

where we have introduced the electronic polarizability :

Y2
T k+ F

Qe

(5.84)

Introducing this result in Eq. 5.81, we get a relationship between the local field and
the atomic displacements :

Amy  Z§

30 (1 — o)

gloc -

(5.85)

This allows to write the polarization in terms of the Szigeti charge and the ionic
polarizability :

1 45

QT )

P = (5.86)

Transverse and longitudinal frequencies
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Introducing the expression of £, in the equation of motion, we obtain :

Z* 2
pw? = ®— 35(] 5) (5.87)
(m — )
This yields the following frequencies:
1 4 (Z%)*
2 S
= - —=—" 5.88
MTO M[ 39 (1 - 4§ge)] ( )
1 8 Z%)?
Wiy — o4 ST _Z) (5.89)

pt 30 (1 4 e

Transverse and longitudinal frequencies are not identical due to the different condition
on the electric field. Both frequencies result from contributions from short-range and
Coulomb forces.

Macroscopic approach

Macroscopic field, dielectric constant, Born effective charge

Instead of working in terms of local quantities (local field, polarizability, Szigeti
charge), we can reformulate the previous relations in terms of macroscopic concepts :
macroscopic field, dielectric constant, Born effective charges.

In the Lorentz approximation, the macroscopic field is related to the local field through

4
Eroe = € + %P (5.90)
so that the polarization takes the form :
1 70 + &
p o= Sl (5.91)
Q1 -559)

The electronic contribution to the dielectric constant is related to the change of polariza-
tion in an electric field and corresponds to :

oP
3 = 1+4r— =
€0 + 71'68‘[]70
4o, 1
= 1 .92
+ - () (5.92)

30

The Born effective charge corresponds to the polarization induced by an atomic displace-
ment in zero-field and is therefore equal to

75 = Q27|

T aU‘S*0
25
(1 %5

o2
= 3+ 7z (5.93)
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where we recover the usual relationship between Born and Szigeti charges.
In terms of these macroscopic quantities, the polarization therefore writes :

1

P=g

o — 1
ZnU+ 2 "¢ (5.94)
47

Introducing this relation in Eq. 5.81, we get the relationship between the local field and
macroscopic quantities :
4 € + 2

e = — 25U
e = 341t 3

£ (5.95)

Transverse and longitudinal frequencies

Using the previous relationships, the equations of motion become :

A 732
2 T *
= —— U+ Z;E 5.96
He ( Q 600+2) T ( )

The transverse and longitudinal modes correspond respectively to the condition & = 0
and & = —4n’P. This yields the following frequencies:

1 dm  Zj7?
2 = (P — T 5.97
“ho = @G (5.97)
1 dm  Z7? dm Z3?
2 = (P — T T .
wio = @ -G g ] (5.98)

These equations are strictly equivalent to those deduced from the microscopic approach.
We observe that we recover the usual expression for the LO-TO splitting in terms of the
Born effective charges and the optical dielectric constant.

Structural instability

The previous model gives some insight on the origin of the instability of the ferroelectric
mode. As first highlighted by Cochran, the TO frequency results from the compensation
between two contributions. The first one arises from what we will refer to as the short-
range forces. It is positive which means that it tends to stabilize the crystal. The second
comes from the long range Coulombic interaction and, consequently to the opposite charge
of both kind of ions, it is negative so that it is destabilizing.

An instability, characterized by an imaginary frequency, takes place when the Coulom-
bic interaction is sufficiently large to compensate the short-range forces. Historically, the
approach was carried out using the microscopic approach and it was usually assumed that
the instability occurs from unusual divergence of the electronic polarizability. From the
macroscopic expression, we see this can alternatively be explained from unusually high
Born effective charges. From the results of Chapter 2 and as it will be rediscuss in the
following of this Chapter, the second interpretation is more appropriate.
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5.6.2 First-principles approach

In spite of its meaningful character, the approach of Cochran is only qualitative. The pa-
rameters to be included in the shell-model are not known a priori. Moreover, the Coulom-
bic energy is obtained through questionable approximations. In particular, the Coulomb
interaction is estimated within a Lorentz field approach assuming a local spherical sym-
metry at each atomic site, while it was shown by Slater [15], before Cochran’s study,
that the local symmetry is far from spherical in BaTiOj3. In his work, Slater computed
the Lorentz field explicitly by summing dipole-dipole interactions following Luttinger and
Tisza [228].

In what follows, we will propose a model to separate the Coulomb interaction from
the remaining short-range forces within our first-principles approach. This model will
allow to quantify the role played by both kind of forces in the ferroelectric instability of
BaTiOs.

When an atom is displaced in BaTiOs3, a dipole is created so that the specific displace-
ment pattern associated to a given phonon generates a lattice of dipoles. Our purpose is
to compute the resulting dipole-dipole interaction by summing the different contributions
instead of approximating them through the local field as in the previous shell-model.

The conventional dipole-dipole energy between two dipoles p; and ps in vacuum, sep-
arated by the vector d is given by [229]:

1 (171-172) d* -3 (Pl-ff) (172-‘5)

EPD _
47eg d>

e+i

(5.99)

with €y being the vacuum permittivity, so that, in atomic units, 47:—50 is equal to 1.

In solids, the dipole created by an atomic displacement 7 , is pg = Zﬁ ZY 5o-Tok,a
while the polarizability of the medium is to be described by the dielectric permittivity
tensor €. For the case where €5 and Z* tensors are isotropic, the contribution to the
interatomic force constant of the dipole-dipole interaction created by the displacement of
atoms Ok and jx', separated by d = (ﬁ] + T — T) is [230]:

(SQEDD Z*Z*,
CDD (O,j)_ e+1 — KK

’ =
e 6 57—0ﬁ1a(s7_j’{/1ﬂ 600

Oas _ g dads

(s )

(5.100)

The generalization of this formula was proposed for the case of anisotropic Z; and e,
tensors [231]:

-1
DD . * * 1 (600 )a’ﬁ’ Aa’Aﬁ’
Cﬁa,n’ﬂ(oa ]) = E Zﬁ,aa’ K BB (def 600) 2 ( D3 -3 5

alﬂl
(5.101)

where Ay = >74(e ) )apds, and D = V A.d. The previous result has been obtained
in real space. The corresponding dipole-dipole contribution to the dynamical matrix in
reciprocal space, CPP, can be obtained using Ewald summation technique [231].
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Table 5.7: Partial DD and SR contributions (see text) to the TO mode frequency squared
(cm~2) for the cubic phase at the optimized volume. Values in brackets where obtained
with the scissors corrected value of €.

F.(TO1) F,(TO2) F,(TO3) Fy,

w3, ~625897 7232 130549 109745
(-745610)  (8615)  -155518)  130736)

wlp 613107 26538 361998  -26951
(732820)  (25155)  (386967) (-47942)

wW? “12790 33770 231449 82794

Note that, in this formulation, the macroscopic €., is used to parametrize the dipole-
dipole interactions down to nearest neighbors; no correction for the gq-dependence of e,
and Z* is included. This procedure seems however the natural generalization of the
previous computation of the Lorentz field by Luttinger and Tisza [228]. Tt will be used
to generalize Cochran’s results on the basis of our first-principles approach [53].

The dynamical matrix C' was obtained explicitly from our ab initio calculations. Using
the above-mentioned analytic form, we can now isolate the model dipole-dipole (DD)
contribution '* from the remaining short-range (SR) part ! of this dynamical matrix in
a way similar to the one of Cochran [17]: C' = Cpp 4 Cgg. The partial contributions to
w? are then evaluated as follows:

(nCln) = (N|Cppln) + (n|Csrln) (5.102)
N o N ~~ > N ~~ >
w? “’?)n W%R

where 7 is an eigenvector of the full dynamical matrix C. Finally, Cpp and Csp can
also be modified independently in order to investigate their respective influence on the
instable mode.

5.6.3 Cubic phase

We first compute the decomposition for the cubic phase at the optimized volume. In
Table 5.7, we report the values of w%,, and w%, for the TO modes. We observe that
the small instability of the Fi,(TO1) mode originates from the compensation of two
very large numbers: The DD interaction greatly destabilizes the crystal and is only

13 The dipole-dipole interaction cannot be properly separated from other interactions at short distances.
We chose to work with a model interaction that is mathematically unambiguous. All the deviations with
respect to this model interaction (that will probably appear at short distances) will be included in the
SR part.

14The SR part also contains higher Coulomb terms like dipole-octupole and octupole-octupole inter-
actions.
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partly compensated by the SR contribution. This result confirms, in the framework
of a more accurate approach, the idea suggested by Cochran, and usually referred to as
the origin of the ferroelectric instability. Interestingly, the close compensation exists for
the unstable mode only. The giant destabilizing DD interaction of this mode is inherent
to its anomalously large mode effective charge that was discussed previously.

It is now possible to investigate the sensitivity of this compensation. In the cubic
phase, it was shown that the large values of Z7; and 7 (responsible of the strong
Coulomb interaction) are mainly produced by a dynamic transfer of charge along the
Ti-O bond [120]. Postulating Csr to be fixed, we can fictitiously reduce this transfer
of charge by decreasing simultaneously Z7; and Z¢, . and monitor the F1,(TO1) mode

frequency changes 1°. Figure 5.3 shows that w?(T'O1) evolves approximately linearly with

c}’,“ T T T T T T
S . ; ?
- e— 3 ——— |

o 60 o - M
<rC) o 2/ 2

40 w r 1
) SR o?
S 20 |- 1 ~
e 2

W
% 0 b——o—wo o 0 —
O
f{ 20 | 1 .
‘6 ‘40 — O wZDD -2 1
() TTee Ll
S -60 + ?“Q‘@\ | I P
g 5 71 72 7.3
) 1 1 l l 1 1
7.1 7.2 7.3 7.4 7.5 7.6
Z_ (lel)

Figure 5.3: Evolution of the Fy,(TO1) mode frequency squared and of its partial SR and
DD contributions with respect to the dynamic transter of charge along the Ti-O bond
(quantified here by the evolution of 7}, see text), in the optimized cubic phase. The
open circles correspond to the evolution when taking into account the modification of
eigenvector produced by the change of Cpp, while the crosses show the result obtained
when keeping the initial eigenvector of the unstable mode in the optimized cubic phase.
A zoom around zero frequency is shown in the inset.

the transfer of charge and that a change corresponding to a reduction of the order of 1% of

""When changing Z* and/or e, Cpp is replaced by C%,;, and the modified full dynamical matrix
(C' = C'bD + Csg) has new eigenvectors . The matrix elements giving w?, w? , and w?p are calculated
using n'. Results are however also presented when keeping the eigenvector of the initial full dynamical
matrix, in order to investigate the role of the change of eigenvector from 5 to ’. As 7 is not an eigenvector
of C', for that case a fictitious total frequency is obtained as @> =< 5|C%, ,|n > + < 1|Csg|n >.
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77, is enough to suppress the instability. Of course, this situation is artificial and in a real
material any modification of Z would be associated with a change of the SR forces. This
result however highlights the very delicate nature of the compensation eristing between
dipole-dipole and short range interactions.

Interestingly, if we plot the evolution of partial SR and DD contributions with the
transfer of charge described by the evolution of 7. (see Fig. 5.3), we observe that w2, is
also modified: because CN'SR was kept constant, this is due to the change of the eigenvector
n induced by the modification of Cpp. This change of 1 is however not crucial and a similar
evolution of w? is observed if we keep the eigenvector of the original optimized structure.

We checked that all these conclusions are independent of the use of the scissor correc-
tion for €. From now on, we report only results obtained without scissors correction.

5.6.4 Rhombohedral phase

The eigenvector of the A;(T°02) modes of the rhombohedral structure remains very close
to that of the unstable Fy,(T0O1) mode of the cubic phase (see Table 5.6). Surprisingly
the displacement of the Ti atom against the O cage has now become stable. It was found
that the Z7 are smaller in this ferroelectric phase, suggesting a smaller DD interaction,
but this could be partly compensated by a concomitant reduction of €. For the A, (7T02)
mode coming from the soft mode, w?, (-286267 cm™?2) is counterbalanced by a slightly
larger SR contribution (356373 ¢cm2). The values differ widely from those of the cubic
phase: The SR forces give less stabilization (so a priori increasing the instability) but
this is compensated by a larger reduction of the DD contribution.

If we fictively modify Cpp and replace Z% and €y of the ferroelectric structure by
their value in the cubic phase %, we modify the frequency of the A;(TO2) mode from 265
to 2667 cm': We obtain an instability even larger than in the cubic phase. From this
point of view, the reduction of Z in the rhombohedral phase appears as a crucial element
to the stabilization of the A1(TO2) mode.

Introducing Z* and e, of the cubic phase, we also have strongly modified w? , and
w2y that become respectively equal to -871017 and 800371 ¢m 2. The drastic change of
w?,, results only from the change of eigenvector 7 (C’SR was not modified) and points out
the anisotropy of the SR forces (the overlap between the new and original eigenvector is
equal to 0.86). If we had kept the eigenvector unchanged, we would still have observed a
small instability (747 cm ") for the A;(7T0O2) mode. This means that the inclusion of the
effective charges of the cubic phase is already sufficient to destabilize the crystal, but at
the same time produces a change of eigenvector enlarging the instability.

5.6.5 Compressed cubic phase

No more instability is present in the compressed cubic phase, although the global values of
Z* do not differ significantly from those obtained at the optimized volume[120]. Moreover,
the reduction of volume even increases the destabilizing effect of the DD interaction by

16See previous footnote.
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20%: calling no% . the eigenvector of the soft TO1 mode of the optimized phase and C?,
(resp. CJ5") the dipole-dipole part of the dynamical matrix of the optimized (resp.
compressed) cubic phase, we obtain:

<171 [CFp G, >= —625897cm 2, (5.103)
while
< P |CEEP et >= —775203cm 2. (5.104)

In fact, for this compressed cubic phase, the modifications of the SR forces alone are
enough to produce a mixing of modes so that no single mode can still be identified with
the unstable one observed at the optimized volume (see Table I1T). Consequently, none of
the mode of this compressed cubic phase develops the giant DD or SR contributions that
are a particular feature of the displacement pattern associated to the ferroelectric mode.

If we replace Agg by its value at the optimized volume we recover a very large instabil-
ity (437: cm™ ). The disappearance of the unstable mode under pressure seems therefore
essentially connected to a modification of the SR forces in contrast to its stabilization in
the rhombohedral phase which is associated with a reduction of Z;.

5.6.6 From electronic to dynamical properties

Since it was introduced by Cochran during the sixties, the soft-mode picture is considered
as a key concept to explain the ferroelectric phase transition in ABO3; compounds. More-
over, the competing role of the short-range and Coulomb interactions, invoked to justify
qualitatively the appearance of an instability, is still usually considered as the microscopic
origin of the ferroelectric instability.

In this Chapter, we have proposed a model to quantify from our first-principles results
the respective role played by both kind of forces. We have justified on a more rigorous
basis the gratifying explanation of Cochran. Doing that, we were going even further in
the microscopic understanding of the ferroelectric instability. The giant dipole-dipole
interaction, able to compensate the stabilizing short-range forces is connected to the large
anomalous effective charges in turn explained by dynamic changes of orbital hybridization
between O 2p and Ti 3d states.

Cohen and Krakauer [93] recently discussed the importance of the O 2p  Ti 3d
hybridization on the ferroelectric instability of BaTiOj: they suggested that this hy-
bridization should reduce the short-range forces. If their argument remains pertinent, our
study has emphasized that dynamic change of hybridization will also greatly enhance the
destabilizing role of the Coulomb interaction. It is our choice to attribute the ferroelectric
instability to this latter unexpected feature. Hybridizations are indeed not a specific char-
acter of ABO3 compounds but are also common to a large variety of other materials. The
peculiarity of the hybridization in BaTiOs (and related compounds) stays in the fact that
it concerns occupied and unoccupied orbitals and is able to generate giant Born effective
charges as discussed in Chapter 5.
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Our results are closely related to the unusual non-linear anisotropic polarizability of
the oxygen reported by Migoni, Bilz and Béauerle [22], and that is still usually considered
as the origin of the ferroelectricity in ABO3 compounds [232, 25, 23, 24, 141, 26, 233]. In
particular, our work confirms the important role plays by the hybridization between the
2p-states of oxygen and the d-states of the B atom. In our approach, however, the mecha-
nisms of polarization have been clarified: they have been reformulated in terms of dynamic
transfer of charge and the interplay between electronic and dynamic properties has been
presented within a coherent approach. In our description, the Born effective charge was
introduced as a key concept for the understanding of the ferroelectric instability.

Interestingly, we have shown that the balance of force is delicate and strongly sensitive
to small changes like tiny modification of the Born effective charges. The reduction of Z*
is sufficient to suppress the instability in the rhombohedral phase while a modification of
the short-range forces is likely at the origin of the stabilization of the ferroelectric mode
under isotropic pressure.

The previous results are not specific to BaTiOs. A similar balance of forces was
identified in SrTiO3 and LiNbO3. WOj3, that undergoes a sequence of ferroelectric phase
transitions, also presents large anomalous Born effective charges [177]. The competition
between short range and Coulomb forces should be a characteristic of ABO3 perovskites
and related materials. Due to the delicate nature of the balance of forces, it is however not
surprising to observe that closely related materials do not necessarily present the same
ferroelectric instability, that remains a vagary of Nature 7.

5.7 Irreductible representation at different high sym-
metry g-points

Up to know, we focused on the I' phonons and this already allowed to address some
interesting questions. The formalism previously reported does however not restrict to this
specific case and the dynamical matrix can be obtained everywhere within the Brillouin
zone. In this Section we report results obtained at different high symmetry points.

As some of the properties of the normal modes of vibrations are a direct consequence
of the specific symmetry of the crystal (degeneracies of different frequencies, separation
into longitudinal and transverse vibrations), a careful analysis of the symmetry may re-
veal useful for classifying the different phonon modes. As mentioned in Chapter 2, the
structure of most ABO3; compounds is cubic perovskite and its space group is Pm3m.
The determination of the irreducible representations at high symmetry q points and along
high symmetry lines of the Brillouin zone has been reported by Cowley [144]. The no-
tations are summarized in Table 5.8 '®. This Table gives us a first information on the
phonon mode degeneracy that are expected at the different q points. Simultaneously, the
symmetry of the different normal mode of vibration imposes constraints on the associated

""We note also that the arguments presented here are only part of a more complex problem: for
instance, the macroscopic strain also plays a major role in the phase transition.
18 At the T point, these notations differ from that used in the previous Section.
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Table 5.8: Irreducible representations at high symmetry q points and along high symmetry
lines of the Brillouin zone as reported by Cowley for the cubic phase of ABO3 perovskite
materials.

q vector little group irreducible representation

(0,0,0) mam A5 4 o5

(0,0,q) 4mm, AN, + Ay + 5A5

(0,0,%2)  4/mmm  2X;+2Xy + X5+ 3X5 + 2X5

(q,q,0) mm 5% + 3o + 535 + 4%,

(3.3.0)  4/mmm My + My + My + Ms
+2M3 + My + M5 + 3Ms

(9,4, 9) 3m 4A; + Ay + 5A;

(%, %, %) ma3m RQ! + R12/ + R25 + R25’ + 2R15

atomic displacement pattern that were also identified by Cowley in Ref. [144]. The combi-
nation of the informations given by the degeneracy and by the phonon eigenvectors allow
to label unambiguously the different phonon modes. As an example, results obtained in
the cubic phase of BaTiO3 at the experimental volume are reported in Table 5.9. This
classification and the identification of the phonon modes at high symmetry ¢-points will
appear particularly useful in Chapter 6 when constructing an effective Hamiltonian for
ABOj; perovskite compounds.

5.8 Interpolation of phonon dispersion curves

As illustrated in the previous Section, the dynamical matrix can be a priori calculated
everywhere within the Brillouin zone. However, for computational reasons, calculations
are usually restricted to a small set of wavevectors. A mathematical interpolation tech-
nique must therefore be used to deduce the full phonon dispersion curves. Moreover, a
numerical integration is required to determine the interatomic force constants (IFCs) by
inverting Eq. (5.8). Both these problems will be addressed simultaneously [230, 231, 84].

If the dynamical matrix was known everywhere in the Brillouin zone, the IFCs could
be built as:

(27)
Crar’ 0,b) =

3
/ Croanp(a)e TR dq (5.105)
J BZ

When the dynamical matrix is known only on a regular grid S of (I x m x n) points in
the Brillouin zone, the use of a discrete Fourier transform, that will generate approximate
[FCs in a large box made of (I x m X n) periodic cells, is tempting. Outside of this box,
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Table 5.9: Computed phonon frequencies (cm™') of cubic BaTiOs (a,=4 A) at T (0,0,0),
X (.5, 0,0), M (.5, .5, 0) R (.5, .5, .5) and at a few points along the T'-R direction: A%
(125, 125, .125), A% (.25, .25, .25) and A% (.375, .375, .375). The computation of the
splitting at the I' was performed without scissor correction.

q label frequency label frequency
r I'5 (TO) 2191 [o5 281
[y5 (A) 0 [ (LO) 445
['5 (LO) 159 ['5 (TO) 453
I'15 (TO) 166 I'15 (LO) 631
X X5 189 1 X3 322
Xy 104 Xy 330
Xor 146 X5 421
X5 194 X, 517
X, 260 Xy 627
M M 167 1 M; 344
Moy 103 M, 354
M 104 M 435
M; 208 M, 456
M 270 My 683
M 333
R Ris 128 Ras 386
Ros 182 Ris 414
Rio 314 Ry 717
Aé As 1371 Ay 272
Aj 70 Aj 310
Aq 103 As 447
Ay 180 Ay 461
As 184 Ay 645
A% As 96 Ay 277
Aq 105 Aj 358
Ay 190 Ay 498
As 221 Ay 467
Ay 244 Ay 679
A% Ay 115 Ay 354
As 121 Aj 381
As 204 As 414
Ay 205 Ay 440

As 290 Ay 708
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the IFCs are supposed to vanish:

Crarp(0,0) = —Zc,ﬁm,ﬁ )l if Ry + 7, — 7 € box (5.106)
qGS’

=0 if Ry + 7, — 7. & box

The vanishing of the IFCs beyond some distance is intrinsic to the discrete Fourier trans-
form technique. If the integrand in Eq. (5.105) was infinitely differentiable, then the IFCs
should decrease exponentially fast, and this condition would not be a practical limitation.
However, for insulators with non-vanishing effective charges, close to q = 0, the behavior
of the dynamical matrices is strongly non-analytical: it depends on the direction along
which q = 0 is attained.

In the real space, this non-analytical behavior (due to the Coulomb interaction) cor-
responds to long-range IFCs, with an average 1/d* decay (d being the distance between
atoms), corresponding to dipole-dipole interactions. Even if the Born effective charge van-
ishes (this may be imposed by symmetry constraints, in elemental crystals), the atomic
displacement will create a quadrupole or an octupole (the latter cannot be forbidden by
symmetry reasons), with corresponding quadrupole-quadrupole 1/d° decay, or octupole-
octupole 1/d” decay.

The non-analyticity corresponding to the dipole-dipole interaction is the strongest.
The idea that is proposed is to subtract this term from the other contributions and to
treat it explicitly.

In this context a short range dynamical matrix is introduced:

Cl{a K’ ﬁ( ) = C’K@,K'ﬂ (q) - C’F]?v]\?,na,n’ﬂ(q)‘ (5107)

It is expected that these forces are sufficiently short range so that their inverse Fourier
transform can be approximated with good accuracy by:

CoR L 5(0,0) = ZCSR e 4R if Ry + 7, — T, € box (5.108)

KoK nan
qES

=0 if Ry + 7, — 7. & box.
The total interatomic force constants in real space, are then obtained as:

CK(X,K’B(OJ b) CqR ’6 (0 b) CDD ’ﬂ (0, b) (5109)

KO,k Ew,ka,k

The dipole-dipole part to be added to the short-range part is computed explicitly: it is
given by Eq. (5.101), discussed in Section 7.5. Its Fourier transform had been previously
subtracted in Eq. (5.107). This contribution of the dipole-dipole interaction in reciprocal
space may be evaluated using Ewald summation technique as described in Ref. [231].

This technique does not only allow to get the IFCs, but it also permits an easy inter-
polation of the dynamical matrix across the full Brillouin zone, with

é"iavf‘i'ﬂ(q) = Z C:(S K’ﬂ(o b) R + CFW Ko,k B (q) (5110)

dyEbox
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To summarize, the full phonon dispersion curves can in practice be determine from the
knowledge of the dynamical matrix on a relatively restricted mesh of g-points, even for
ionic compounds and in spite of the long-range character of the Coulomb interaction. The
interpolation technique basically consists in a double discrete Fourier transform on the
short-range part of the dynamical matrix while the long-range dipole-dipole interaction
is treated separately. The convergence of the results so obtained must be checked when
using q point meshes of increasing size until a sufficient accuracy has been reached.

5.9 The phonon dispersion curves of BaTiO;

The previous interpolation technique can now be applied to BaTiO3. Our calculations
are performed at the experimental lattice parameter of 4.00 A. This choice facilitates
the comparison with the experimental data. Some indications on the volume dependence
of the phonon frequencies can be found in Section 7.4, where the frequencies of the I’
phonons at different lattice constants have been compared.

5.9.1 Technical remarks

Prior to the presentation of the results, it is necessary to mention a few technical points.

800 . . T
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Figure 5.4: Convergence achieved on the calculated phonon dispersion curves of cubic
BaTiO3 along the I'-R line. The open symbols correspond to q-points included in the M1
(circle) and M2 (circle+square) meshes used to extrapolate the curves (M1: dotted lines;
M2: full lines). The filled symbols are associated to points not included in the mesh: they
illustrate that a satisfactory convergence is obtained with the M2 mesh.
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First, the computation of well converged phonon frequencies required to include plane
waves up to a 45 Ha energy cutoff and a 6X6X6 mesh of special k-points. This cutoff
energy is higher from that needed for the Born effective charges and the dielectric tensor
(35 Ha). For coherency, these latter quantities were recalculated. In this Chapter, we use:
4y, = +2.74, 77, = +7.32, Z},, = —2.14, Z;‘)” = —5.78, and €., = 6.75.

A second point concerns the dielectric constant. The computed optical dielectric
constant (6.75) largely overestimates the experimental value (5.40) [234], as usual within
the LDA. A scissor corrected value can be used at the I' point where the long-range
part of the dynamical matrix is computed separately. For small but finite q vector, the
LDA is similarly flawed but the interaction with the slowly oscillating field is treated
self-consistently with the other terms. There is therefore no direct scheme to include the
scissor correction in those cases. Our results are reported without scissor correction but it
was checked that the problem related the dielectric tensor has no dramatic consequences
on the phonon frequencies. It was observed that the discrepancy essentially affects the
position of the highest longitudinal optic mode: when replacing the theoretical dielectric
constant by the experimental value, its frequency at the I'" point changes from 631 to
696 cm~'. At the opposite, the frequencies of the two other longitudinal modes at the T
point are affected by less than 2 cm~'. Our LDA results should therefore remain accurate
except for the highest LO phonon branch.

Finally, it is always necessary to investigate the error induced by the use of a discrete
Fourier transform in the determination of the IFC’s, and the interpolation of the dispersion
curves. An insight into the convergence reached on the phonon band structure is reported
in Fig. 5.4. The frequencies deduced from the dynamical matrix at ¢ = (.125,.125,.125)
and ¢ = (.375,.375,.375) are compared to those extrapolated from two different meshes
of g-points: the first mesh (M1) includes ' (.0, .0, .0), X (.5, .0, .0), M (.5, .5, .0) and R
(.5, .5, .5) points; the second mesh (M2) is the cubic mesh M1 to which the A (.25, .25,
.25) point was added. Tt is observed that we obtain a very good convergence with the M2
mesh. It is this mesh that was used to obtain the results presented in the next Sections.

5.9.2 Phonon band structure

The calculated phonon dispersion curves [223] are plotted along high symmetry directions
in Fig. 5.5. The I'-X, I'"M and I'-R lines are along the <100>, <110> and <111>
directions, respectively. The unstable modes associated to a negative curvature of the
energy hypersurface have imaginary phonon frequencies.

Our result can be compared to the experimental data [203, 215, 216, 217, 218, 219, 220].
However, a difficulty arises from the fact that all the experimentally observed vibrational
excitations have a real frequency while the computed unstable modes are obtained with
an imaginary frequency. As the soft mode can be clearly identified by its symmetry,
the associated experimental frequencies were removed from the comparison, for clarity.
In the low-frequency region, the presence of this additional soft mode may have slightly
modified the frequency of the other modes. In spite of these difficulties we observe a good
correspondence between our theoretical frequencies and the experimental data, specially
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Figure 5.5: Calculated phonon dispersion curves of cubic Ba'TiO3 at the experimental lat-
tice constant. The theoretical result shows a reasonable agreement with the experimental
data: (e) Ref. [3], (o) Ref. [6], (+) Ref. [7], (O) Ref. [8], (x) Ref. [9], (V) Ref. [10], (1)
Ref. [11].

for the acoustic modes for which a large variety of data are available.

The ferroelectric phase transitions are driven by the unstable phonon modes. We
are therefore mainly concerned by the analysis of these specific phonons within the Bril-
louin zone (see Fig. 5.6). Two transverse optic modes are unstable at the [' point: they
correspond to a displacement of the Ti atom against the oxygen cage. The associated
displacement eigenvector is equal to [0(Ba) = —0.002, §(Ti) = —0.096, 6(O;) = +0.158,
§(03) = 6(03) = +0.071] . These two modes remain unstable all along the T'-X line,
with very little dispersion 2°. One of them stabilizes along the I'-M and X-M lines. Ex-
amination of the eigenvectors reveals that the unstable mode at the M (.5, .5, .0) point is
polarized along the z-direction: its displacement eigenvector is equal to [§(Ti,) = —0.130,
§(01,) = 4+0.106]. Both of the unstable modes become stable when deviating from the
three I'-X-M planes to the R-point.

These features were also observed for KNbOj3 [222] and point out a marked 2D char-
acter of the instability in the Brillouin zone. This behaviour is more easily visualized in
Fig. 5.7 where we show the frequency isosurface of the lowest unstable phonon branch
corresponding to w = 0. The region of instability, w?(q) < 0, lies between three pairs of

9The eigendisplacement vector n was normalized such that < n|M|n >= 1, where M is such that
M = M, 6, and M, is the mass of atom & in atomic mass units.

20At the X point, one of the unstable mode is polarized along the z-axis and has an eigenvector equal
to [0(Ti,) = —0.117, 6(04,) = +0.133, 6(02,) == +0.062]; the other is polarized along the y direction.
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Figure 5.6: Analysis of the unstable phonon mode within the Brillouin zone.
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Figure 5.7: Zero-frequency isosurface of the lowest unstable phonon branch over the
Brillouin zone. T’ is located at the center of the cube. The mode is unstable in the region
between the nearly flat surfaces.

flat surfaces, that are parallel to the faces of the Brillouin zone cube. In other words, the
unstable modes are contained in three perpendicular interpenetrating slab-like regions of
finite thickness containing the I' point.

As highlighted by Yu and Krakauer [222], this behaviour corresponds to chain insta-
bilities in real space. At the M-point, we have seen that there is a single unstable mode
polarized along the z-axis and dominated by the Ti, and O1, displacements. At this wave
vector (¢, = 0), the Ti and O; atoms will be coherently displaced all along an infinite
<001> chain. Going now from M to the R-point, the coherency of the displacement will
gradually disappear and a finite length of correlation will be reached for which the phonon
becomes stable. The finite thickness of the slab region of instability therefore corresponds
to a minimum correlation length of the displacement required to observe an unstable
phonon mode. From Fig. 5.7, the length of the shortest unstable chain can be estimated
to 4 aey = 16 A2, We note finally, the small dispersion of the unstable mode in the
[-X-M plane: it suggests a small correlation of the displacements between the different
Ti O chains.

5.9.3 The interatomic force constants

In cubic BaTiO3, we will see that the single displacement of a particular atom never
leads to an instability: When one atom is displaced, a force is induced and brings it

21 The length of the shortest unstable chain is slightly different from that reported for KNbO3. Changes
in material properties could explain this difference although part of it could be due to the different k-point
and g-point convergence achieved in Ref. [222]: as observed in Fig. 5.4, the use of a finer mesh of ¢-points
could still slightly decrease the size of the zone of instability of BaTiO3.
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Table 5.10: Longitudinal (||) and transverse () interatomic force constants (Ha/Bohr?*)
with respect to a reference Ti atom (Ti(0)) along the Ti-O chain of cubic BaTiOj.

Atom  Total force DD force SR force
Ti(0) +0.15215  —0.27543 +0.42758
O)(1) +0.00937 +0.23247 —0.22310
Ti(2) —0.06721 —0.03680 —0.03041
O(3) +0.01560 +0.00861 +0.00699
Ti(4)  —0.00589 —0.00460 —0.00129
O, (1) —0.02114 —0.04298 +0.02184
Ti (2) +40.00751 +0.01840 —0.01089

back in its initial position (the self-force on Ba, Ti and O is positive *?). However, its
atomic displacement simultaneously induces forces on the other atoms. It is only the
additional displacement of some other atoms in this force field that can lower the total
energy and produce an instability. The amplitude and the range of the interatomic force
constants (IFC) associated to this mechanism can be analysed [223] in order to clarify the
chain instability pointed out in the previous Section. Moreover, the specific role of the
dipole-dipole interaction (DD) can be separated from that of the short-range forces (SR).

Our convention is that the IFC matrix Cyq »5(a, b) which relates the force F?) on atom
k in cell @ and the displacement 7',2’,5 of atom &' in cell b is defined through the following
expression: F? = —Cyanwpl(a, b).T:,ﬂ. The total IFC is decomposed into a dipole-dipole
part (DD) and a short-range part (SR) , following Refs. [231, 90]. Such a decomposition
is somewhat arbitrary but is useful for understanding the microscopic origin of the trends
among different compounds.

Let us first investigate the IFC with respect to a reference Ti atom along a Ti-O
chain (Table 5.10). As previously mentioned, we note that the self-force on the Ti atom
is large and positive (+0.15215 Ha/Bohr?). We observe also that the longitudinal TFC
with the first neighbour O atom is surprisingly small (+0.00937 Ha/Bohr?); moreover, it is
positive. The analysis of the DD and SR contributions points out that these characteristics
are the result of a destabilizing DD interaction, sufficiently large to compensate the SR
forces. It is this close compensation which allows the displacement of Ti against the O
atoms. Another insight on this balance of forces was already reported previously in this
Chapter (see also Ref. [53, 235]). Consequently to the very small total IFC, the Ti and
O displacements might be relatively decoupled.

At the opposite, the DD forces induced on the next Ti atom are negative: they will
combine with the SR forces in order to produce sizable coupling (—0.06721 Ha/Bohr?).

**The self-force are the following (Ha/Bohr®): Ba — 0.08065, Ti — 0.15215, O) — 0.12741, O, —
0.06807.
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Table 5.11: Ti-Ti longitudinal interatomic force constants (Ha/Bohr®) with respect to a
reference Ti atom at (.5, .5, .5).

coordinate  distance IFC DD part SR part
(.5, .5, .5) 0.0000  +0.15215 —0.27543 +0.42758
(-.5,.5,.5)  7.5589 —0.06721 —0.03680 —0.03041
(-.5,-.5,.5) 10.6899 —0.01114 —0.01301 +0.00187
(-.5,-.5,-.5) 13.0924 —0.00643 —0.00780 +40.00065
(-1.5,.5,.5) 15.1178 —0.00589 —0.00460 —0.00129

Table 5.12: O O longitudinal interatomic force constants (Ha/Bohr®) with respect to a
reference O atom at (.5, .5, .0).

coordinate  distance IFC DD part SR part
(.5, .5, .0) 0.0000 +0.12741 —0.35322 +0.48062
(.5, .0, .5) 5.3450  —0.02838 —0.03367 +0.00529
(-.5,.5,.0)  7.5589 —0.00190 —0.00314 +0.00124
(.5,.5,-1.0) 7.5589 —0.03212 —0.02295 —0.00918
5,.0,.5) 9.2577 —0.00183 —0.00289 +0.00106
-.5,-.5,.0) 10.6899 —0.00290 —0.00111 —0.00179
5,.5,-1)
5)

10.6899 —0.00415 —0.00340 —0.00078
, - 11.9517 —0.00254 —0.00246 —0.00008
(-.5,-.5,-1) 13.0924 —0.00113 —0.00129 +0.00016

This mechanism is at the origin of the chain correlation of the Ti atomic displacements.
By contrast, the transverse force on the first Ti neighbour is very small and confirms the
small correlation of the displacements from chain to chain.

The decay of the Ti-Ti and O-O longitudinal IFC with the interatomic distance can
also be investigated. The results are reported in Table 5.11 and 5.12. It is seen that the
longitudinal IFC are anisotropic: they propagate essentially along the Ti O chain. This
appears clearly for the SR part. For O, the DD contribution is also highly anisotropic due
to the anisotropy of the Born effective charges. The anisotropy of the IFC is inherent to
the chain correlation.
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5.9.4 The chain-structure instability

The presence of chain-structure instabilities in BaTiOs3, is since long under discussion.
Historically, the debate was initiated during the late sixties by Comes, Lambert and
Guinier [27, 224] who reported diffuse X-rays scattering for crystals of BaTiO3 and KNbO3
in three set of planes normal to the cubic axis. When a scattering is observed outside the
directions of diffraction, it must provide from a defect in the crystal periodicity. Clearly,
the pattern observed by Comes et al. was the fingerprint of a linear disorder in real space.
The subsequent controvert was on the static or dynamic nature of this linear disorder.

Interestingly, diffuse X-ray scattering is not a particular feature of ABO3 compounds:
similar features had been reported (even before Comes) by Honjo et al. [236], for a large
variety of materials (Si, Al, LiF, NaCl...). In most cases, the origin of the disorder was
identified in the thermal oscillations. For ABO3; compounds, it was therefore tempting to
make the connection with Cochran’s soft-mode theory of the ferroelectricity. Hiiller [28]
favored this approach and explained the results in terms of dynamical correlations from
an empirical model with a low frequency TO branch with flat dispersion along < 100 >
directions.

Differently, Comes et al. [27, 224] preferred to invoke a static disorder to explain their
results and they proposed what is now usually referred to as the 8-sites model ?*. In this
model, it is suggested that the equilibrium position of the Ti (Nb) atom is not at the
center of the cubic unit cell but is slightly displaced along one of the <111> directions.
It may therefore occupy 8 equivalent positions. In this context, the diffuse scattering is
explained by a strong correlation of the Ti positions along <100> chains. As an additional
argument to their model, they suggested that the correlation should propagate through
the subsequent displacement of the O atoms in an opposite direction to the Ti atoms.

The controversy between the static and dynamic explanation of the linear disorder is
still now under debate. Some recent experiments argue in favor of the 8-sites model [239)]
while other authors prefer to refer to Hiiller's explanation [240]. As already mentioned
by Comes et al. [224], this discussion is not central as both approaches involve the same
underlying concept of correlation. The crucial question instead concerns the ezistence
and the mechanisms of correlation between the atomic displacements. Are atomic cor-
relations really present? What is their microscopic origin? These questions were still
recently emphasized by Maglione and Jannot [29] who introduced the concept of “re-
laxator ferroelectrics”, that is based explicitly on the existence of these chain structure
correlations.

In complement to the experiments, the chain-structure correlation was recently inves-
tigated from first-principles. Early computations, as those reported in Chapter 3, have
pointed out the existence of energy wells for I' soft-mode distortions that are deeper for
rhombohedral than for tetragonal types of displacements. This seemed to be a step to-
ward the 8-sites model. However, it only concerned the cooperative displacement of Ba,
Ti and O atoms, correlated in all the different unit cells. Consequently, it did not contain

23 The 8-sites model is different from the model reported by Mason and Matthias [237]. Tt remains also
a reference in spite of the existence of more complicated but questionable models like in Ref. [238].



CHAPTER 5 : LATTICE DYNAMICS 123

0.2

[Ti-O] -Ti chain
0-15 |- = [Ti-0],  chain| 7

[O-Ti] -O chain

o

*

©
[N
I
|

0.05 - . .

[]
O.O.o.

Smallest eigenvalue of the
force constant matrix (a.u.)
[e]

005 L1 1 10
O 2 4 6 8 10 12 14 16 18

Chain length (atom)

Figure 5.8: Lowest eigenvalue of the restricted force constant matrix associated to atomic
displacements along a finite Ti-O chain of increasing size.

any information on the form of the energy surface around a single-atom displacement and
the requirement (or not) of a correlation to produce an instability.

In Section 7.8 we have seen that the form of the dispersion curves support the idea
of chain-correlation. In the previous Section, we have clearly shown that BaTiOj3 is not
unstable with respect to the displacement of a single atom. In this Section, we will
quantify with the help of a simple model the correlation of the atomic displacements,
required to observe an instability.

Let us consider that we have a bulk cubic crystal with the atoms frozen at their
equilibrium position 7.,. Then, we allow displacements of Ti and O atoms belonging to a
[100] single Ti O chain of finite but increasing size. The total energy of this system will
be given by:

E({n}) = E0)+ > Y Curmla,b) 7 7

a,k b,k

where C is the interatomic force constant matrix and the sum on a, x and b, &’ is restricted
to the Ti and O atoms that are allowed to move. With the help of this equation, we can
track the appearance of an instability in terms of the length of the chain of displaced
atoms. An instability will correspond to a specific displacement pattern that lowers the
total energy of the system: it will be associated to a negative eigenvalue of the restricted
force constant matrix.

In Fig. 5.8, we report the evolution of the lowest eigenvalue of the force constant
matrix with respect to the length of the chain of moving atoms. Displacing only a single
atom, the force induced on the Ti is larger than that on the O atom. With 3 atoms, we
observe, at the opposite, that the Ti-terminated chain (Ti O Ti) is more stable than the
O-terminated one (O Ti O): it points out the important role of the Ti Ti interaction.
The difference between Ti and O terminated chains will disappear progressively with the
chain length. It is seen that an instability takes place for a chain longer than 10 atoms
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(5 unit cells). This is in close agreement with the correlation length estimated in the
previous Section. It suggests that the behaviour of BaTiOj is already well reproduced
when considering the present isolated Ti—O chain of displacements. It confirms also that
the correlation between the different chains may play a minor role.

Going further, it seems interesting to check the role of the small coupling between Ti
and O displacements. Freezing all the O atoms in such a way that only the Ti atoms
are allowed to move along the chain, we can repeat the previous calculations. For this
case, however, we do not observe any instability even for an infinite chain of correlated Ti
displacements. This result aims to prove that the relatively weak coupling between Ti and
O displacements still remains an important feature in the appearance of the structural
instability.

Our calculations, performed within the harmonic approximation at zero temperature
does not allow to discriminate between the 8-sites and Hiiller models. It has however
confirmed the existence of chains of correlation in BaTiO3. It has also revealed the crucial
role of the coupling between O and Ti displacements, that was hypothetically suggested
by Comes et al. [224] to explain the correlation. Going beyond the result presented
here, Krakauer et al. have recently clarified the dynamic nature of the chain-structure
correlation in KNbOj from their first-principles results [51].

5.10 Comparative study of the lattice dynamics of
various perovskite ABO3; compounds

5.10.1 Phonon band structure

In this section, we compare the phonon dispersion relations of BaTiO3z, PbTiO3 and
PbZrOg, providing a global view of the quadratic-order energy surface around the cubic
perovskite structure in these different compounds. The calculated phonon dispersion
curves along the high symmetry lines of the simple cubic Brillouin zone are shown in
Fig. 5.9. In each case we worked at the experimental lattice constant (4.00 Afor BaTiOs,
3.97 Afor PbTiO5 and 4.12 Afor PbZrO,. The unstable modes have imaginary frequencies.
Their dispersion is shown below the zero-frequency line. The character of these modes
also has significant implications for the properties of the system. This character has been
depicted in Fig. 5.9 by assigning a color to each eigenvalue, determined by the percentage
of each atomic character in the normalized eigenvector of the dynamical matrix (red for
A atom, green for B atom and blue for O atoms) /.

Barium titanate and potassium niobate both undergo a transition sequence with de-
creasing temperature through ferroelectric tetragonal, orthorhombic and rhombohedral
(ground state) structures, all related to the cubic perovskite structure by the freezing-in
of a polar mode at I". The main features of the phonon dispersion of BaTiO3 discussed in

24For example, a normalized mode with A displacement 0.7, B displacement 0.5, and O displacements
0.5, 0.1, and 0.0 (in generalized coordinates) would be colored via the command “0.49 0.25 0.26 setrgb-
color” in the Adobe Systems Inc. PostScript™ language.
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Figure 5.9: Calculated phonon dispersion relations of BaTiOs, PbTiO3 and PbZrO5 along
various high-symmetry lines in the simple cubic Brillouin zone. A color has been assigned
to each point based on the contribution of each kind of atom to the associated dynamical
matrix eigenvector (red for the A atom, green for the B atom, and blue for the oxygens).
Symmetry labels follow the convention of Cowley, with the A atom at the origin.
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Table 5.13: Normalized dynamical matrix eigenvector for the unstable ferroelectric mode
at [' (z-polarization). The corresponding eigendisplacement in real space can be obtained
by dividing each value by the appropriate mass factor v/ M;,, .

ABO; A B 0, 0, 0.

BaTiO; +0.0178 +0.6631 —0.2842 —0.2842 —0.6311
PbTiO; +0.2314 +0.4024 —0.4792 —0.4792 —0.5704
PbZrO; +0.5033 —0.1786 —0.5738 —0.5738 —0.2374

the previous Section are very similar to those of KNbOj3 [222]. As a brief summary, the
most unstable mode is at I', and this mode, dominated by the Ti displacement against the
oxygens (Table 5.13), is the one that freezes in to give the ferroelectric phases. However,
the instability is not restricted to the I' point. Branches of Ti-dominated unstable modes
extend over much of the Brillouin zone. The flat dispersions of the unstable transverse
optic mode towards X and M, combined with its rapid stiffening towards R, confine the
instability to three quasi-two-dimensional “slabs” of reciprocal space intersecting at I'.
This is the fingerprint of a “chain-like” unstable localized distortion for the Ti displace-
ments in real space [222, 241]. Except for these modes, all the other phonons are stable in
BaTiOj3, which makes the behavior of the unstable branches relatively easy to understand.

Lead titanate has a single transition to a low-temperature ferroelectric tetragonal
structure, related to the cubic perovskite structure by the freezing-in of a polar mode at
I'. The phonon dispersion of PbTiO3 shows similar features to that of BaTiO3, with some
important differences. As in BaTiO3, the most unstable mode is at I', consistent with the
observed ground state structure. However, the eigenvector is no longer strongly dominated
by the displacement of the Ti against the oxygen along the Ti—O chains, but contains a
significant component of the Pb moving against the O atoms in the Pb—O planes (see
Table 5.13). Unstable Ti-dominated modes, similar to those in BaTiO3, can be identified
in the vicinity of the M X line (M3, X5 modes). However, Pb now plays an active role
in the character of the majority of the unstable branches, notably those terminating at
Mg and Xs. Also, the Pb-dominated branch emanating from the ferroelectric I' mode
towards R has a much weaker dispersion than the corresponding, Ti-dominated, branch
in BaTiO3. In consequence, the unstable localized ferroelectric distortion in real space
is nearly isotropic, in contrast to the pronounced anisotropy in BaTiOj. Finally, there
is an antiferrodistortive instability at the R-point (Rs5 mode). As similarly observed in
SrTiOz [173], this instability is confined to quasi-one-dimensional “tubes” of reciprocal
space running along the edges of the simple cubic Brillouin zone (Rys and M3 modes
and the branch connecting them). The branches emanating from this region stabilize
rapidly away from the Brillouin zone edge towards, in particular, I's5 and X3. In real
space, this instability appears as a cooperative rotation of oxygen octahedra, with strong
correlations in the plane perperpendicular to the axis of rotation, and little correlation
between rotations in different planes. The lack of interplane correlation, arising from
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Figure 5.10: Schematic three-dimensional view of the atoms labeled in Table 5.14.

the flatness of the Ro; M3 branch, suggests the absence of coupling between the oxygen
motion in different planes. This will be discussed further in the next section.

The ground state of PbZrOj is an antiferroelectric with 8 formula units per unit
cell, obtained by freezing in a set of coupled modes, most importantly modes at R and
5(110)[242]. The phonon dispersion correspondingly shows even more pronounced and
complex instabilities than for PbTiO3. Overall, the unstable branches are dominated
by Pb and O displacements, with no significant Zr character. There is still a polar
instability at the I point but the eigenvector (see Table 5.13) is clearly dominated by the
displacement of lead against the oxygens while the Zr atom now moves with these oxygens.
In fact, the modes where the Zr is displaced against the oxygens (I'1o at 160 cm ™!, My,
X5 modes) are now all stable. The octahedral rotation branch is again remarkably flat
and is significantly more unstable at Rys and M3 than in PbTiO3. The antiferrodistortive
instability retains some one-dimensional character but spreads into a larger region of
reciprocal space : the I'y5 and X3 transverse oxygen motions, related to the Ro5 mode, are
still stable but with a relatively low frequency. We note finally that the stiffest longitudinal
and tranverse oxygen branches have been shifted to higher energy relative to the titanates.

5.10.2 Interatomic force constants

In the previous section, comparisons between the three compounds were made by analyz-
ing phonon dispersion relations along high-symmetry lines in reciprocal space. As previ-
ously illustrated for BaTiOj3, highly instructive picture of the quadratic-order structural
energetics of the system is provided by direct examination of the real-space interatomic
force constants (IFC).

Our convention are the same as those defined for BaTiOj3 in Section 5.9.3. For conve-
nience, the atoms are labeled according to Table 5.14, as illustrated in Fig. 5.10. The
interatomic force constants are reported either in cartesian coordinates or in terms of
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Table 5.14: Label assigned to various atoms in terms of their position in reduced coordi-
nates.

A, (00,00,00) By (0505 05 O; (05,05, 0.0
Ay (0.0,00,1.0) B (1505, 05 Oy (0.5,0.0,0.5)
O3 (-0.5, 0.5, 0.0)
O, (0.5, 0.5,-1.0)
Os (-0.5, 0.0, 0.5)

Table 5.15: Self-force constant (Ha/Bohr?) on the different atoms in the unit cell.

Atom Direction BaTiO; PbTiO; PbZrO,

Ay x=y=z  +0.0806 +0.0247 +0.0129
By x=y=z  +0.1522 +0.1393 +0.2302
O X=y +0.0681 +40.0451 +0.0166

z +0.1274 +0.1518 +0.2758

their longitudinal (||) and transverse (L) contributions along the line connecting the two
atoms. The results for BaTiO3z, PbTiO3 and PbZrOj3 are presented in Tables 5.15, 5.16
and 5.17.

First, we examine the “self-force constant,” which specifies the force on a single isolated
atom at a unit displacement from its crystalline position, all the other atoms remaining
fixed. The values are given in Table 5.15. The self-force constants are positive for all atoms
in the three compounds, so that all three are stable against isolated atomic displacements.
Therefore, it is only the cooperative motion of different atoms that can decrease the energy
of the crystal and generate an instability, such as is observed in the phonon dispersion
relations presented in the previous Section. The analysis of the IFCs will help us to
identify the energetically favorable coupling in the displacements and elucidate the origin
of the unstable phonon branches.

Next, we discuss the ferroelectric instability at I', and the phonon branches which
emanate from it. In barium titanate, it was found that the unstable eigenvector is domi-
nated by Ti displacement along the Ti O Ti chain. If we consider the simple case where
only Ti atoms are allowed to displace, we find that the destabilizing contribution from the
Tiy Ti; || interaction itself is nearly enough to compensate the Ti self-force constant (Ta-
ble 5.16). In addition, the fact that the Ti;—Ti; L interaction is comparatively small can
account directly for the characteristic flat dispersion along I'-X and I'-M and the strong
stiffening along I'-R, associated with the chain-like nature of the instability. For the true
eigenvector, another important, though relatively small, destabilizing contribution comes
from the cooperative displacement of the O; atoms against the titaniums along the Ti O
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Table 5.16: Selected longitudinal (||), transverse (L) and cartesian («/3) interatomic force

constants (Ha/Bohr?) between different pairs
remaining short-range (SR) contribution, have

scribed in Ref. [241].

of atoms. The dipole-dipole (DD) and
been separated following the scheme de-

BaTiOg PbTiOg3 PbZrOg3
Atom Total DD SR Total DD SR. Total DD SR.
Bg-0O1 [@D) +0.0094 +0.2325 —0.2231 —0.0012 +0.1865 —0.1877 —0.0687 +0.1380 —0.2067
(L) —0.0211 —0.0430 +0.0218 —0.0178 —0.0417 +0.0239 —0.0100 —0.0358 +0.0258
Bg-B; (4] —0.0672 —0.0368 —0.0304 —0.0615 —0.0285 —0.0330 —0.0499 —0.0211 —0.0288
(L) +0.0075 +0.0184 —0.0109 +0.0065 +0.0142 —0.0077 +0.0054 +0.0105 —0.0052
Bg-0O4 (4] +0.0156 +0.0086 +0.0070 +0.0135 +0.0069 +0.0066 +0.0106 +0.0051 +0.0055
(L) +0.0009 —0.0016 +0.0007 +0.0015 —0.0015 +0.0006 +0.0012 —0.0013 +0.0002
Bg-Ap (4] —0.0286 —0.0212 —0.0074 —0.0277 —0.0241 —0.0036 —0.0271 —0.0216 —0.0054
(L) +0.0134 +0.0106 +0.0028 +0.0157 +0.0121 +0.0036 +0.0145 +0.0108 +0.0037
(zx) —0.0006 +0.0000 —0.0006 +0.0012 +0.0000 +0.0012 +0.0007 +0.0000 +0.0007
Ap-0O4 (1 —0.0004 +0.0114 —0.0118 +0.0108 +0.0162 —0.0054 +0.0139 +0.0169 —0.0030
(z2) —0.0108 —0.0154 +0.0045 —0.0110 —0.0181 +0.0071 —0.0103 —0.0163 +0.0060
Ap-Aq (1 —0.0112 —0.0052 —0.0060 —0.0108 —0.0086 —0.0022 —0.0094 —0.0093 —0.0001
(L) +0.0038 +0.0025 +0.0012 +0.0054 +0.0043 +0.0011 +0.0056 +0.0047 +0.0009

Table 5.17: Interatomic force constant matrix in cartesian coordinates (Ha/Bohr?) be-
tween various pairs of oxygen atoms. Lines and columns of the matrix correspond respec-
tively to x, y and z displacements for the first and second atom mentioned in the first
column of the Table.

Atoms BaTiOg PbTiO3 PbZrOg
+0.0037 0.0000 0.0000 +0.0035 0.0000 0.0000 +0.0038 0.0000 0.0000
01-02 0.0000 —0.0087 +0.0119 0.0000 —0.0091 +0.0123 0.0000 —0.0065 +0.0110
0.0000 +0.0274 —0.0087 0.0000 +0.0271 —0.0091 0.0000 +0.0229 —0.0065
—0.0019 0.0000 0.0000 —0.0012 0.0000 0.0000 —0.0012 0.0000 0.0000
01-03 0.0000 +40.0017 0.0000 0.0000  40.0022 0.0000 0.0000 +40.0021 0.0000
0.0000 0.0000  +40.0091 0.0000 0.0000  +0.0079 0.0000 0.0000 +40.0055
—0.0003 0.0000 0.0000 +0.0003 0.0000 0.0000 —0.0010 0.0000 0.0000
01-04 0.0000 —0.0003 0.0000 0.0000  +0.0003 0.0000 0.0000 —0.0010 0.0000
0.0000 0.0000 —0.0321 0.0000 0.0000 —0.0326 0.0000 0.0000 —0.0362
—0.0006 —0.0013 +0.0007 —0.0010 —0.0013 +0.0010 —0.0010 —0.0013 +0.0010
01-0O5 —0.0007 +0.0013 +0.0007 —0.0010 +0.0012 +0.0011 —0.0010 +0.0011 +0.0010
+0.0013 +0.0025 +0.0013 +0.0013 +0.0022 +0.0012 +0.0013 +0.0018 +0.0011
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chains. This, together with the total contribution of the rest of the IFCs, is responsible
for the actual instability of the ferroelectric Ti-dominated branches in BaTiO;.

For lead titanate, the energetics of the Ti-only displacements, dominated by the Ti
self-force constant and the Tig—Ti; || and L interactions, are remarkably similar to those
in BaTiO3 (Table 5.16). However, in PbTiOj; there is also an important destabilization
associated with pure Pb displacements ?°. This can be fully attributed to the large dif-
ference in the Ba and Pb self-force constants, while the Ay A; || and L interactions are
very similar in the two compounds. Also, the Ay—By || and L cation interactions are of
the same order of magnitude as in BaTiO3 and combine to give a surprisingly small xx
coupling. At ', symmetry considerations permit the mixing of Ti-O and Pb-O displace-
ments and in the phonon branches which emanate from it, thus accounting for the nature
of the ferroelectric eigenvector. However, at X, M and R symmetry labels distinguish the
Ti-dominated (X5, M3 and Ray ) and Pb-dominated (X5, My and Ry5) modes, which can
be readily identified in the calculated phonon dispersion. Also, the Pby—Pb; coupling is
much smaller in magnitude than the Tiy—Ti; coupling, which accounts for the relatively
weak dispersion of the Pb-dominated branch from I' to R. In the true eigenvectors, these
instabilities are further reinforced by displacements of the oxygens. While the longitudi-
nal IFC between Bay and O; was very small in BaTiOs3, there is a significant destabilizing
interaction between Pby and O; in PbTiO3, which further promotes the involvement of
Pb in the unstable phonon branches. We note that the Tiy—O; longitudinal interaction is
repulsive in PbTiO3, but it is even smaller in amplitude than in BaTiO3 and its stabilizing
effect is compensated by the transverse coupling between Pb and Oy.

In lead zirconate, the unstable eigenvector at I' is strongly dominated by Pb O motion,
with little involvement of Zr. This can be understood by comparing, in Table 5.16,
the energetics of Zr-only displacements with those of Ti-only displacements in PbTiO;
and BaTiOs: the Zr self-force constant is significantly larger and the Zrg—Zr; || and L
interactions are smaller, so that Zr cannot move as easily as Ti. Also, the Zry O ||
interaction is now significantly repulsive, explaining why the Zr atom does not move
against the oxygens, but with them. As for the titanates, we note finally that the Zr
atoms are mainly coupled along the B-O chains, so that the characteristic dispersion of
the B-atom modes is preserved, only at higher frequencies. On the other hand, the Pb
self-force constant is much smaller, the Pby Pby || and L interactions are only slightly
smaller, and the destabilizing coupling between lead and oxygen is similar to that in
PbTiO3, accounting for the involvement of Pb in the instability.

Finally, we discuss the antiferrodistortive instability identified with the Ros and Mj3
modes and the branch along R—M connecting them. There is a marked variation in
the frequency of the Rgs mode in the three compounds, ranging from the lack of any
instability in BaTiOj3, to PbTiO3 with an unstable Ry; mode that nonetheless does not
contribute to the ground state, and finally to PbZrO3 in which the Ry; mode is even
more unstable and contributes significantly to the observed ground state [242]. The
eigenvector of this mode is completely determined by symmetry and corresponds to a

%5 Specifically, the Pb diagonal element of the full force constant matrix at I' (—0.0018 Ha/Bohr?) shows
that uniform Pb displacement is unstable. This is not the case for Ba in BaTiO3.
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coupled rotation of the corner-connected oxygen octahedra. Its frequency depends only
on the oxygen IFCs, predominantly the self-force constant and the off-diagonal coupling
between nearest neighbor oxygen atoms. In fact, the latter (for example, O,~O,, in Table
5.17) is remarkably similar in all three compounds. The trend is therefore associated with
the rapid decrease in the transverse O self-force constant from BaTiOjz; to PbTiO;3 to
PbZrO3 and the resulting compensation of the contribution from the self-force constant
by the destabilizing contribution from the off-diagonal coupling.

The self-force constant can be written as a sum over interatomic force constants, ac-
cording to the requirement of translational invariance: Clq gappas(a, a) = — Z; o Cranpla,b).
It is therefore of interest to identify which interatomic force constants are resbonsible for
the trend in the transverse oxygen self-force constant. The suggestion that the trend is
due to covalency-induced changes in the Pb O interactions can be directly investigated
through a “computer experiment.” Everything else being equal, we artificially replace the
IFC between Ay and O; atoms in BaTiOj3 by its value in PbTiOjg, consequently modifying
the self-force constant on A and O atoms. For this hypothetical material, the A-atom
dominated modes are shifted to lower frequencies while the frequency of the Ros mode
is lowered to 40i cm~'. If we introduce the stronger Ay O; interaction of PbZrQ;, we
obtain an even larger Ry instability of 1037 cm ™.

The previous simulation demonstrates the crucial role played by the lead-oxygen in-
teraction in generating the AFD instability. However, this change alone is not sufficient
to reproduce the flatness of the Ros—Mj3 branch, as the corresponding frequencies of the
Mj; mode in the two hypothetical cases above are 92 cm™! and 25i cm ™!, respectively.
Naively, the absence of dispersion of the antiferrodistortive mode along that line would
be interpreted as the absence of coupling between the oxygens in the different planes.
However, as can be seen in Table 5.17, the yy transverse coupling between O; and Oj is
far from negligible, and acts to amplify the AFD instability at R with respect to M. In
the lead compounds, however, this is compensated by another yz coupling, between O,
and Oy. The latter is significantly smaller in BaTiO3 (by 35 %). If we consider a third
hypothetical compound in which this coupling in BaTiOj3 is additionally changed to its
value in PbTiO3, we recover a flat behavior along the R—M line. In the lead perovskites,
the flatness of this band appears therefore as a consequence of a compensation between
different interplane interactions, and cannot be attributed to complete independence of
oxygen motions in the different planes.

5.10.3 Transfer of the interatomic force constants

At first, we observed marked differences between the phonon dispersion relations and
eigenvectors in the three related compounds. Through the real-space analysis in the
previous section, we have seen that these differences arise from changes in a few key
interatomic force constants.

First, we remark that B-O interactions depend strongly on the B atom, being similar
in PbTiO3 and BaTiOj3, and quite different in PbZrOj3. In fact, the SR force contribution
to the Zrg Oy interaction and Tiy; O are very similar, so that the difference arises from
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the dipolar contribution. In PbZrQOs3, this contribution is reduced in consequence of the
lower values of the Born effective charges (see Chapter 3). This trend provides another
example of the very delicate nature of the compensation between SR and DD forces,
previously pointed out for BaTiO3.

Next, we remark that A-O interactions depend strongly on the A atom, being similar
in PbTiO3 and PbZrQOj3, and quite different in BaTiO3. This change originates in the
covalent character of the bonding between Pb and O, which results both in smaller A O
SR coupling and a larger Born effective charge for Pb. Even though the impact of the
latter on destabilizing the DD interaction is partly compensated by the increased e, the
net effect is to promote the Pb-O instability.

As discussed above, the self-force constant can be written as a sum over interatomic
force constants. It can be easily verified that the trends in the self-force constants observed
in Table 5.15 are primarily associated with the trends in A O and B O interactions.

The rest of the IFCs given in Table 5.16 are actually remarkably similar. For example,
A-B interactions are apparently insensitive to the identity of A (Ba, Pb) or B (Ti, Zr).
This is true also for A A, B B and most O O interactions. The small differences observed
can at least in part be attributed to differences in the lattice constants and in €., for the
three compounds.

The similarities in IFC’s among compounds with related compositions offer an in-
triguing opportunity for the modelling of the lattice dynamics of solid solutions. In the
simplest case, the lattice dynamics of ordered supercells of compounds such as PZT or
BST could be obtained by using the appropriate A O and B O couplings from the pure
compounds and averaged values for the A B, A A, B B and O O interactions. These
ideas have been successfully tested by Bungaro and Rabe [243] for PZT and by Ghosez
et al. [244] for BST.

5.11 Phonons in LiNbQOs;

The investigation of the lattice dynamics of ferroelectric oxides was not restricted to
perovskite compounds. The phonon dispersion curves of LiNbOj in its two phases have
also been reported [].

As for BaTiO3, a particular attention has been recently paid at the I phonons [245].
This allowed to clarify some ambiguities concerning the assignation of the different modes
modes. Moreover, it has been showed that the eigenvector of the unstable ferroelectric
mode has an overlap of 99% with the pattern of atomic displacement at the phase transi-
tion. Also, following the same approach as for BaTiOs3, it has been demonstrated that the
instability results from the near cancellation between SR and DD forces, the latter being
sufficiently large to destabilize the crystal. Again, this illustrate that the ferroelectric
behavior of the ferroelectric compounds is not related to the perovskite structure but to
the giant Born effective charges associated to the mixed ionic-covalent character of their
bonding.
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5.12 Conclusions

In this Chapter, we have described the computation of the phonon frequencies within a
variational formulation of the density functional perturbation theory and we have pre-
sented a useful scheme for the interpolation of the phonon dispersion curves. These
formalisms have then been applied to various ABO3 compounds. Our results allowed to
address two fundamental aspects of the ferroelectric instability.

First, in agreement with the idea of Cochran, it was demonstrated (for BaTiOs,
SrTiOz, LiNbO3) that the ferroelectric instability originates in the compensation of the
stabilizing short-range forces by a large destabilizing Coulomb interaction. In this con-
text, the Born effective charge appeared as a meaningful concept to understand the origin
of anomalous dipolar forces in connection with the electronic properties. The delicate
nature of the balance of forces has been emphasized.

Second, it was observed that the displacement of a single atom is never unstable in
the different ABO3; compounds which where investigated. In BaTiO3, the appearance of
an instability requires a correlation of the atomic displacements along a Ti-O chain of
minimum 10 atoms. Our calculations also confirm the experimental evidence of linear
disorder in BaTiOs.

It is interesting to realize that these two aspects of the phase transition are not inde-
pendent from each others: the amplitude of the interatomic force constants responsible
of the chain structure instability are indeed a direct consequence of the balance between
the short range forces and the Coulomb interaction.

Finally it is worth noticing that in spite of significantly different dispersion curves
different ABO3 compounds have very similar interatomic force constants : the differences
originate in the modification of few key interactions. This observation is particularly
useful to understand and predict the dynamics of mixed compounds.
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