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Introdu
tionThe 
rystals having a spontaneous polarization are 
alled pyroele
tri
s and the dire
tionof the polarization is the polar axis. Ferroele
tri
s are pyroele
tri
s whi
h possess aspontaneous polarization whi
h 
an be reversed by applying a suitable ele
tri
 �eld. Thepro
ess is known as swit
hing and is a

ompanied by hysteresis in the �eld-polarization
urve. The value of the spontaneous polarization is easily determined from the swit
hingloop.Pyroele
tri
ity has been know sin
e an
ient time be
ause of the ability of su
h ma-terials to attra
t obje
ts when they are heated. During the eighteenth 
entury, manyexperiments where 
arried out in an attempt to 
hara
terize the pyroele
tri
 e�e
t in aquantitative manner for instan
e by Gaugain [1℄ in 1856. At the opposite, ferroele
tri
itywas dis
overed less than hundreed years ago. It was �rst identi�ed in 1920 by Valasek [2℄who observed that the polarization of Ro
helle salt 
an be reversed by the appli
ationof an external ele
tri
 �eld. The prin
ipal reason that ferroele
tri
s were dis
overed somu
h later is be
ause the formation of domains of di�erently oriented polarization withinvirgin single 
rystals leads to a la
k of any net polarization and a very poor pyroele
tri
response.From the very beginning, ferroele
tri
ity aroused joined s
ienti�
 and industrial in-terests. With the passing years, distin
t families of ferroele
tri
 
rystals were identi�ed.A tremendous lot of experimental data were a

umulated and di�erent theories wereproposed to explain its origin.Sin
e de
ades, ferroele
tri
 materials are used in various te
hnologi
al appli
ations [3,4, 5, 6℄, not only a

ording to their intrinsi
 ferroele
tri
 behavior but also be
ause theypresent unusual properties su
h as high diele
tri
, piezoele
tri
, non-linear opti
al andpyroele
tri
 
onstants. During the re
ent years, di�erent ferroele
tri
 oxides systemshave parti
ularly attra
ted the attention for appli
ations. A new 
lass of ferroele
tri
relaxors has been dis
overed whi
h presents an anomalously high piezoele
tri
 responseand 
ould therefore tremendously improve the eÆ
ien
y of piezoele
tri
 transdu
ers [7, 8℄.Lithium niobate, already used for frequen
y doubling in some lasers, has been identi�edas a promizing 
andidate for holographi
 data storage [9, 10℄. Finally, and without beingexhaustive, in the resear
h for \high K" diele
tri
s to repla
e the amorphous SiO2 layer inele
troni
 devi
es, as well as for the development of MEMS 1 and ferroele
tri
 data storage1MEMS is an a
ronym for Mi
ro Ele
tro Me
hani
al Systems whi
h are miniature multifun
tionalsystems 
onsisting of sensors, a
tuators and ele
troni
s1



INTRODUCTION 2systems, thin �lms of ABO3 ferroele
tri
 oxides that 
an be grown on sili
on [11, 12℄ areexpe
ted to play a major role in the near future [13℄.In spite of many years of 
onstant interest for this 
lass of 
ompounds, the origin offerroele
tri
ity and related phenomena was for long un
lear [14, 6℄ and some questions stillremain open today. As a single example, let us 
ite the debate 
on
erning the evolutionof ferroele
tri
ity with thi
kness in thin �lms and small parti
les. During the last de
ade,some important advan
es in the mi
ros
opi
 understanding of ferroele
tri
ity in oxideshave been a
hieved in the framework of �rst-prin
iples simulations. These developmentsare the subje
t of the present 
ourse. In this introdu
tory Chapter, they will be put ba
kin the 
ontext of a brief history of ferroele
tri
ity fo
using on the ABO3 
ompounds.The family of ABO3 
ompoundsThe �rst series of isomorphous ferroele
tri
 
rystals was produ
ed in Z�uri
h, during thethirties. It 
on
erned a family of phosphates and arsenates. The most popular of these
ompounds is potassium dihydrogen phosphate (KH2PO4), usually abbreviated as KDP.At that time, it was 
ommonly thought that the existen
e of a hydrogen bond was ane
essary, if not suÆ
ient, 
ondition for the polar instability to o

ur. Consequently,there was only very little motivation for looking for ferroele
tri
ity in materials su
h asoxides whi
h did not 
ontain hydrogen.The ferroele
tri
 properties of barium titanate (BaTiO3) were dis
overed in
identally,in 1945, when sear
hing for new diele
tri
s to repla
e mi
a [14℄. Rapidly, it be
ame by farthe most extensively studied ferroele
tri
 material. On 
ooling, it undergoes a sequen
eof three su

essive stru
tural transitions from a paraele
tri
 
ubi
 phase to ferroele
tri
stru
tures of tetragonal, orthorhombi
 and rhombohedral symmetry. It was the �rstferroele
tri
 without hydrogen bonds, the �rst with a non-polar paraele
tri
 phase, the�rst with more than one ferroele
tri
 state. In addition, its prototype 
rystal stru
ture was
ubi
 perovskite 2 with only �ve atoms per unit 
ell. It was therefore o�ering to physi
istsan opportunity to study the onset of ferroele
tri
ity from a very simple stru
ture.The sudden interest for BaTiO3 broadened gradually to di�erent oxides of the ABO3family [14℄. A ferroele
tri
 a
tivity was dis
overed in KNbO3 presenting the same sequen
eof phase transitions as BaTiO3, or in PbTiO3 that remains stable at low temperature intetragonal symmetry. Ferroele
tri
ity was also observed in LiNbO3 and LiTaO3, whi
hdo not have the perovskite stru
ture 3 but still are ABO3 latti
es with oxygen o
tahedra.The great fas
ination for the family of ABO3 
ompounds is that, in addition to fer-roele
tri
 potentialities, it also readily undergoes non-polar stru
tural phase transitions,asso
iated with di�erent tilts of the oxygen o
tahedra. Moreover, the observed transitionsare not ne
essarily ferrodistortive (involving a � type displa
ement of the atoms of theprototype phase) but may be antiferrodistortive (displa
ement asso
iated to a non-zerophonon waveve
tor within the Brillouin zone). The most frequently observed 
ase 
onsistsin a 
ell doubling transition, asso
iated to a Brillouin zone boundary type displa
ement2Barium titanate 
rystallizes also in a more 
omplex hexagonal stru
ture3They 
rystallize in a trigonal stru
ture related to but slightly di�erent from the ilmenite.



INTRODUCTION 3like in SrTiO3 (non-polar distortion) or PbZrO3 (antiferroele
tri
s). Sometimes, like inNaNbO3, instabilities of di�erent 
hara
ters are present and produ
e a 
hain of transitionsof di�erent natures: ferroele
tri
, anti-ferroele
tri
, non-polar.Empiri
al and semi-empiri
al modelsDue to the simpli
ity of the ABO3 perovskite stru
ture, it was quite natural to expe
ttheoreti
al progress at themi
ros
opi
 level in the understanding of ferroele
tri
ity. A �rstimportant step was performed in 1950 by Slater [15℄ who suggested that the ferroele
tri
instability of BaTiO3 should be 
aused by long-range dipolar for
es whi
h, via the Lorentzlo
al e�e
tive �eld, tend to destabilize the high symmetry 
on�guration favored by lo
alfor
es. It was the starting point for a \displa
ive" explanation of the phase transition, asopposed to the more 
onventional order-disorder des
ription 4. The 
on
ept of \rattling"Ti ion was introdu
ed in models 
onsidering motion of the Ti atom in the rigid frameworkof the rest of the latti
e. It was a �rst neat pi
ture, however questionable as all theatoms were a
tually displa
ed after the ferroele
tri
 transition has o

urred. A newbreakthrough arrived in 1959, when Co
hran [17℄ 5 realized that the theory des
ribing thedispla
ive latti
e instability should be 
ast within the framework of latti
e dynami
s, when
onsidering one of the latti
e modes as the basi
 variable. His theory was exhibited inthe framework of a shell-model approa
h. The 
on
ept of soft-mode was introdu
ed. The
ompetition between short-range and Coulomb for
es highlighted by Slater reappeared
oherently in this 
ontext as the origin of the softening of a parti
ular transverse opti
mode. Later, the ideas of Co
hran were generalized in the framework of mi
ros
opi
e�e
tive Hamiltonians [14℄ and the soft-mode be
ame a 
entral quantity in the des
riptionof di�erent stru
tural instabilities.Independently, we note that theory had also progressed rapidly at the ma
ros
opi
level when fo
using on thermodynami
 
on
epts. An interesting des
ription of BaTiO3was, for instan
e, already reported by Devonshire [19℄ in 1949, from an expression ofthe free energy in powers of polarization and strain. While the mi
ros
opi
 des
riptionof Co
hran was essentially 
on
erned by the atomi
 displa
ements, one of the major
ontribution of the thermodynami
 approa
h was probably to emphasize the 
ru
ial roleof the ma
ros
opi
 strain. Coupling between the soft-mode and the strain, negle
ted inmany of the mi
ros
opi
 models, appeared re
ently as a major ingredient for a 
orre
tdes
ription of the su

essive phase transitions in ABO3 
ompounds [20, 21℄.Sin
e the sixties, the emphasis has been pla
ed dominantly on the latti
e dynami
aldes
ription of the ferroele
tri
ity. There was an explosion of experimental a
tivity usingte
hniques allowing to measure frequen
y and temperature dependent properties of thesoft-mode. A new step in the mi
ros
opi
 understanding of the ferroele
tri
ity in ABO3
ompounds arose from the �t of these experimental data within a shell-model approa
h.4The order-disorder des
ription makes referen
e to a multi-well energy surfa
e, yielding ma
ros
op-i
ally non-polar but mi
ros
opi
ally polar paraele
tri
 phase. In the displa
ive model, the paraele
tri
phase is also mi
ros
opi
ally non-polar [16℄.5A similar approa
h was taken independently by Anderson [18℄.



INTRODUCTION 4In 1976, Migoni, Bilz and B�auerle [22℄ suggested that the ferroele
tri
 instability shouldoriginate in a non-linear and anisotropi
 polarizability of the oxygen atoms. This gaverise to the \polarizability-model" [23, 24℄ that was widely used to des
ribe the dynami
sof ABO3 
ompounds. The unusual polarizability of the oxygen atom was dis
ussed [22,25, 23℄ and is still sometimes referred to as the origin of the ferroele
tri
ity [26℄. Inparti
ular, it was already suggested by Bilz et al. [22℄ that the anisotropy of the oxygenpolarizability should be indu
ed by the dynami
al hybridization between oxygen p-statesand transition metal d-states [22, 23℄. As we will see later, this intuition was 
orre
t andthese hybridizations play a major role in the ferroele
tri
 instability. However, within theirsemi-empiri
al approa
h, it was not possible to understand the me
hanisms of interplaybetween the ele
troni
 and dynami
al properties.At the same time, but in a di�erent 
ontext, Comes, Lambert and Guinier [27℄ reporteddi�use X-ray s
attering for 
rystals of BaTiO3 and KNbO3, in three sets of planes normalto the 
ubi
 axis. This feature was asso
iated to a stati
 linear disorder, explained interms of what is now usually referred to as the \8-sites model". This model is anothermeaningful pi
ture 
urrently invoked to visualize the me
hanism of the phase transition.It was however 
ontested by H�uller [28℄ who preferred to favor a dynami
al explanationfor the linear disorder. Independently of the debate on the stati
 or dynami
al natureof the disorder, the existen
e of 
hain 
orrelations be
ame well a

epted, although itsmi
ros
opi
 origin remained un
lear [29℄.At the end of the seventies, di�erent interesting features had therefore been identi�edas playing an important role in the ferroele
tri
ity of ABO3 
ompounds. Di�erent modelswere available, well suited for a qualitative des
ription of the ferroele
tri
 instabilitywithin a spe
i�
 
ontext. Nevertheless, a

umulating the experimental data, it appearedgradually that the ferroele
tri
 transition was more 
omplex than previously expe
ted:for instan
e, it was observed that the phase transition is not purely displa
ive in thesense de�ned by Co
hran, but has also an order-disorder 
hara
ter around the transitiontemperature 6. Unfortunately, the theoreti
al models available at that time had theirlimitations and were not a

urate enough to des
ribe and investigate all the subtle featuresof the phase transition.A �rst-prin
iples approa
hA new opportunity for addressing the remaining open questions 
on
erning ferroele
tri
itywas given beginning of the nineties when ABO3 
ompounds be
ame a

essible to �rst-prin
iples 
al
ulations performed within the Density Fun
tional Theory (DFT) [30, 31℄.Indeed, su
h a te
hnique does not restri
t to the des
ription of the ele
troni
 properties ofmaterials but is also parti
ularly suited to investigate their stru
tural properties. EarlierDFT 
al
ulations on ABO3 
ompounds were reported by Weyri
h [32, 33℄ during theeighties. The renewal of interest in these materials during the last de
ade is a 
onsequen
e6The appearan
e of the order-disorder 
hara
ter originates in the evolution of the thermal energy withrespe
t to the height of the multi-well energy barrier [16℄.



INTRODUCTION 5of di�erent theoreti
al advan
es 
ombined with a giganti
 jump of the 
omputationalpower.A �rst 
ru
ial advan
e 
on
erns the emergen
e of the modern theory of polarization,pioneered by Resta [34℄, King-Smith and Vanderbilt [35, 36℄. Until 1992, the ma
ros
opi
ele
troni
 polarization was indeed not dire
tly a

essible for periodi
 systems with 
on-tinuous ele
troni
 distributions. This was a major impediment to a systemati
 study offerroele
tri
 materials for whi
h the polarization appears as the fundamental quantity.Sin
e 1992, the ele
troni
 
ontribution to the polarization 
an be 
onveniently obtainedas a Berry phase of the ele
troni
 wavefun
tions and is easily 
omputed in the frameworkof DFT.A se
ond ingredient is the e�e
tive Hamiltonian approa
h to stru
tural phase transi-tions, developed by Rabe and Joannopoulos [37, 38, 39℄, in whi
h the parameters of theHamiltonian are determined from the results of �rst-prin
iples 
al
ulations. Su
h an ap-proa
h, �rst applied to GeTe [37℄, was then generalized by Rabe and Waghmare [40, 41, 21℄for general phonon-related phase transitions, opening the door to a systemati
 �rst-prin
iples study of the family of ABO3 
ompounds. In this spe
i�
 
ontext, the densityfun
tional perturbation theory (DFPT) [42, 43℄, appeared as an important 
omplementarytool for an eÆ
ient determination of the parameters asso
iated to the model Hamiltonians.Sin
e 1992, an impressive number of �rst-prin
iples 
al
ulations have been performedyielding a similarly impressive number of interesting results that will be reintrodu
edall along this 
ourse. A spe
ta
ular a
hievement 
on
erns a 
orre
t des
ription of thesequen
e of phase transitions for various pure and mixed ABO3 
ompounds like BaTiO3[20, 44, 45℄, SrTiO3 [46, 47℄, PbTiO3 [48, 21, 49℄, PbZrO3 [21, 50℄, KNbO3 [51℄, CaTiO3[52℄ or NaNbO3 [52℄.Starting from the \�rst prin
iples", su
h kind of 
al
ulations was also a new op-portunity to 
onne
t, within a rigorous approa
h, the ma
ros
opi
 properties of ABO3
ompounds to their intimate mi
ros
opi
 features. It allowed to 
larify the interplay be-tween the ele
troni
 and dynami
al properties and to understand better the me
hanismof the ferroele
tri
 instability [53℄. It gave some insight on the origin of the unusually highpiezoele
tri
 response of relaxor 
ompounds [8℄. Going further, the approa
h seems nowappropriate for an ab initio design of perovskite alloys with predetermined properties [54℄.The present 
ourseIn this 
ourse, we propose a mi
ros
opi
 des
ription of some sele
ted properties of ABO3ferroele
tri
 materials, as it emerges in the framework of �rst-prin
iples 
al
ulations withinthe density fun
tional formalism. We try to present a 
oherent overview starting fromthe basi
s and going to the most re
ent advan
es. However, we have no pretension tomake an exhaustive summary of all the re
ent a
hievements in the �eld. Instead, we
on
entrate on two prototype materials: barium titanate (BaTiO3) and lithium niobate(LiNbO3). We pro
eed step by step, mainly fo
using on the results we have obtainedsin
e we started working on these 
ompounds in 1992.Be
ause the opportunity of this 
ourse was kindly o�ered to us by the 3e Cy
le de



INTRODUCTION 6la Physique en Suisse Romande on the initiative of Prof. Jean-Mar
 Tris
one and Dr.Thomas Tybell, this manus
ript is essentially devoted to experimentalists. So, even if theresults presented here arise from 
omputer simulations, we mainly bypass the te
hni
aldetails of the 
al
ulations in order to 
on
entrate on the physi
s of the materials.Nowadays, the best referen
e 
on
erning the prin
iples and appli
ations of ferroele
tri

ompounds is the famous book of Lines and Glass [14℄. Readers interested in the densityfun
tional formalism 
an �nd a good introdu
tion in the review of Payne et al. [55℄.Additional referen
es are also mentionned at the end of ea
h Chapter, dire
tly related towhat has been dis
ussed. Some more informations 
an also be found in our PhD thesisfrom whi
h this manus
ript is partly inspired (http://www.ulg.a
.be/phythema).The 
ourse is made up of 5 Chapters and is organized as follows. In Chapter 1, webrie
y introdu
e and des
ribe the density fun
tional theory, whi
h will be used in thenext Chapters. In Chapter 2, we report a brief des
ription of the stru
tural and ele
-troni
 properties of both prototype materials. In Chapter 3, we introdu
e a key 
on
eptin the understanding of ferroele
tri
ity : the Born e�e
tive 
harges. It will be seen thatthese 
harges are anomalously large in ABO3 
ompounds. This feature will be explainedin terms of transfers of 
harge indu
ed by dynami
 
hanges of orbital hybridizations. InChapter 4, we brie
y 
omment on the ele
tron lo
alization in ferroele
tri
 
ompounds,and dis
uss how these results are 
ompatible with the explanation of anomalous e�e
-tive 
harges. In Chapter 5, we dis
uss the diele
tri
 and dynami
al properties of ABO3
ompounds, themselves dire
tly asso
iated to the ferroele
tri
 instability. Our purposewill be to identify how these properties are dire
tly asso
iated to the ele
troni
 features.The balan
e between dipolar and short-range for
es will be quanti�ed. The origin ofthe transition will be assigned to giant dipolar for
es indu
ed by the anomalously largeBorn e�e
tive 
harges. Full phonon dispersion 
urves will be obtained in the paraele
tri
phase. The notion of 
hain-stru
ture 
orrelation will be dis
ussed. The transferability offor
e 
onstants from one ABO3 
ompound to another will be pointed out as well as theimpli
ation on the dynami
s of mixed 
ompounds.Note that two more Chapters are expe
ted to be introdu
ed in a forth
oming versionof this 
ourse. The �rst one will be devoted to the 
on
ept of e�e
tive Hamiltonian andits use to des
ribe the evolution of the diele
tri
, piezoele
tri
 and pyroele
tri
 propertiesof ABO3 
ompounds with temperature. The se
ond is intended to make a brief reviewof re
ent advan
es 
on
erning the understanding of the behavior of ferroele
tri
 ultrathin�lms.



Chapter 1Basi
s of the density fun
tionaltheory
1.1 Introdu
tionWithin this Chapter, we propose a brief summary of the planewave{pseudopotential den-sity fun
tional formalism within whi
h most of the 
al
ulations reported all along the nextChapters have been performed. We will not be exhaustive nor too te
hni
al. Our goal isto introdu
e general 
on
epts and de�ne some widely used a
ronyms in order to provideto the non expert reader a basi
 knowledge allowing him to understand and 
riti
ally readtheoreti
al papers making use of the density fun
tional formalism. In this way, we willnot dis
uss pra
ti
al implementation.Predi
tion of the ele
troni
 and geometri
 stru
tures of solids requires 
al
ulations ofthe quantum me
hani
al total energy of the system and subsequent minimization of thatenergy with respe
t to the ele
troni
 and nu
lear 
oordinates (variational prin
iple). This
onsists of a 
omplex quantum me
hani
al many-body problem asso
iated to intera
tingele
trons and nu
lei. It is una�ordable in pra
ti
e, and some approximations are requiredto fa
e it.First, be
ause of the large di�eren
e in mass between the ele
trons and nu
lei and thefa
t that the for
es on the parti
les are the same, both in nature (ele
trostati
) and ampli-tude, the ele
trons respond essentially instantaneously to the motion of the nu
lei. Thus,the nu
lei 
an be treated adiabati
ally, leading to a separation of ele
troni
 and nu
lear
oordinates in the many-body wave fun
tions (Born-Oppenheimer approximation). Thisredu
es the many-body problem to the solution of the dynami
s of the ele
trons in somefrozen-in 
on�guration of the nu
lei whose positions R� are 
onsidered as parameters.Even with this simpli�
ation, the problem remains formidable due to the ele
tron-ele
tron intera
tion. However, Density Fun
tional Theory (DFT) developed by Hohenbergand Kohn [30℄ and Kohn and Sham [31℄ provided some hope of a simple method fordes
ribing the e�e
ts of ele
tron-ele
tron intera
tions. Hohenberg and Kohn proved thatthe total energy of an ele
tron gas is a unique fun
tional of the ele
troni
 density. Thismeans that instead of seeking dire
tly for the 
omplex many-body wave fun
tion of the7



CHAPTER 1 : BASICS OF DFT 8systems, we 
an adopt an intrinsi
ally di�erent point of view and 
onsider the ele
troni
density as the fundamental quantity of the problem. The minimum value of the totalenergy fun
tional is the ground-state energy and the density yielding this minimum valueis the exa
t ground-state density. The theorem of Hohenberg and Kohn demonstratedthe existen
e of su
h a fun
tional but did NOT provide its form. Kohn and Sham thenshowed how it is possible to map the many-body problem onto another system of non-intera
ting parti
les moving in an external potential, with the same exa
t ground-stateele
troni
 density. In pra
ti
e, the ele
troni
 density 
an be obtained from one-bodywave fun
tions, self-
onsistent solution of a set of one-parti
le equations des
ribing thebehavior of an ele
tron in an e�e
tive potential. Again, the form of this potential is apriori unknown but, as it will be dis
ussed, 
an be eÆ
iently approximated.1.2 Kohn-Sham energy fun
tionalWithin this one-parti
le framework, the Kohn-Sham total energy fun
tional for a set ofdoubly o

upied states 1  i 
an be written :Ee+i[R�;  i℄ = o

Xi � i �����12r2���� i�+ Z vext(r) n(r) dr+ 12 Z n(r1) n(r2)jr1 � r2j dr1dr2 + Ex
[n℄ + Eion[R�℄ (1.1)where the su

essive terms represents, respe
tively, the ele
troni
 kineti
 energy, the in-tera
tion between the ele
trons and the stati
 ele
tron-ion potential vext, the ele
tron-ele
tron Coulomb repulsion, the ex
hange-
orrelation energy, Ex
[n℄ (this term 
ontainsall the ele
tron-ele
tron intera
tions that go beyond the Coulomb term), and the Coulombenergy asso
iated with the intera
tion among the nu
lei Eion[R�℄. The ele
troni
 density,n(r), is given by n(r) = o

Xi  �i (r): i(r) (1.2)For a given set of atomi
 positions R�, the ground-state is obtained by minimizingEq. (1.1) under the following orthonormalization 
onstraints :h ij ji = ÆijThis provides the total energy of the system and the asso
iated ele
troni
 density.In pra
ti
e, the minimization of Eq. (1.1) is equivalent to solve self-
onsistently the1Along the rest of the 
hapter we will assume spin-degenera
y



CHAPTER 1 : BASICS OF DFT 9following set of Kohn-Sham equations :8>>>><>>>>:
��12r2 + vs� j ii = �i j iivs(r) = vext(r) + R n(r1)jr1�rj dr1 + ÆEx
[n℄Æn(r)n(r) =Po

i  �i (r): i(r) (1.3)where the derivative of the ex
hange-
orrelation energy with respe
t to the density isusually referred to as the ex
hange-
orrelation potential vx
(r) = ÆEx
[n℄=Æn(r).The Kohn-Sham equations represent a mapping of the intera
ting many-ele
tron sys-tem onto a system of nonintera
ting �
titious parti
les moving in an e�e
tive potential dueto the ions and all the other ele
trons. If the ex
hange-
orrelation energy fun
tional wereknown exa
tly, taking the fun
tional derivative with respe
t to the density would providean ex
hange-
orrelation potential that in
luded the e�e
ts of ex
hange and 
orrelationexa
tly. In pra
ti
e, however, the form of Ex
[n℄ is unknown.1.3 Usual approximate fun
tionalsThe ex
hange-
orrelation energy, Ex
[n℄, is expe
ted to be a universal fun
tional of thedensity everywhere. However, Hohenberg and Kohn theorem [30℄ provides some moti-vation for using approximate methods to des
ribe the ex
hange-
orrelation energy as afun
tion of the ele
tron density.The �rst, and most widely used approa
h in this sense is the Lo
al Density Approx-imation (LDA) [31℄. It assumes (i) that the ex
hange-
orrelation energy per parti
le atpoint r, �x
(r), only depends on the density at this point and (ii) that it is equal to theex
hange-
orrelation energy per parti
le of a homogeneous ele
tron gas of density n(r) ina neutralizing ba
kground: Ex
[n℄ = Z n(r) : �LDAx
 (r) dr (1.4)with �LDAx
 (r) = �homx
 [n(r)℄ (1.5)The form of �homx
 [n℄ used in the 
al
ulation may be borrowed from various sour
es. Theex
hange part 
an be obtained analyti
ally from the Hartree-Fo
k te
hnique. It 
an beshown that it s
ales like : �homx [n℄ = � 34� (3�2)1=3 n1=3 (1.6)For the 
orrelation part, one may rely on a

urate values obtained by Ceperley-Alder [56℄from Monte-Carlo simulations of the energy of the homogeneous ele
tron gas. In the



CHAPTER 1 : BASICS OF DFT 10next Chapters, we use a polynomial parametrization of the previous data as proposedby Teter [57℄. Other approximations (Wigner, X-alpha, Gunnarson-Lundqvist, Perdew-Zunger, Perdew-Wang ...) are also referred to as lo
al density approximations. They relyon the same ex
hange part but 
onsider slightly di�erent treatments of the 
orrelationterm.The LDA is probably one of the 
rudest approximation that we may do. It hashowever the advantage of the simpli
ity. Moreover, it already allows to des
ribe stru
turaland dynami
al properties of materials with surprising a

ura
y [58, 59℄ 2 : 
al
ulatedbond lengths and bond angles reprodu
e the experiment within a few per
ents; phononfrequen
ies are usually obtained within 5-10 %. Well known ex
eptions are however the
ohesive energy and the diele
tri
 sus
eptibility.Di�erent te
hniques were proposed that are going beyond the LDA. A �rst alternative,but 
onne
ted approa
h, is to build a \semi-lo
al" fun
tional that does not only depend onthe density at r but also on its gradient, or on higher order gradient expansion. Di�erentforms have been proposed that are summarized under the label of Generalized GradientApproximations (GGA). They are based on a fun
tional of the type [60, 61℄:EGGAx
 [n℄ = Z n(r) : �GGAx
 [n(r); jrn(r)j;r2n(r)℄ dr (1.7)This kind of approximation improves the 
omputed value of the 
ohesive energy. It 
analso improve the des
ription of bond lengths and latti
e parameters even if the gradi-ent 
orre
tion usually over
orre
ts the LDA [62, 63℄ yielding longer values than theexperimental ones. Finally, the 
orre
tion has a rather limited e�e
t on the diele
tri

onstant [62℄. The GGA remains a quasi-lo
al approximation that 
annot in
lude anylong-range density dependen
y of Ex
[n℄.Di�erent other fun
tionals also exist like the average density approximation (ADA) [64℄or the weighted density approximation (WDA) [64℄. It was argued that WDA should beintrinsi
ally unable to improve LDA results [65℄. For ABO3 
ompounds, it seems howeverthat this last te
hnique is an interesting alternative to the LDA [66℄.Without being exhaustive, let us �nally mention that another interesting s
heme 
on-sists in a mixing of Hartree-Fo
k and lo
al density fun
tionals as justi�ed from the adia-bati
 
onne
tion formula [67℄. This method is quite popular in quantum 
hemistry but isnot widely used by the 
ommunity of physi
ists.1.4 The periodi
 solid1.4.1 Periodi
 boundary 
onditionsAll along this 
ourse, we will be interested in periodi
 systems, built from a basi
 unit 
ellthat is periodi
ally repeated in the three dire
tions of spa
e. In this 
ontext, the atomi
2The LDA ex
hange-
orrelation hole integrates to �1. This simple feature should be a �rst intuitiveargument to explain its su

ess.



CHAPTER 1 : BASICS OF DFT 11position Ra;� of atom � within unit 
ell a 
an be 
onveniently disso
iated as:Ra;� = Ra + r� (1.8)where Ra is a latti
e ve
tor and r� is the ve
tor position of the atom within the unit 
ell.A ma
ros
opi
 solid would basi
ally 
onsists in the limit of a �nite system of in
reasingsize. Sin
e long, however, physi
ists do usually prefer to investigate solids from in�nitetruly periodi
 systems de�ned by imposing Born-von Karman periodi
 boundary 
ondi-tions [68℄. The approximation seems reasonable and was widely used be
ause it presentsnumerous 
on
eptual and pra
ti
al advantages. It leads to what we will refer to as a\periodi
-DFT", in whi
h the energy appears as a fun
tional of the periodi
 part of thedensity.1.4.2 Blo
h fun
tionsIn in�nite periodi
 solids obtained by imposing periodi
 boundary 
onditions, the ele
-troni
 wavefun
tions have the Blo
h form and 
an be written as the produ
t of a plane-wave fun
tion of wave ve
tor ~k, by a 
ell periodi
 fun
tion unk(r) : nk(r) = (N
0)�1=2 eik:runk(r) (1.9)where N is the number of unit 
ells repeated in the Born-von Karman periodi
 box, and
0 is the volume of the basi
 unit 
ell. A normalization fa
tor has been introdu
ed, su
hthat the normalization 
ondition imposed to  nk now writes in terms of unk:humkjunki = Æmn (1.10)when the s
alar produ
t of periodi
 fun
tions is de�ned as:hf jgi = 1
0 Z
0 f �(r)g(r)dr: (1.11)In our in�nite solid, k may have any value. Basi
ally, the Blo
h theorem has redu
edthe problem of 
al
ulating an in�nite number of ele
troni
 wavefun
tions to the deter-mination of a �nite number of ele
troni
 states but at an in�nite number of k points.Similarly to the fa
t that ea
h ele
tron of the solid must be taken into a

ount, the o

u-pied states at ea
h k point 
ontribute to the ele
troni
 density and to the potential in thebulk solid. However, as a 
onsequen
e of the periodi
ity in real spa
e, the k-spa
e is alsoperiodi
 [68℄ so that, in pra
ti
e, the only k-ve
tors to be 
onsidered are those whi
h arewithin the �rst Brillouin zone (BZ). From our 
onventions, the ele
troni
 density reads interms of the periodi
 fun
tions :n(r) = 1(2�)3 ZBZ o

Xm s u�mk(r) umk(r) dk: (1.12)where s is the o

upation number of states in the valen
e band (in spin-degenerate systemss = 2).



CHAPTER 1 : BASICS OF DFT 121.4.3 Brillouin zone samplingThe use of Blo
h fun
tions has to be asso
iated with integration over the Brillouin zoneand would a priori require to 
ompute di�erent quantities at a large number of k-points.Fortunately, the ele
troni
 wavefun
tion at k points that are 
lose to ea
h other are almostidenti
al so that it is possible to represent the ele
troni
 wavefun
tion over a region ofk spa
e by that at a single k point. Consequently, integrations over the entire Brillouinzone 
an be 
onveniently repla
ed by sums on a limited number of k points.EÆ
ient sampling methods have been proposed by di�erent authors [69, 70, 71℄ toobtain a

urately the density, the ele
troni
 potential and the 
ontribution to the totalenergy from the knowledge of the ele
troni
 states on a very restri
ted set of \spe
ial"k-points. The study of ABO3 
ompounds typi
ally required a 6 � 6 � 6 mesh of spe
ialk-points. This is relatively dense in 
omparison with what is usually needed for othertypi
al insulators. In 
ontrast, for metals, larger meshes are required in order to de�nepre
isely the Fermi surfa
e.We note that the error indu
ed by the k-point sampling is not the 
onsequen
e ofany physi
al approximation but 
onsists in a 
omputational error. Its magnitude mustbe 
he
ked and 
an always be redu
ed by in
reasing the size of the k-point mesh.1.5 A plane-wave pseudopotential approa
h1.5.1 Plane-wave basis setThe Blo
h theorem relates the ele
troni
 wavefun
tion  nk to a periodi
 fun
tion unk,that satis�es: unk(r) = unk(r+R) (1.13)for any ve
tor R satisfying the latti
e periodi
ity. As a 
onsequen
e, unk 
an be 
onve-niently expanded in terms of a plane-wave basis set.Typi
ally, the Fourier transform of a periodi
 fun
tion is indeed identi
ally zero ex
epton the re
ipro
al ve
tor G de�ned as G:R = m:2�, where m is an integer. The fun
tionis therefore related to its Fourier transform by the following relationships:unk(r) = XG unk(G) eiG:r (1.14)unk(G) = 1
0 Z
0 unk(r) e�iG:r d3r (1.15)In this 
ontext, the global ele
troni
 wavefun
tion 
an also be written as a sum of plane-waves:  nk(r) = (N
0)�1=2 XG unk(G) ei (k+G):r (1.16)



CHAPTER 1 : BASICS OF DFT 13From a mathemati
al viewpoint, the sum appearing in the previous equation is an in�niteone. However, in pra
ti
al 
al
ulations this sum must be restri
ted to a limited numberof G ve
tors. The 
onventional 
hoi
e is to 
onsider only plane-waves that have a kineti
energy smaller than a 
hosen 
uto� energy: 12 jk+Gj2 � E
ut.The plane-wave basis seems only very poorly suited to expand the ele
troni
 wave-fun
tions be
ause a very large 
uto� is a priori needed to des
ribe the tightly bound 
oreorbitals or to follow the rapid os
illations of the valen
e wavefun
tions in the 
ore regiondue to the strong ioni
 potential. In pra
ti
e, a plane-wave basis set will only be
ometra
table when 
onsidering simultaneously the pseudopotential approximation that willbe des
ribed in the next Se
tion. For all ele
tron 
al
ulations, other expansions of theele
troni
 wavefun
tion must be preferred (LAPW, LMTO...).The trun
ation of the in�nite basis set at a �nite 
uto� energy introdu
es a se
ond
omputational error. Similarly to what was dis
ussed for the k-point sampling, the ampli-tude of su
h an error 
an always be redu
ed by in
reasing the value of the 
uto� energy.The plane-waves basis has the 
omputational advantage to be asso
iated to 
onvenientFast Fourier Transform (FFT). Also, it will be parti
ularly suitable for the 
al
ulationof the response to external perturbations. However, one diÆ
ulty arises in pra
ti
al
al
ulations at a �nite 
uto� due to the in
ompleteness of the basis set. Change in sizeof the unit 
ell will modify abruptly the number G ve
tors inside the 
uto� sphere, and
onsequently, the number of plane-wave in
luded in the basis set. As the total energyis monotoni
ally de
reasing with the number of plane-waves, this phenomenon will beasso
iated to dis
ontinuous jumps in the total energy. The values of the energy fordi�erent unit 
ells, obtained at a �xed 
uto�, are asso
iated to slightly di�erent basissets and 
annot be dire
tly 
ompared: they require to in
lude a 
orre
tion fa
tor usuallyreferred to as a \Pulay 
orre
tion" [72, 73℄.1.5.2 PseudopotentialsTwo major impediments have been identi�ed to the use of a plane-wave basis set. Theywere asso
iated to the diÆ
ulty (i) of des
ribing the tightly bounded 
ore states and (ii)of following the rapid os
illations of the valen
e bands orbitals inside the 
ore region.We now brie
y explain how the �rst-problem may be avoided within the frozen-
oreapproximation. The se
ond requires the use of pseudopotentials.The frozen-
ore approximation is based on the following observations. In many sit-uations, the physi
al and 
hemi
al properties of solids are essentially dependent on thevalen
e ele
trons. On the other hand, it is expe
ted that the 
ore ele
trons that do notdire
tly parti
ipate to the 
hemi
al bonding are only slightly a�e
ted by modi�
ations ofthe atomi
 environment. It may therefore reasonably be expe
ted that the 
on�gurationof the 
ore ele
trons within the solid is equivalent to that of the isolated atoms. In termof the density, the frozen-
ore approximation 
orresponds to assume that:n(r) = natom
 (r) + nv(r) (1.17)
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 (r) represents the atomi
 frozen-
ore 
harge density and nv(r) represents thevalen
e 
harge density. Within this approximation, the problem of treating the 
oreele
trons is 
onsidered as being solved (i.e. it has been solved at the atomi
 level), whilethe study restri
ts to the investigation of the behaviour of the valen
e ele
trons withinthe ioni
 potential, partly s
reened by the 
ore ele
trons.We note that the segregation between 
ore and valen
e ele
trons so introdu
ed is notne
essarily similar to that usually 
onsidered by 
hemists, being in fa
t arbitrary. Inpra
ti
e, ele
trons from deep energy levels 
an always be treated as valen
e ele
trons andthe partitioning must be performed in order to validate the frozen-
ore approximation.For instan
e, in our study of BaTiO3, the 5s, 5p and 6s levels of barium, the 3s, 3p and3d levels of titanium, and the 2s and 2p levels of oxygen have been treated as valen
estates. For LiNbO3, niobium 4s, 4p, 4d and 5s ele
trons, lithium 1s and 2s ele
trons aswell as oxygen 2s, 2p ele
trons were 
onsidered as valen
e states.The se
ond problem, asso
iated to the os
illation of the valen
e wave fun
tions insidethe 
ore region is solved from the pseudopotential approximation. The latter basi
ally
onsists in a mathemati
al transformation in whi
h the ioni
 potential s
reened by the 
oreele
trons is repla
ed by another �
titious potential su
h that the valen
e wavefun
tionsremain un
hanged beyond a given spatial 
uto� distan
e but are repla
ed by smoothlyvarying pseudo-fun
tions inside the 
ore region. The pseudopotential, generated for iso-lated atoms, is built in su
h a way that the eigenenergies of the pseudo-problem remainthat of the real system. It is then expe
ted that su
h a potential is transferable to thesolid or, in other words, that the similarity between the real and pseudo-problem remainsvalid whatever the modi�
ations of the ioni
 environment within whi
h the frozen 
oreapproximation remains valid.At the beginning, the pseudopotential approa
h was relatively empiri
al. Now, it hasbe
ome a well-
ontrolled approximation. The potentials are generated from �rst-prin
iplesatomi
 
al
ulations [59℄. Their 
onstru
tion is submitted to a series of 
onstraints thatensure their transferability from one 
hemi
al environment to another: norm 
onserva-tion [74, 75℄, extended norm 
onservation [76℄, 
hemi
al hardness 
onservation [77, 78℄. Inthis 
ontext, the pseudopotential is usually not a lo
al potential anymore but has the moregeneral form of a non-lo
al operator, 
ommonly of a separable type [79, 80℄. Re
ently,some progresses were also made for the design of ultra-soft pseudopotentials requiring aminimum number of plane-waves to expand the wave fun
tion [81, 82℄. A good overviewof the pseudopotential 
on
ept may be found in the review of Pi
kett [59℄.In our 
al
ulations on BaTiO3, we adopted extended norm-
onserving, highly trans-ferable pseudopotential, as proposed by M. Teter [78, 57℄. For the oxygen, in order toin
rease the transferability, we in
luded a 
hemi
al hardness 
orre
tion [78℄. For LiNbO3,we used usual Troullier-Martins pseudopotentials.



CHAPTER 1 : BASICS OF DFT 151.6 Merging of DFT and perturbation theoryDi�erent quantities su
h as the interatomi
 for
e 
onstants, the elasti
 
onstants, thediele
tri
 tensor, the Born e�e
tive 
harges, Raman intensities, phonon-phonon 
oupling(. . . ) are related to various derivatives of the total energy of the system with respe
tto given perturbations (atomi
 displa
ement, ma
ros
opi
 strain, ele
tri
 �eld). As su
h,they 
an be a

ess using a perturbative approa
h.For the ground-state, we have seen that it is equivalent to minimize a variational ex-pression of the energy or to solve the set of KS equations in order to get the ground-statewave fun
tions, density and energy. Merging these DFT approa
hes with perturbationtheory provides two di�erent ways to determined the 
hanges of density and energy in-du
ed by a given perturbation.In a previous se
tion, we have presented two di�erent alternatives to get the Kohn-Sham total energy of the ground state and asso
iated ground-state density: (i) a mini-mization of the energy fun
tional, imposing some orthonormalization 
onstraints on thewave fun
tions, and (ii) the self-
onsistent solution of the one-parti
le Kohn-Sham equa-tions.Merging these DFT approa
hes with perturbation theory provides two di�erent waysto get the 
hanges of wavefun
tion, density and energy indu
ed by a given perturbation.The formulae that yield to this response are quite 
omplex, and beyond the s
ope ofthese notes. They will be not dis
ussed here 3. We will simply mention that the 
hangeof the eigenstates at linear order respe
t the perturbation 
an be obtained by: (i) theminimization of a variational expression for the se
ond derivative of the ele
troni
 part ofthe total energy [43, 85℄, orthonormalizing the �rst-order 
hanges in wavefun
tions respe
tthe ground-state eigenstates (the variational approa
h), or (ii) solving self-
onsistently aset of �rst-order Sternheimer equations [42, 86, 60℄ that 
omes from the expansion of theset of Eq. refKS equations to �rst-order (Sternheimer approa
h).In prin
iple this perturbative approa
h 
an be set up to any order. In pra
ti
e, 
al
ula-tions are usually limited to the 
omputation of the �rst-order 
hange in the wave-fun
tionsallowing to a

ess, thanks to the (2n+1) theorem [87℄ 4, su

essive derivatives of the en-ergy (and related quantities) up to the third order.1.7 A

essible quantities and usual a

ura
yThe density fun
tional theory within the usual LDA or GGA approximations allows to
ompute various physi
al properties with more or less a

ura
y. The basi
 quantitiesdire
tly a

essible within DFT are the ground-state total energy of the system and theasso
iated total ele
troni
 density.3The reader interested 
an �nd further te
hni
al details in Ref. [[83, 84℄℄ and referen
es therein.4This theorem says that the knowledge of the 
hange in the wave fun
tions up to n-order is suÆ
ientto know the 
hange in the energy up to (2n+1)-order.



CHAPTER 1 : BASICS OF DFT 16The total energy allows to a

ess to 
ohesive, surfa
e and interfa
e energies. As previ-ously mentionned, within the LDA, the 
ohesive energy is usually badly des
ribed beingtypi
ally overstimated by 15-20 %. This is due to the fa
t that this approa
h is notsuitable enough to deal with isolated atoms, where the 
harge density is a rapidly vary-ing fun
tion of the position. Consequently the atomi
 energies, ingredients to 
al
ulatethe 
ohesion energies, are not well reprodu
ed. The values of the 
ohesion energies areimproved within the GGA aproximation. Nevertheless the error in energy di�eren
esbetween di�erent stru
tures is mu
h smaller than that in absolute-energy.Relaxing the atomi
 degrees of freedom, it is also possible to perform stru
tural op-timisations and to determine 
ell shape, bond lengths and bond angles with an a

ura
yusually of the order of a few per
ent (experimental values of the latti
e parameters areusually understimated within LDA by 1-2 %). These optimizations are easily performedthanks to the 
al
ulation of the stress tensor and the atomi
 for
es that are asso
iated to�rst derivatives of the energy with respe
t to the atomi
 positions or a ma
ros
opi
 strainand are therefore dire
tly a

essible from the ground-state wave fun
tions thanks to theHellmann-Feynman theorem [88, 89℄.Ele
troni
 density plots 
an be performed. Moreover, Kohn-Sham band stru
ture arealso usually produ
e. Let us emphasize that it 
on
erns the dispersion 
urves of the�
titious Kohn-Sham parti
les that have no guarantee to be equivalent to those of thereal intera
ting ele
trons of the system (the only guarantee is that both real and �
titioussystems produ
e the same total density in \exa
t" DFT). In pra
ti
e, it is observed thatthe valen
e bands are relatively well des
ribed in DFT while the bandgap is usually largelyunderestimated. This does not mean that the theory is wrong but that ex
ited propertiessu
h as the bandgap are beyond the s
ope of DFT whi
h is a ground-state theory.Using pertubation theory, various quantities related to su

essive derivatives of theenergy are also a

essible. The 
ase of the Born e�e
tive 
harges and interatomi
 for
e
onstants will be illustrated in the next Chapters. The se
ond derivative, the a

ura
yis usually around 5 % with the experimental, ex
ept for the opti
al diele
tri
 
onstantwhi
h is often overestimated by 20 % in the 
ase of ABO3 
ompounds 51.8 Con
lusionsTo 
on
lude, density fun
tional theory has be
ome a standard for the investigation ofthe properties of solids and mole
ules. It allows to a

ess various physi
al quantitieswith an a

ura
y usually of few per
ents. Nowadays, it is 
onsidered as a powerfulltool to 
omplement experimental investigations. It allows to perform \
omputationalexperiments" wherever the required parameters are unrea
hable, or the design of newmaterials with some given desired properties before the real synthesis in the Labs. In thenext Chapters, we will illustrate, through sele
ted examples, how it was useful to 
larifythe behavior of ABO3 
ompounds.5This feature has been related to the la
k of polarization dependen
e of usual lo
al fun
tional [90℄.
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Chapter 2Ground-state properties
2.1 GeneralitiesIn spite of their apparent similarities, ABO3 ferroele
tri
 oxides 
rystallize in variousforms. At high temperature, they 
ease to be ferroele
tri
 and they have a highly sym-metri
 referen
e paraele
tri
 stru
ture. When the temperature is lowered, they undergoone or more phase transitions to ferroele
tri
 states of lower symmetry.A very important group of ferroele
tri
s is that known as the perovskites (from themineral perovskite CaTiO3). The ideal perovskite 
orresponds to a simple 
ubi
 unit 
ellwith spa
e group Pm3m and 5 atoms lo
ated as illustrated in Fig. 2.1 : if the A atom istaken at the 
orner of the 
ube, the B atom is at the 
enter and there is an oxygen atthe 
enter of ea
h fa
e ; alternatively, if the B atom is taken at the 
orner, the A atomappears at the 
enter and O atoms are lo
ated at the mid-point of ea
h edge.

Figure 2.1: Two di�erent views of the unit 
ell of the ABO3 ideal 
ubi
 perovskite stru
-ture. The B atom (grilled pattern) is at the 
enter of an o
tahedra 
omposed of oxygenatoms (white pattern). The A atom (dashed pattern) has 12 oxygen �rst neighbors.As it appears more 
learly in Fig. 2.2, in the perovskite stru
ture, the B atom is atthe 
enter of 6 oxygens �rst neighbors, arranged at the 
orners of a regular o
tahedron.The o
tahedra are linked at their 
orners into a 3-dimensional framework, en
losing large18
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Figure 2.2: Another view of the ABO3 ideal 
ubi
 perovskite stru
ture.holes whi
h are o

upied by A atoms. Ea
h A atom has 12 equidistant O atoms. Ea
h Oatom is adja
ent to 2 B-type and 4 A-type atoms.The �rst simple perovskite identi�ed as being ferroele
tri
 is BaTiO3. As KNbO3,it undergoes a sequen
e of three ferroele
tri
 phase transitions from 
ubi
 to slightlydistorted stru
tures su

essively of tetragonal, orthorhombi
 and rhombohedral symmetry.Some other ferroele
tri
 perovskites that were dis
overed later (like PbTiO3) only haveone phase transition to a tetragonal ground-state.A few substan
es are also referred to as multiple-
ell perovskites. Their ground-state
an be obtained as a distortion of the perfe
t perovskite but result in a more 
omplexunit 
ell 
ontaining more than one formula unit. Although it is not impossible for su
h amultiple 
ell to possess polar symmetry, it is physi
ally less probable, and none of thesestru
tures have been shown to be ferroele
tri
. Some of them are anti-ferroele
tri
 su
has PbZrO3.Alternatively to the perovskite family, some ferroele
tri
 oxides, su
h as LiNbO3, havea trigonal paraele
tri
 stru
ture. It 
onsists in a rhombohedral unit 
ell of R3
 symmetrywith two formula units per unit 
ell. The positions of the 10 atoms in the rhombohedralprimitive unit 
ell are shown on Figure 2.3. The threefold axis is formed by a 
hain ofequidistant A and B atoms. Ea
h B atom is lo
ated at the 
enter of an o
tahedron formedby 6 oxygen atoms.As for the perovskites, the trigonal stru
ture is 
omposed of oxygen o
tahedra 
on-taining the B atom and surrounded by the A atoms. However, in this 
ase, both A andB atoms only have 6 oxygens �rst neighbors.
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Figure 2.3: Primitive unit 
ell of the R3
 trigonal stru
ture of LiNbO3. Proje
tions (a)perpendi
ular and (b) parallel to the three fold axis.LiTaO3 has a stru
ture similar to LiNbO3. Both of them undergo a single ferroele
tri
phase transition when the temperature is lowered. Their ground-state has a stru
ture ofR3
 symmetry that will be des
ribed later.An empiri
al 
riterium for the stability of the perfe
t perovskite-type stru
ture wasput forward by Golds
hmidt (1926), based on the rules he had previously derived for ioni
binary 
ompounds. His model is based on the 
on
ept of ioni
 radius and the followingrules : (i) a 
ation will be surrounded by as many anions as 
an tou
h it, but no more;(ii) all the anions must tou
h the 
ations and the anion-
ation distan
e is obtained as thesum of their ioni
 radii.The perovskite stru
ture is fully determined by the size of the oxygen o
tahedra 
on-taining the B atoms, while the A atoms must �t the holes between the o
tahedra. Fol-lowing the rules of Golds
hmidt, this 
ondition provides an ideal relation between ioni
radii : rA + rO = p2(rB + rO): (2.1)In pra
ti
e, this 
annot always be exa
tly satis�ed and the deviation 
an be measuredthrough a toleran
e fa
tor t de�ned as follows :t = rA + rOp2(rB + rO) : (2.2)Golds
hmidt has shown that the perovskite stru
ture is formed when the above 
on-dition is satis�ed (t � 1). When t > 1, the stru
ture is imposed by the A{O distan
eand the B atom is to small for the oxygen o
tahedron so that the stru
ture will evolveto a small polar distortion as in BaTiO3. At the opposite, when t < 1, the A atom issmall in 
omparison to the hole between the oxygen o
tahedra : the A atom 
annot a�ord



CHAPTER 2 : GROUND-STATE PROPERTIES 21bonding with 12 neighboring O atoms and the 
ompound will evolve to a stru
ture withonly 6 neighbors for the A atom as in LiNbO3.The latti
e 
onstants and atomi
 positions of the ABO3 
ompounds 
an be experi-mentally determined and numerous data are available. A stru
tural optimization is alsoeasily performed within density fun
tional theory (DFT). As dis
ussed in Chapter , itbasi
ally 
onsists in determining the atomi
 
on�guration whi
h minimizes the total en-ergy of the system (or its ele
tri
 enthalpy for the polar phases). The 
al
ulation is basedon the 
omputation of three quantities dire
tly a

essible from the ground-state ele
-troni
 wavefun
tions : the total energy and its �rst-order 
hanges with respe
t to atomi
displa
ements (the for
es) and to ma
ros
opi
 strains (the stress tensor).In the remaining part of this se
tion, we fo
us on the stru
ture and ele
troni
 propertiesof two prototype 
ompounds : BaTiO3 and LiNbO3. We des
ribe the results we haveobtained with the abinit pa
kage 1, a standard 
ode for plane-wave/pseudopotentialDFT 
al
ulations. Stru
tural relaxations have been performed within the lo
al densityapproximation (LDA) ex
ept when it is expli
itely mentionned. Te
hni
al details arereported in Ref. [91℄ for BaTiO3 and Ref. [92℄ for LiNbO3.2.2 Crystal stru
ture2.2.1 Barium titanateAs previously stated, barium titanate 
ristallizes at high temperature in a paraele
tri

ubi
 perovskite stru
ture (Pm3m). When the temperature is lowered, it undergoes asequen
e of 3 ferroele
tri
 phase transitions (Fig. 2.4).Around 130ÆC, its stru
ture transforms from 
ubi
 to tetragonal (P4mm). This phaseremains stable until about 5ÆC, where there is a se
ond transformation to a phase oforthorhombi
 symmetry (Pmm2). The last transition arises around �90ÆC. The low tem-perature ferroele
tri
 phase is rhombohedral (P3m1). Ea
h transition is a

ompaniedby small atomi
 displa
ements and a ma
ros
opi
 strain. In the su

essive ferroele
tri
phases, the polar axis is aligned respe
tively along the <100>, <110> and <111> di-re
tions 
orresponding to the dire
tion of the atomi
 displa
ements with respe
t to theirposition in the referen
e 
ubi
 stru
ture.Paraele
tri
 phaseIn the 
ubi
 phase of BaTiO3, the positions of the atoms in the unit 
ell are imposed bysymmetry. Choosing the barium atom as referen
e, the atomi
 positions are (in redu
ed
oordinates): Ba : (0:0; 0:0; 0:0)Ti : (0:5; 0:5; 0:5)1abinit is a powerful DFT 
ode developped in 
ollaboration by di�erent groups all over the world. Itis a free pa
kage a

essible at the URL : http://www.abinit.org.
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Figure 2.4: The 4 phases of BaTiO3O1 : (0:5; 0:5; 0:0)O2 : (0:5; 0:0; 0:5)O3 : (0:0; 0:5; 0:5)During a stru
tural optimization performed from �rst-prin
iples, the only degree of free-dom that must be relaxed is therefore the latti
e parameter ao. Its equilibrium value
an be determined as the one whi
h minimizes the total energy. Equivalently, it 
an beobtained as the value for whi
h the hydrostati
 pressure on the material is zero 2.The results of our 
al
ulations are presented in Figure 2.5. We dedu
e for the equilib-rium latti
e parameter a value of 3.943 �A. This result is similar to that reported from otherprevious LDA 
al
ulations (ao=3.94 �A from Ref. [93℄, ao=3.95 �A from Ref. [94℄). It onlyslightly underestimates the experimental latti
e 
onstant of 4.00 �A. We note that a betteragreement 
an be obtained within a \weighted density approximation" (WDA) [66, 95℄.The bulk modulus, dedu
ed from the 
urvature of the energy around its minimum, is val-ued at 189 GPa, in 
lose agreement with another value of 188 GPa, dedu
ed from resultsreported by King-Smith and Vanderbilt [96℄.For the 
ubi
 phase, the 
ohesive energy has also been obtained as the di�eren
ebetween the energy per unit 
ell of the solid and the energy of the respe
tive free atoms.At the experimental volume, we estimated E
oh at �38:23 eV/
ell. A previous value equalto �31:16 eV/
ell was reported by Weyri
h and Siems [97, 32℄. The better agreementof their result with the experimental value of -31.57 eV/
ell is probably a

idental, sin
e2Within the plane-wave te
hnique we have used, the se
ond approa
h requires an additional \Pulay
orre
tion" [73℄ in order to 
ompensate for the in
ompleteness of the �nite basis set
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Figure 2.5: Determination of the optimized latti
e 
onstant of 
ubi
 BaTiO3.Weyri
h and Siems determined the free atom energies from non-spin-polarized LDA. Inour 
ase, the spin-polarized 
orre
tion de
reased the value of E
oh by 5.17 eV/
ell.Let us mention that the small underestimate of the latti
e 
onstant and the overesti-mate of the 
ohesive energy we have reported above are typi
al of the LDA and similarto what is also a
hieved on other ABO3 
ompounds.Ferroele
tri
 phasesIn the ferroele
tri
 phases, the spe
i�
ation of the unit 
ell requires more than one pa-rameter. Moreover, the ioni
 positions are not fully determined by symmetry, but mustbe relaxed simultaneously. The tetragonal, orthorhombi
 and rhombohedral stru
tures
ontain respe
tively 5, 6 and 5 atomi
 degrees of freedom.A full stru
tural optimization requires to relax together all these di�erent degrees offreedom. However, as it was pointed out by many authors [93, 98, 94, 99℄, the ferroele
tri
instability of ABO3 
ompounds is strongly sensitive to the volume. In this 
ontext,the volume underestimation within the LDA, albeit small, appears problemati
. Weattempted a full relaxation of the rhombohedral phase. However, in the �nal optimizedstru
ture, the ferroele
tri
 instability had nearly disappeared: due to the underestimateof the latti
e 
onstant, the shift of the atoms from their 
entrosymmetri
 position be
ameanomalously small.It was observed that the 
orre
t simulation of di�erent properties of ABO3 
ompounds(like the phase transition temperature [20℄) requires to work at the experimental latti
e
onstants rather than at the LDA optimized one. As they are a

urately obtained from X-ray di�ra
tion data [100℄, in the following 
al
ulations, we 
hose to adopt the experimentallatti
e parameters. We note that results obtained by Singh [66℄ raise the hope thatproblems asso
iated to the LDA underestimate of the optimized volume are solved whenusing a weighted density approximation (WDA).In our 
omputations, all the atomi
 positions have been relaxed 
on
urrently until



CHAPTER 2 : GROUND-STATE PROPERTIES 24Table 2.1: Notation of atomi
 positions (in redu
ed 
oordinates) in the three ferroele
tri
phases of BaTiO3, used in Tables 2.2{2.3{2.4.Phase Atom PositionTetragonal Ba (0.0, 0.0, 0.0)Ti (0.5, 0.5, 0.5+�T�T i)O1 (0.5, 0.5, 0.0+�T�O1)O2 (0.5, 0.0, 0.5+�T�O2)O3 (0.0, 0.5, 0.5+�T�O2)Orthorhombi
 Ba (0.0, 0.0, 0.0)Ti (0.5, 0.5+�O�T i, 0.5+�O�T i)O1 (0.5, 0.5+�O�O1, 0.0+�O�O2)O2 (0.5, 0.0+�O�O2, 0.5+�O�O1)O3 (0.0, 0.5+�O�O3, 0.5+�O�O3)Rhombohedral Ba (0.0, 0.0, 0.0)Ti (0.5+�R�T i, 0.5+�R�T i, 0.5+�R�T i)O1 (0.5+�R�O1, 0.5+�R�O1, 0.0+�R�O2)O2 (0.5+�R�O1, 0.0+�R�O2, 0.5+�R�O1)O3 (0.0+�R�O2, 0.5+�R�O1, 0.5+�R�O1)the residual for
es on the atoms are smaller than 10�5 Hartree/bohr. Similar theoret-i
al optimizations of atomi
 positions were reported previously for the tetragonal andrhombohedral symmetry [94℄, but keeping the latti
e parameters of the 
ubi
 phase. Inthe present work, we perform the stru
tural optimization at the experimental latti
e pa-rameters 
orresponding to ea
h phase. Moreover, for the tetragonal and rhombohedralsymmetry, we also investigate the in
uen
e of the ma
ros
opi
 strain, asso
iated to thephase transitions. Our 
al
ulations have been performed on a 6 � 6 � 6 mesh of spe
ialk-points, that was 
he
ked by di�erent authors to be suÆ
iently a

urate [94, 101℄.The notations adopted for the atomi
 positions in redu
ed 
oordinates are reportedfor the di�erent phases in Table 2.1. The Ba atom has been 
hosen as the referen
e andremains lo
alized at (0,0,0). In ea
h phase, the Ti atom is slightly displa
ed from its
entral position, along the polar axis. Due to the symmetry, only two oxygen atoms areequivalent in the tetragonal (O2 and O3) and orthorhombi
 (O1 and O2) stru
tures. Inthe rhombohedral phase, all the oxygen are equivalent, as in the 
ubi
 phase. Results ofthe optimization are reported in Table 2.2, Table 2.3, and Table 2.4.In the orthorhombi
 stru
ture (Table 2.3) our atomi
 positions 
ompare well with theexperiment. We probably slightly overestimate the Ti atom shift. However, there is alarge spread in the experimental Ti displa
ements, reported by Kwei et al. [100℄, so thatpart of the observed dis
repan
y should be attributed to the experimental un
ertainty.For the rhombohedral phase (Table 2.4), our results are 
lose to those of King-Smithand Vanderbilt [94℄. The di�eren
e observed for �R�O1 
ould be due to the better a

u-
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e parameters (�A) and atomi
 displa
ements (see Table 2.1) in the tetrag-onal phase of BaTiO3.a0 
0 �T�T i �T�O1 �T�O2 Referen
e3.994 4.036 0.0143 �0.0307 �0.0186 Present3.986 4.026 0.015 �0.023 �0.014 Ref. [102℄3.994 4.036 0.0215 �0.0233 �0.0100 Ref. [100℄{ { 0.014 �0.0249 �0.0156 Ref. [103℄{ { 0.0135 �0.0250 �0.0150 Ref. [104℄{ { 0.0135 �0.0243 �0.0153 Ref. [105℄4.00 4.00 0.0129 -0.0248 -0.0157 Present4.00 4.00 0.0138 -0.0253 -0.0143 Ref. [94℄
Table 2.3: Latti
e parameters (�A) and atomi
 displa
ements (see Table 2.1) in the or-thorhombi
 phase of BaTiO3.Present Ref. [100℄ Ref. [100℄ Ref. [102℄a0 3.984 3.984 3.981 3.990b0 5.674 5.674 5.671 5.669
0 5.692 5.692 5.690 5.682�O�T i 0.0127 0.0079 0.0143 0.010�O�O1 �0.0230 �0.0233 �0.0228 �0.016�O�O2 �0.0162 �0.0146 �0.0106 �0.010�O�O3 �0.0144 �0.0145 �0.0110 �0.010
Table 2.4: Latti
e parameters (�A) and atomi
 displa
ements (see Table 2.1) in the rhom-bohedral phase of BaTiO3.a0 � �R�T i �R�O1 �R�O2 Referen
e4.001 89.87Æ �0.011 0.0133 0.0192 Present4.001 89.87Æ �0.013 0.011 0.018 Ref. [105℄4.004 89.87Æ �0.011 0.011 0.018 Ref. [106℄4.003 89.84Æ �0.013 0.011 0.019 Ref. [100℄4.00 90.00Æ �0.011 0.0129 0.0191 Present4.00 90.00Æ �0.012 0.0105 0.0195 Ref. [94℄
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y imposed in our 
al
ulation 3. In addition, it is observed that the ma
ros
opi
 strain,small for this phase, has no in
uen
e on the atomi
 positions.On the 
ontrary, for the tetragonal distortion (Table 2.2), we observe that the elonga-tion of the 
 axis favors a larger displa
ement of the Ti and O atoms. This result 
on�rmsthe important role of the ma
ros
opi
 strain in the stabilization of the tetragonal stru
-ture [98, 107℄. Keeping the latti
e parameters of the 
ubi
 phase, our displa
ements are
lose to those dedu
ed by King-Smith and Vanderbilt, and in good agreement with experi-mental data. However, 
onsidering the experimental tetragonal unit 
ell, we overestimatethe atomi
 displa
ements of Ti and O atoms. Similarly to the underestimation of thelatti
e 
onstant, this feature should be assigned to the LDA, whi
h usually shortens thebond lengths. This problem might be more stringent for the tetragonal stru
ture forwhi
h the Ti displa
ements are along a rather 
ovalent bond.2.2.2 Lithium niobateContrary to barium titanate, LiNbO3 
rystallizes at high temperature in a paraele
tri
stru
ture of trigonal symmetry (R3
). When the temperature is lowered, it undergoesat 1480 K a phase transition to a ferroele
tri
 ground state of R3
 symmetry. The fer-roele
tri
 phase 
orresponds to a small distortion of the paraele
tri
 state. Both phasesare rhombohedral with 10 atoms in the unit 
ell. Their geometry 
an be des
ribed usingthe primitive (rhombohedral) unit 
ell as mentionned previously in this Chapter. Alter-natively, we 
an also 
onsider a non-primitive hexagonal unit 
ell. This is the most usual
hoi
e in the litterature whi
h is therefore also adopted in the following part of this Se
-tion. In the dis
ussion of our results, the symbols a and 
 
orrespond to the lengths of thebasis ve
tors of the hexagonal unit 
ell and the atomi
 positions are given in hexagonal
oordinates.Paraele
tri
 phaseThe paraele
tri
 phase belongs to the spa
e group R3
. The positions of the 10 atoms inthe primitive rhombohedral unit 
ell were illustrated in Fig. 2.3. This unit 
ell is de�nedby 3 ve
tors a', b' and 
' of length a' and forming angle �'. Here, instead, we will 
onsideran hexagonal unit 
ell, build from the ve
tors a, b and 
 and related to the primitive oneas sket
hed on Fig. 2.6. The 
 ve
tor is aligned along the three fold axis. The a and baxis are perpendi
ular to it , have both the same length and de�ne and angle of 120Æ.In Fig. 2.7, we show the atomi
 positions in the hexagonal unit 
ell. As in Fig. 2.3,we have 
hosen views in dire
tions perpendi
ular and parallel to the three fold axis. InFig. 2.8 we show another view in a dire
tion perpendi
ular to the b and 
 ve
tors inwhi
h LiNbO3 appears 
omposed of alternative planes of atoms. One is 
omposed of Nb3Contrary to us, King-Smith and Vanderbilt only relaxed the atomi
 positions until for
es are lessthan 10�3 Hartree/Bohr. This 
riterion seems not suÆ
ient to guarantee a well 
onverged result, sin
ethe for
es 
omputed at the experimental atomi
 positions are already of the order of 10�3 Hartree/Bohr.
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a

b

c

a' b'
c'

Figure 2.6: Hexagonal and rhombohedral unit 
ell of LiNbO3

Nb
Li
O

(a) (b)

Figure 2.7: Atomi
 positions in the hexagonal unit 
ell of LiNbO3. Views in dire
tionsperpendi
ular and parallel to the three fold axis.



CHAPTER 2 : GROUND-STATE PROPERTIES 28atoms while the other one is 
ontains both Li and O atoms. Two su

essive planes areseparated by a distan
e 
=12.
Nb
Li
O

Figure 2.8: Atomi
 positions in the hexagonal unit 
ell of LiNbO3. View in a dire
tionperpendi
ular to b and 
 ve
tors.In summary, from Fig. 2.3, LiNbO3 
an be viewed as Nb-Li 
hains along the three-foldaxis, with ea
h Nb at the 
enter of an oxygen o
tahedra. Alternatively, from Fig. 2.8,it 
an also be 
onsidered as alternating planes along the three-fold axis : the �rst one is
omposed of Nb atoms while the other one 
ontains both Li and O atoms.In Table 2.5, we de�ne the parameters that determine the atomi
 positions by reportingthe hexagonal 
oordinates of �ve atoms of the rhombohedral unit 
ell. The 
oordinatesof the other atoms 
an easily be obtained by using the symmetry operations of the spa
egroups R3
 and R3
.In the paraele
tri
 phase, the positions of the niobium and lithium atoms are �xedby symmetry while the positions of the oxygen atoms are determined by the internalparameter x. The results of our stru
tural optimizations are summarized in Table 2.6.They are 
ompared to the results obtained by Parlinski et al. [108℄ and Ca
iu
 et al. [109℄as well as to the experimental values dedu
ed from neutron di�ra
tion on a powder [110℄.The 
al
ulations have been performed with two di�erent ex
hange-
orrelation fun
tionals.The GGA gives the 
losest agreement with the experiment whereas our LDA resultspresent errors similar to those of the previous DFT 
al
ulations (also performed withinthe LDA).
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Table 2.5: Atomi
 positions (in hexagonal 
oordinates) in the two phases of litihiumniobate. Phase Atom PositionParaele
tri
 Nb1 ( 0, 0, 0 )Li1 ( 0, 0, 14 )O1 ( �13 , �13 + x, 712 )O2 ( 13 � x, �x, 712 )O3 ( x, 13 , 712 )Ferroele
tri
 Nb1 ( 0, 0, 0 )Li1 ( 0, 0, 14 + z )O1 ( �13 � u, �13 + v, 712 � w )O2 ( 13 � v, �u� v, 712 � w )O3 ( u+ v, 13 + u, 712 � w )

Table 2.6: Latti
e 
onstants and atomi
 position parameter x (see Table 2.5) in theparaele
tri
 phase of lithium niobate. a(�A) 
(�A) xExp. [110℄ 5.289 13.848 0.060Cal
. (LDA) [109℄ 5.138 13.499 0.049Cal
. (LDA) [108℄ 5.097 13.708 0.036Present (LDA) 5.125 13.548 0.042Present (GGA) 5.255 13.791 0.048
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tri
 phaseThe ferroele
tri
 phase belongs to the spa
e group R3
. It 
orresponds to a small dis-tortion of the paraele
tri
 phase as illustrated in Fig. 2.9 where the arrows indi
ate theatomi
 displa
ements at the phase transition.
Nb

Li

O

(a) (b)

Figure 2.9: Atomi
 displa
ements during the ferroele
tri
 phase transition of LiNbO3.During the stru
tural optimizations, we held the niobium Nb1 atom �xed at the origin.The 
oordinates of the lithium and oxygen atoms are reported in the lower part of Table2.5. Our results for the ferroele
tri
 phase are summarized on Table 2.7. As for theparaele
tri
 phase, our values are 
lose to those of Parlinski et al. [108℄. Again, we triedto improve the a

ura
y of the 
al
ulation using the GGA. However, this does not yielda signi�
ative improvement: looking for example at the value of the parameter a, weobserve that the GGA tends to over
orre
t the errors of the LDA, a fa
t already observedin this kind of 
al
ulations [111, 112℄.Comparing Table 2.6 and 2.7, we see that our values for the latti
e parameters arein better agreement with the experiment for the ferroele
tri
 than for the paraele
tri
phase. A possible explanation is that within our 
al
ulation is arti�
ially performed at 0K and we thus negle
ted the e�e
ts of the thermal expansion. As the paraele
tri
 phaseof lithium niobate is only stable above 1480 K, these e�e
ts are more important for thisphase than for the ferroele
tri
 one and the 
al
ulated parameters tend to be smaller thanthe measured ones.2.3 Chemi
al bond and ele
troni
 stru
tureABO3 
ompounds are usually 
lassi�ed as ioni
 materials. As su
h, barium titanateis sometimes 
onsider in simple models as a Ba2+T i4+O�23 
rystal. If this pi
ture isessentially true, we must emphasize that on top of their main ioni
 
hara
ter, the ABO3
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e 
onstants and atomi
 position parameters (see notations of Table 2.5)in the ferroele
tri
 phase of lithium niobate.a(�A) 
(�A) z u v wExp. [110℄ 5.151 13.876 0.0329 0.00947 0.0383 0.0192Cal
. (LDA) [108℄ 5.086 13.723 0.0350 0.01497 0.0247 0.0186Present (LDA) 5.067 13.721 0.0337 0.01250 0.0302 0.0183Present (GGA) 5.200 13.873 0.0318 0.00973 0.0382 0.0199
ompounds also present some 
ovalent features. In the next Chapters, we will see thatit is pre
isely this small 
ovalent intera
tion and the mixed ioni
-
ovalent nature of theirbonding whi
h is at the origin of their interesting properties.A �rst empiri
al indi
ation of the partial 
ovalent 
hara
ter of their bonding arisesfrom the inspe
tion of the latti
e 
onstants. On the basis of tabulated values for theioni
 radii (
orre
ted by the appropriate 
oordination 
orre
tions proposed by Pearson)it is possible to dedu
e a latti
e 
onstant of 4.16 �A for BaTiO3. This result signi�
antlyoverestimates the experimental value around 4.00 �A, therefore suggesting that the bondlength has been shortened by partial 
ovalent intera
tions and that the bonding is notpurely ioni
.A better and more 
omplete insight on the ele
troni
 properties of ABO3 
ompounds
an be obtained from the inspe
tion of their ele
troni
 band stru
ture. In what follows,we dis
uss the Kohn-Sham ele
troni
 band stru
tures of BaTiO3 and LiNbO3 as they were
omputed for the di�erent optimized stru
tures.2.3.1 Barium titanateIn Figure 2.10, we show the ele
troni
 band stru
ture of the 
ubi
 phase of BaTiO3. Itsshape 
orresponds to that expe
ted for a rather ioni
 material. It is globally 
omposed ofwell separated sets of bands, lo
ated in the same energy regions than the di�erent orbitalsof the isolated atoms. Ea
h of these sets of bands has a marked dominant 
hara
ter andis labeled by the name of the atomi
 orbital that mainly 
omposes this energy state inthe solid.The position of the di�erent energy levels 
an be 
ompared to the experimentaldata [113℄. The results presented in Table 2.8 show a good agreement with the ex-perimental �ndings, despite a systemati
 underestimation of the energy separation fromthe valen
e edge, a well-known 
hara
teristi
s of the LDA.As previously mentionned, in spite of its mainly ioni
 
hara
ter, BaTiO3 has alsosome 
ovalent features. First, there is a well-known hybridization between O 2p andTi 3d orbitals. The four ele
trons of the Ti 3d orbitals are not 
ompletely transferredto the oxygen atoms, but remain partly delo
alized on Ti. This 
learly appears from
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Table 2.8: Top, middle and bottom values (eV) of the di�erent ele
troni
 bands of 
ubi
and rhombohedral BaTiO3.Band Ref. [113℄ Cubi
 RombohedralTi 3d R +4.23 R +4.49+2.98 +3.39� +1.72 � +2.29O 2p 0.0 R 0.00 R 0.00�2:27 �2:21�5:5 � �4:54 � �4:42Ba 5p � �9:41 X �9:40�12:2 �10:02 �10:02R �10:63 R �10:61O 2s X �15:56 X �15:52�18:8 �16:20 �16:15X �16:84 X �16:78Ba 5s R �24:46 R �24:45�27:0 �24:60 �24:59� �24:73 � �24:72Ti 3p M �32:47 � �32:22�34:4 �32:50 �32:25X �32:53 X �32:28Ti 3s R �55:89 R �55:60�55:89 �55:60� �55:89 � �55:60
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Figure 2.10: (a) Brillouin zone of 
ubi
 BaTiO3. (b) Kohn-Sham ele
troni
 band stru
tureof 
ubi
 BaTiO3 along di�erent high symmetry lines of the Brillouin zone.the inspe
tion of the stati
 ioni
 
harges, obtained by integrating the ele
troni
 densityaround ea
h atom : the Ti 
harge is not of +4 but rather 2.50{3.00 [93, 114, 115℄.In terms of band theory, the in
omplete transfer of Ti 3d ele
trons to the oxygen ionsmeans that there is some admixture of Ti 3d 
hara
ter to the O 2p bands. This featurewas already 
learly identi�ed from the overlap integrals in early LCAO band stru
ture
al
ulations on ABO3 
ompounds [116, 117℄. It was often 
onsidered as an essentialfeature to explain the ferroele
tri
ity in these materials [22℄. It was 
on�rmed by re
entexperiments [113℄ and was also 
learly illustrated from DFT by the analysis of partialdensity of states (DOS) [97, 98, 107℄.Less spe
ta
ular, the hybridization between Ba 5p and O 2p orbitals is sometimes
ontroversial. In simple models, Ba is indeed usually 
onsidered as ioni
 in BaTiO3. Theintera
tion of Ba with other atoms was however dete
ted in LCAO 
al
ulations [118℄,and even in DFT from partial DOS [97, 98℄. It was dis
ussed by Pertosa and Mi
hel-Calendini [118℄ who have shown that it has only small 
onsequen
es on the band stru
ture.However, it might have a more signi�
ant in
uen
e on other properties. For instan
e, itwas suggested that its presen
e should enhan
e the Ti-O intera
tion [119℄. More re
ently,it was also invoked to explain the origin of some non-negligible 
ontributions to the Borne�e
tive 
harges [120℄, as it will be dis
ussed in the next Chapter.The 
omputed bandgap is indire
t (R! �) in 
ubi
 BaTiO3 and equal to 1.72 eV. Thedire
t gap at � is of 1.84 eV. However, these values 
annot be 
ompared to the experiment
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ation of the experimental value of the bandgapwas also for long under dis
ussion. In ABO3 perovskite materials, the interband ab-sorption edge displays Urba
h-rule behaviour [121℄: the absorption 
oeÆ
ient in
reasesexponentially with in
reasing photon energy, so that no uniquely de�ned bandgap 
anbe extra
ted from absorption measurements. A realisti
 value of 3.2 eV was neverthelessestimated by Wemple [121℄ in the 
ubi
 phase. It was attributed to the dire
t gap at the� point [122℄.Going now from 
ubi
 the rhombohedral stru
ture (Figure 2.11), signi�
ant 
hanges inthe bands are observed, espe
ially when 
onsidering the small atomi
 displa
ements andma
ros
opi
 strains involved in the phase transition. First, the energy gap in
reases from1.72 eV to 2.29 eV. This evolution is 
onsistent with an intensi�
ation of the O 2p { Ti 3dhybridization, as expe
ted when going from the 
ubi
 to a ferroele
tri
 phase [33℄. Su
h atrend in the hybridization was 
on�rmed from partial DOS for rhombohedral KNbO3 andKTaO3 [99℄. As for BaTiO3, it was a

ompanied in that 
ompounds by a small redu
tionof the O 2p bandwidth. Moreover, we observe a small but signi�
ant 
hemi
al shift ofthe Ti 3s (0.25 eV) and Ti 3p (0.29 eV) bands with respe
t to the Ba and O levels. Thisfeature 
orroborates a modi�
ation of the ele
troni
 environment of the Ti atom in therhombohedral stru
ture.The reinfor
ement of the 
ovalent 
hara
ter is not a parti
ular feature of the rhom-bohedral phase. A modi�
ation of the O 2p { B d hybridizations have been observedin the tetragonal stru
ture of di�erent ABO3 
ompounds [33, 98℄. For indi
ation, in our
al
ulation, the indire
t gap between A and � be
omes equal to 2.27 eV in the tetragonalphase. A similar evolution is expe
ted when going from the 
ubi
 to the orthorhombi
phase.2.3.2 Lithium niobateIn Figure 2.12, we report the Kohn-Sham band stru
ture of the paraele
tri
 phase oflithium niobate obtained within the LDA. The notations of the high symmetry pointsbetween whi
h we have drawn the band stru
ture 
orrespond to those 
hosen in Ref.[[123℄℄. As for BaTiO3, we observe the presen
e of well separated groups of bands. Ea
hof these groups has a marked dominant 
hara
ter and has been labeled by the name ofthe atomi
 orbital that mainly 
omposes this energy state in the solid.As previously dis
ussed by Inbar and Cohen [124, 125℄, the 
hemi
al bonding in lithiumniobate has also a mixed 
ovalent-ioni
 
hara
ter. The Nb 4d and O 2p atomi
 orbitalsstrongly intera
t to form the valen
e and 
ondu
tion bands near the Fermi level whilethe Li atoms 
ompletely loose their 2s ele
trons. In other words, the bonding betweenniobium and oxygen atoms has a non-negligible 
ovalent 
hara
ter while the bonding withthe lithium atoms is essentially ioni
.4The bandgap problem is a well-known feature of the DFT [58℄. Let us re
all that this dis
repan
yonly 
on
erns the ex
itation energies; it does not in
uen
e the a

ura
y obtained on the ground-stateproperties, that should be obtained 
orre
tly within DFT.
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Figure 2.12: (a) Brillouin zone of the paraele
tri
 phase of LiNbO3. (b) Kohn-Shamele
troni
 band stru
ture in the paraele
tri
 phase of LiNbO3 
al
ulated within the LDA.The transition to the ferroele
tri
 state mainly a�e
ts the bands in the region 
lose tothe Fermi level. In LDA, the indire
t bandgap Eg in
reases from 2.60 to 3.48 eV and thespread of the O 2p bands redu
es from 5.06 to 4.71 eV (Fig. 2.13). In GGA, we obtainedsimilar values for Eg (2.51 and 3.50 eV) while the O 2p group is narrower than in LDAin both the paraele
tri
 (4.80 eV) and the ferroele
tri
 phase (4.48 eV). We note that, inspite of the well known DFT bandgap problem [58℄, the values of the Eg in the ferroele
tri
phase only slightly underestimate the experimental value of 3.78 eV [126℄. For the deeperbands the spread remains una�e
ted at the transition while the position with respe
t tothe top of the valen
e band is slightly shifted to higher energies. We 
on
lude that theonly signi�
ant e�e
t of the phase transition on the ele
troni
 properties is to modify thehybridizations between O 2p and Nb 4d orbitals.
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Figure 2.13: Kohn-Sham ele
troni
 band stru
ture in the paraele
tri
 (lines) and ferro-ele
tri
 (dots) phases of LiNbO3 
al
ulated within the LDA.2.4 Con
lusionsTo summarize, most ABO3 
ompounds 
ristallizes in the perovskite stru
ture but some ofthem, for whi
h the toleran
e fa
tor of Golds
hmidt is signi�
antly smaller than 1, adopta trigonal symmerty. In all 
ases, the ferroele
tri
 phase 
orresponds to a slight polardistortion of the paraele
tri
 referen
e stru
ture.The bonding in this 
lass of 
ompound is essentially ioni
. However, it also exhibitssome 
ovalent features. These essentially 
onsist in a non-negligible hybridization betweenB-metal d levels and oxygen 2p orbitals. At the phase transitions, there is an in
rease ofthe bandgap and a narrowing of the O 2p and metal d bands.2.5 Referen
esA extensive review of the properties of ferroele
tri
 
ompounds is given in :� M. E Lines and A. M. Glass, Prin
iples and appli
ations of Ferroele
tri
s and relatedmaterials, Ed. by W. Marshall and D. H. Wilkinson, Clarendon Press, Oxford(1977).The results presented in this Chapter have been dis
ussed in the following referen
es:
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henaud, Stru
tural and ele
troni
 properties ofbarium titanate from �rst-prin
iples, Ferroele
tri
s 220, 1-15 (1999).� M. Veithen and Ph. Ghosez, First-Prin
iples study of the diele
tri
 and dynami
alproperties of lithium niobate, Phys. Rev. B, in press (to appear in 2002).



Chapter 3Stati
 and dynami
al ioni
 
harges
3.1 Introdu
tionFor a long time, there has been a 
ontinuing interest in the de�nition of atomi
 
hargesin solid state physi
s as well as in 
hemistry [127, 128, 129, 130℄. This interest lies essen-tially in the fa
t that the 
on
ept of atomi
 
harge naturally arises in a large diversityof frameworks and is frequently helpful for a simple des
ription of solids and mole
ules.The variety of 
ontexts in whi
h the 
harge is involved (IR spe
trum analysis, XPS 
hem-i
al shifts analysis, theory of ioni
 
ondu
tivity of oxides, determination of ele
trostati
potential, de�nition of oxidation states...) underlines its 
entral role but also reveals a
on
omitant problem: inspired by various models or by the des
ription of various physi
alphenomena, many di�erent de�nitions have been proposed that, unfortunately, are notequivalent [130℄.Following a distin
tion already made by Co
hran [127℄, it seems possible to 
lassifythe di�erent 
on
epts into stati
 and dynami
al 
harges. The stati
 
harge is an intuitive
on
ept, usually based on a partitioning of the ground-state ele
troni
 density into 
on-tributions attributed to the di�erent atoms. It is an ill-de�ned quantity that depends onthe 
onvention arti�
ially 
hosen to a�e
t a given ele
tron to a parti
ular ion [127, 128℄.On the other hand, the dynami
al 
harge is dire
tly related to the 
hange of polarization(or dipole moment, for mole
ules) 
reated by an atomi
 displa
ement. This 
hange ofpolarization is a quantity that 
an be experimentally measured, at least in prin
iples,giving the dynami
al 
harge a well-de�ned 
hara
ter.In order to 
larify the 
on
ept of atomi
 
harge, it was important to 
ompare onpra
ti
al examples the numeri
al results obtained from its di�erent de�nitions. Re
entstudies of the statisti
al 
orrelation between various atomi
 
harges using a prin
ipal
omponent analysis have suggested that the di�erent de�nitions are not independent but
orrespond to di�erent s
ales driven by a unique underlying physi
al fa
tor [130℄. If thisassertion seems plausible as far as stati
 
harges are 
on
erned, we will argue that thedynami
al 
harge should not redu
e to the same physi
al fa
tor but should also dependon an additional parameter: the rate of transfer of 
harge, in
uen
ed by the bondingwith the other atoms of the system and additionally, for large systems, by the 
ondition39
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ros
opi
 ele
tri
 �eld.The Born e�e
tive 
harge tensor Z�(T ) { alias transverse 
harge {, that is at the 
en-ter of the present Chapter, is a dynami
al quantity introdu
ed by Born [131℄ in 1933.In solid state physi
s, it is sin
e a long time 
onsidered as a fundamental quantity be-
ause it monitors the long-range Coulomb intera
tion responsible of the splitting betweentransverse and longitudinal opti
 phonon modes [131℄. During the seventies, the Born ef-fe
tive 
harges were already investigated and dis
ussed within empiri
al approa
hes (seefor example Harrison [132℄). More re
ently, they be
ame a

essible to �rst-prin
iples
al
ulations [42, 43, 35℄, and a

urate values have been reported for a large variety ofmaterials.For the 
ase of ABO3 
ompounds, old experimental data [133℄ and empiri
al stud-ies [132℄ had suggested that the amplitude of the Born e�e
tive 
harges should deviatesubstantially from the amplitude of the stati
 atomi
 
harge. Surprisingly, this resultremained in the dark until �rst-prin
iples 
al
ulations 
on�rmed that the 
omponents ofZ�(T ) are anomalously large in these oxides [134, 135, 136℄. It was observed that the 
om-ponents of Z�(T ) 
an rea
h twi
e that of the nominal ioni
 
harges. This result reopenedthe dis
ussion on the physi
s of the Born e�e
tive 
harges and di�erent re
ent studiestried to 
larify the mi
ros
opi
 pro
esses monitoring the amplitude of Z�(T ).In this Chapter, we �rst 
larify the relationship between various atomi
 
harges. Wethen present results 
on
erning BaTiO3 and SrTiO3 in order to illustrate how a 
arefulanalysis of the Born e�e
tive 
harges 
an tea
h us interesting physi
s 
on
erning these
ompounds. It reveals the mixed ioni
 and 
ovalent 
hara
ter of the bond [137, 138℄.It allows to visualize the me
hanism of polarization as ele
troni
 
urrents produ
ed bydynami
al 
hanges of orbital hybridizations [132, 138℄. It also 
lari�es the origin of thegiant destabilizing dipole-dipole intera
tion produ
ing the ferroele
tri
 instability of thesematerials [53℄.In Se
tion II and III, we 
ontrast the 
on
epts of stati
 and dynami
al 
harges andwe reintrodu
e the Born e�e
tive 
harge that is at the 
enter of the present dis
ussion.In Se
tion IV, we 
ompare various results obtained within di�erent frameworks for theparaele
tri
 phase of BaTiO3, SrTiO3 and LiNbO3. We also dis
uss the origin of the largeanomalous 
ontributions in terms of lo
al ele
troni
 polarizability and dynami
al 
hangesof orbital hybridization. A de
omposition of the role played by the di�erent bands isreported in Se
tion V. Se
tion VI is devoted to the evolution of the Born e�e
tive 
hargesin the three ferroele
tri
 phases of BaTiO3 as well as in the 
ubi
 phase under hydrostati
pressure. This points out the role of the anisotropy of the atomi
 environment on theamplitude of Z�(T ). Finally, in Se
tion VII, we report the evolution of the e�e
tive 
hargesall along the path of atomi
 displa
ements from the 
ubi
 to the rhombohedral phase andwe estimate the spontaneous polarization of the three ferroele
tri
 phases of BaTiO3.
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harges of BaTiO3 in the 
ubi
 stru
ture.ZBa ZT i Z0 Referen
eNominal +2 +4 �2Empiri
al models +2:00 +0:19 �0:73 Ref. [132℄+1:40 +2:20 �1:20 Ref. [139℄+2:00 +1:88 �1:29 Ref. [140℄+1:86 +3:18 �1:68 Ref. [141℄+1:48 +1:86 �1:11 Ref. [142℄+2:00 +1:86 �1:29 Ref. [143℄First-prin
iples 
al
ulations +2:00 +2:89 �1:63 Ref. [93℄+2:12 +2:43 �1:52 Ref. [114℄+1:39 +2:79 �1:39 Ref. [115℄3.2 The 
on
ept of stati
 
hargeIntuitively, the atomi
 
harge may �rst appear as a stati
 
on
ept. The 
harge asso-
iated to an isolated atom is a well-de�ned quantity. The purpose of de�ning stati
atomi
 
harges is therefore to extend this notion to mole
ules and solids. For these 
ases,the 
hallenge basi
ally 
onsists to repla
e the delo
alized ele
troni
 density by lo
alizedpoint 
harges asso
iated to ea
h atom. This 
ould a priori be performed from ele
troni
density maps obtained experimentally or theoreti
ally. However, as already mentionedby Mulliken [128℄ in 1935, \there are some diÆ
ulties of giving exa
t de�nition withoutarbitrariness for any atomi
 property". During the seventies, Co
hran [127℄ similarlyemphasized that the partition of the ele
troni
 distribution into atomi
 
harges 
an onlybe done unambiguously when \boundary 
an be drawn between the ions so as to passthrough regions in whi
h the ele
tron density is small 
ompared with the re
ipro
al ofthe volume in
losed". This is never the 
ase in pra
ti
e, and espe
ially when there isappre
iable 
ovalent bonding. For most of the solids and mole
ules, there is 
onsequentlyno absolute 
riterion to de�ne the stati
 atomi
 
harge and a large variety of distin
tde�nitions have been proposed that are not ne
essarily quantitatively equivalent (see forinstan
e Ref. [129, 130℄).As an illustration, di�erent approa
hes have been 
onsidered in order to evaluate theamplitude of the stati
 atomi
 
harges of barium titanate. Some results are summarizedin Table 3.1, where di�erent atomi
 
harges are reported in 
omparison with the nominal
harges expe
ted in a purely ioni
 material (+2 for Ba, +4 for Ti, {2 for O). Some ofthem were obtained from empiri
al models; others were dedu
ed from �rst-prin
iples. Thestati
 atomi
 
harges of Ref. [132℄ were dedu
ed by Harrison within his bond orbital modelusing universal parameters and negle
ting the intera
tions with the Ba atom. The atomi

harges reported by Hewat [139℄ were approximated from a model initially designed byCowley [144℄ for SrTiO3. The 
harges reported by Khatib et al. [141℄ have been obtained
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ontext. In two referen
es, Turik and Khasabov [142, 143℄ estimated the
harges from the Madelung 
onstant thanks to a �t of the 
rystal energy with shell-modelparameters. Mi
hel-Calendini et al. [140℄ proposed 
harges from a population analysis ofthe X� ele
troni
 distribution of a TiO6 
luster, assuming a 
harge of +2 on Ba. Cohenand Krakauer [93℄ dedu
ed the atomi
 
harges from a �t of the DFT-LDA ele
troni
distribution by that of overlapping spheri
al ions (generated a

ording to the potentialindu
ed breathing model) for di�erent ioni
 
on�gurations. Xu et al. [114℄ reported valuesdedu
ed from a Mulliken population analysis of a self-
onsistent OLCAO 
al
ulation 1. Inanother referen
e [115℄, Xu et al. proposed di�erent values by integrating the ele
troni

harges in spheres 
entered on the ions, and partitioning rather arbitrarily the remaining
harge outside the spheres following a method proposed in Ref. [145, 146℄.The results of Table 3.1 are not quantitatively identi
al and illustrate that there isno formal equivalen
e between the di�erent pro
edures used to de�ne the atomi
 
harge.However, in agreement with an analysis reported by Meister and S
hwartz [130℄ for the
ase of mole
ules, we observe that the values of Table 3.1 have some 
ommon features, sug-gesting that the di�erent 
harges are not independent but should 
orrespond to di�erents
ales driven by a 
ommon fa
tor.In parti
ular, all the 
al
ulations reveal that the 
harge transfer from Ti to O is not
omplete. If BaTiO3 was a purely ioni
 
rystal, the 3d and 4s ele
trons of Ti would beentirely transferred to the oxygen atoms, yielding a 
harge of +4 on titanium. However,due for instan
e to the partial hybridization between O 2p and Ti 3d states [119, 113,117, 147, 148, 97, 98℄, these ele
trons remain partly delo
alized on the Ti atom so thatthe stati
 
harges on the Ti and O atoms are smaller than they would be in a purelyioni
 material. This delo
alization is illustrated in Figure 3.1, where we have plotted thepartial ele
troni
 density asso
iated to the O 2p bands. For the Ba atom, the situationis not so 
lear than for titanium but most of the studies suggest similarly that the 6sele
trons are not fully transferred to the oxygen.From the previous examples, it is 
lear that, stri
tly speaking, the stati
 
harge doesnot give a quantitative information. In the study of mixed ioni
-
ovalent 
ompounds,it remains however a useful 
on
ept to dis
uss qualitatively the transfer of 
harges fromone atom to the other. As a general rule, the partial 
ovalen
e redu
es the amplitudeof the stati
 
harge. Comparison of a spe
i�
 stati
 
harge in the di�erent phases of agiven material or in di�erent 
ompounds 
an therefore give a relevant information on theevolution of the 
hemi
al bond [115℄.3.3 The 
on
ept of dynami
al 
hargeAs emphasized by Harrison [132℄, \whenever an ambiguity arises about the de�nition ofa 
on
ept su
h as the atomi
 
harge, it 
an be removed by dis
ussing only quantities that1We note the unphysi
al 
harge on Ba. It is the result of a negative Mulliken population and re
e
tsthe inadequa
y of the Mulliken population analysis whi
h assumes an equal share of overlap betweenea
h pair of atoms.
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Figure 3.1: Ti-O plane 
ut in the partial ele
troni
 density 
oming from the O 2p bandsin the 
ubi
 phase of barium titanate.
an be experimentally determined, at least in prin
iples". If there are some ambiguitiesto determine the 
harge to be asso
iated to a given atom, the 
harge 
arried by this atomwhen it is displa
ed is dire
tly a

essible from the indu
ed 
hange of polarization (ordipole moment for mole
ules). As it is now dis
ussed, the dynami
al 
harges are de�nedby the 
hange of polarization indu
ed by an atomi
 displa
ement; from the viewpoint ofHarrison, they appear therefore as more fondamental quantities.3.3.1 Role of the ma
ros
opi
 ele
tri
 �eldIn mole
ules, the 
hange of dipole moment in dire
tion � (p�) linearly indu
ed by a smalldispla
ement of atom � in dire
tion � (��;�) is uniquely de�ned. The proportionality
oeÆ
ient between the dipole moment and the atomi
 displa
ement has the dimensionalityof a 
harge and is usually referred to as the atomi
 polar tensor (APT) :Z��;�� = �p����;� (3.1)This 
on
ept was introdu
ed by Biarge, Herranz and Mor
illo [149, 150, 151℄ for the inter-pretation of infra-red intensities measurements. Later, Cioslowski [152, 153℄ introdu
eda s
alar 
harge in 
onne
tion with this tensor : it is the generalized atomi
 polar tensor(GAPT) de�ned as one-third of the tra
e of the atomi
 polar tensor.In periodi
 systems, equivalent atoms appear in the di�erent unit 
ells and the def-inition of the 
harge 
an be generalized. A dynami
al 
harge tensor is 
onventionallyde�ned as the 
oeÆ
ient of proportionality at the linear order between the ma
ros
opi
polarization per unit 
ell 
reated in dire
tion � and a rigid displa
ement of the sublatti
e



CHAPTER 3 : IONIC CHARGES 44of atoms � in dire
tion �, times the unit 
ell volume 
0 :Z��;�� = 
0 �P����;� (3.2)We note that 
0:P 
an be interpreted as a dipole moment per unit 
ell. As one � atomis displa
ed in ea
h unit 
ell, in the linear regime, this de�nition is equivalent to Eq.(3.1) : it 
orresponds to the 
hange of dipole moment indu
ed by an isolated atomi
displa
ement. However, 
ontrary to the 
ase of mole
ules, in ma
ros
opi
 systems, theprevious quantity is not uniquely de�ned. Indeed, the 
hange of polarization is alsodependent on the boundary 
onditions �xing the ma
ros
opi
 ele
tri
 �eld E throughoutthe sample. Basi
ally, we 
an write :Z��;�� = 
0 �P����;� ����E=0 + 
0 Xj �P��Ej : �Ej���;� (3.3)As the ele
trostati
s imposes a relationship between ma
ros
opi
 polarization, ele
tri
and displa
ement �elds : D� = E� + 4�P� =Xj �1�;jEj (3.4)we 
an dedu
e the following equivalent expression :Z��;�� = 
0 �P����;� ����E=0 + 
0 Xj (�1�;j � Æ�;j)4� : �Ej���;� (3.5)Depending on the 
ondition imposed on the ma
ros
opi
 ele
tri
 �eld, di�erent 
on
eptshave histori
ally been introdu
ed 2.The Born e�e
tive 
harge [131℄ { alias transverse 
harge, Z�(T ) { refers to the 
hangeof polarization that would be observed under the 
ondition of zero ma
ros
opi
 ele
tri
�eld, so that the se
ond term appearing in the previous equation vanishes :Z�(T )�;�� = 
0 �P����;� ����E=0 (3.6)The Callen 
harge [155℄ { alias longitudinal 
harge, Z�(L) { is de�ned from the 
hangeof polarization under the 
ondition of zero ma
ros
opi
 displa
ement �eld :Z�(L)�;�� = 
0 �P����;� ����D=0: (3.7)2Besides the di�erent de�nitions of dynami
al 
harges reported in this Chapter, let us note thatanother related 
harge is sometimes also introdu
ed, whi
h is de�ned as Z�(T )=p�1. This 
harge 
anreveal useful in the study of ANB8�N 
ompounds in the sense that it is dire
tly a

essible from LO-TOsplitting data without any hypothesis on the amplitude of the diele
tri
 
onstant. In more 
omplexmaterials, as ABO3 
ompounds, the extra
tion of the 
harges from the splitting is not straightforwardbut requires to introdu
e some hypothesis. This has been made by Gervais et al. [154℄ who estimated theamplitude of Z�(T )=p�1 in BaTiO3.



CHAPTER 3 : IONIC CHARGES 45Introdu
ing in Eq. (3.5) the relationship between �eld E and polarization P, dedu
edfrom Eq. (3.4) under the 
ondition of vanishing displa
ement �eld, Born and Callen
harges 
an be related to ea
h other thanks to the knowledge of the opti
al diele
tri
tensor �1 : Z�(L)�;�� = Z�(T )�;�� �Xj (�1�;j � Æ�;j)4� : 4�
0 �Pj���;� ����D=0| {z }Z�(L)�;�j (3.8)so that �nally [156℄ : Z�(T )�;�� = Xj �1�j Z�(L)�;�j (3.9)For the 
ase of isotropi
 materials, we re
over the well known equality : Z�(T )� = �1:Z�(L)� .Even if they are both related to the 
hange of polarization indu
ed by an atomi
 displa
e-ment, Born and Callen 
harges appear as two distin
t quantities and will be signi�
antlydi�erent in materials where �1 is di�erent from unity.Basi
ally, an in�nite number of 
harges 
ould be de�ned 
orresponding to di�erentboundary 
onditions, relating P and E . One of them is the Szigeti 
harge [157, 158℄ {Z�(S) {, de�ned as the 
hange of polarization under the 
ondition of vanishing lo
al �eld,Elo
, at the atomi
 site: Z�(S)�;�� = 
0 �P����;� ����Elo
=0 (3.10)The 
on
ept of lo
al �eld will be dis
ussed in Chapter 5. Let us already mention that, 
on-trary to Born and Callen 
harges, Z�(S) was sometimes 
onsidered as a model-dependent
on
ept in the sense that the lo
al �eld is not observable as the ma
ros
opi
 �eld butrequire some assumptions to be estimated. In the parti
ular 
ase of an isotropi
 material,the 
ondition of vanishing lo
al �eld 
an be written as follows:Elo
 = E + 4�3 P = 0 (3.11)Introdu
ing this 
ondition in Eq. (3.5) :Z�(S)� = Z�(T )� � (�1 � 1)4� : 4�3 
0 �P��� ����Elo
=0| {z }Z�(S)� (3.12)so that we �nd : Z�(T )� = (�1 + 2)3 Z�(S)� (3.13)In 
al
ulations of the dynami
al properties of 
rystals, the 
ontribution from the long-range Coulombi
 intera
tion to the atomi
 for
es is usually restri
ted to dipolar for
es
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luded through a term : F d� = Z�(T )� E . From Eq. (3.13), it 
an be 
he
kedthat this for
e 
an be alternatively written in terms of lo
al quantities : F d� = Z�(S)� Elo
.In shell-model 
al
ulations, this se
ond formulation is usually preferred. Indeed, fromits de�nition, Z�(S) only in
ludes the e�e
ts of 
harge redistribution resulting from short-range intera
tions and it is therefore 
onveniently assimilated to the stati
 
harge [17, 140℄.From the previous dis
ussion, it appears that the amplitude of the dynami
al 
hargein ma
ros
opi
 bodies is sensitive to the 
ondition imposed on the ma
ros
opi
 ele
tri
�eld. Considering �nite 
lusters of in
reasing size, we dedu
e that the amplitude of thedynami
al 
harge, redu
ing to the APT for a mi
ros
opi
 body, will tend to a di�erentvalue when the ma
ros
opi
 limit is taken, depending from the shape of the 
luster.We investigate now this observation in more details, and provide a uni�ed treatmentof dynami
al 
harges in periodi
 solids and 
lusters, suÆ
iently large for the ma
ros
opi
quantities (E ;P; �1; :::) to be de�ned.Following the well-known pra
ti
e for the study of diele
tri
 bodies [159℄, we 
onsiderthat the 
luster has a ma
ros
opi
 ellipso��dal shape. In this 
ase, the ma
ros
opi
 �eldwithin the 
luster present the pra
ti
al advantage to be homogeneous. In absen
e ofany applied external �eld, it redu
es to the depolarizing �eld related to the ma
ros
opi
polarization thanks to the depolarization 
oeÆ
ients n� [159℄ . If we assume in whatfollows that the prin
ipal axes of the ellipso��d are aligned with the axes of 
oordinates,we have the following relationship :E� = �4�n�P� (3.14)where the geometry imposes : Pi ni = 1. Following the same pro
edure as previously,the dynami
al 
harge Z�(E) of a given atom � in an ellipso��d of volume 
 
an be writtenas : Z�(E)�;�� = 
 �P����;� ����E=0 + 
 Xj (�1�;j � Æ�;j)4� : �Ej���;� ����Ej=�4�njPj (3.15)= Z�(T )�;�� �Xj (�1�;j � Æ�;j)4� : 4�nj 
 �Pj���;� ����Ej=�4�njPj| {z }Z�(E)�;�j (3.16)and we have the general relationship :Z�(T )�;�� = Xj [(�1�j � Æ�j)nj + Æ�j℄ Z�(E)�;�j (3.17)In this expression, the presen
e of the depolarization 
oeÆ
ients emphasizes the in
uen
eof the shape of the 
luster on the amplitude of Z�(E). The above-mentioned sum rule onthe depolarization 
oeÆ
ients forbid to impose the 
ondition of zero ele
tri
 or displa
e-ment �elds simultaneously in the three dire
tions. However, we have the following threeinteresting 
ases.
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onsider an extremely oblate ellipso��dal (slab-like) 
luster and take the ma
ro-s
opi
 limit. Along the z dire
tion perpendi
ular to the surfa
e, nz ! 1, while, along thetwo other dire
tions, nx = ny ! 0. The dynami
al 
harge for the ellipso��d is thereforerelated to the Born e�e
tive 
harge through the following expression:0B� Z�(T )�;�xZ�(T )�;�yZ�(T )�;�z 1CA = 0� 1 0 �1xz0 1 �1yz0 0 �1zz 1A0B� Z�(E)�;�xZ�(E)�;�yZ�(E)�;�z 1CA (3.18)For uniaxial systems with no o�-diagonal terms in the diele
tri
 tensor, we note that the
luster 
harge along the dire
tion perpendi
ular to the slab be
omes identi�ed with theCallen 
harge, while that in the slab plane redu
es to the Born e�e
tive 
harge. We will
ome ba
k to this dis
ussion in Chapter 7, devoted to thin �lms.Di�erently, for an extremely prolate ellipso��dal (needle-like) 
luster aligned along thez dire
tion (for whi
h nz ! 0 and nx = ny ! 1=2), we have the following relationship:0B� Z�(T )�;�xZ�(T )�;�yZ�(T )�;�z 1CA = 0� 12(�1xx + 1) 12�1xy 012�1yx 12(�1yy + 1) 012�1zx 12�1zy 1 1A0B� Z�(E)�;�xZ�(E)�;�yZ�(E)�;�z 1CA (3.19)Here also, the 
harge along the z dire
tion will redu
e to the Born 
harge in uniaxialsystems.Finally, for a spheri
al 
luster, the symmetry imposes n1 = n2 = n3 = 1=3, so thatE� = �4�P=3. For the 
ase of an isotropi
 material, we re
over therefore the 
onditionof vanishing lo
al �eld and Z(E)� be
omes equivalent to Z(S)� . Therefore, we obtain theinteresting result that in isotropi
 
ompounds, the Szigeti 
harge appears as a well-de�nedquantity and is simply the dynami
al 
harge observed in a spheri
al 
luster.To summarize, the 
on
ept of dynami
al 
harge in ma
ros
opi
 systems is not uniquelyde�ned : it depends on the relationship between E and P. In ea
h 
ase, the 
harge washowever expressed in terms of two basi
 
on
epts, Z�(T ) and �1. In this Se
tion, wefo
used on the term that in
ludes the diele
tri
 
onstant, and that des
ribes the part ofthe ele
troni
 
harge redistribution indu
ed by the presen
e of a ma
ros
opi
 �eld. In thenext Se
tion, we will dis
uss the physi
al pro
esses responsible of the amplitude of Z�(T ).3.3.2 Dynami
al 
hanges of orbital hybridizationsDuring the seventies, a large variety of semi-empiri
al models were proposed to investigatethe underlying physi
al pro
esses driving the amplitude of dynami
al 
harges. Withoutbeing exhaustive, let us mention the interesting treatments of Lu
ovsky, Martin and Burn-stein [160℄ who de
omposed Z�(T ) in a lo
al and a non-lo
al 
ontribution, of Lu
ovsky andWhite [161℄ dis
ussing Z�(T ) in 
onne
tion with resonant bonding properties, or the bond
harge model of H�ubner [162℄. The most popular and sophisti
ated of these approa
hes re-mains however that of Harrison [132, 163, 164, 165℄ within his bond orbital model (BOM).A similar theory was developed independently by Lannoo and De
arpigny [166℄.
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ally 
onsists in a simpli�ed tight-binding model, where the Hamil-tonian is limited to the on-site and nearest-neighbour terms. The on-site elements areidenti�ed to free atom terms value, while the interatomi
 elements are taken as universal
onstants times a parti
ular distan
e dependen
e. Among other things, these parametersdetermine the transfer of 
harge between the intera
ting atoms. As noted by Di
k andOverhauser [167℄, the 
harge redistribution produ
ed by the sensitivity of the overlapintegrals on the atomi
 positions is at the origin of an \ex
hange 
harge polarization".Similarly, in the Harrison model, the dependen
e of the parameter on the bond length areat the origin of dynami
al transfer of 
harges and monitors the amplitude of Z�(T ) that
an be
ome anomalously large as it is illustrated in the following examples.Let us �rst 
onsider a diatomi
 mole
ule XY, 
omposed of two open shell atoms, whereY has the largest ele
tronegativity. The interatomi
 distan
e is u and the dipole momentp(u). These observables allow us to identify a 
onvenient stati
 
harge Z(u) = p(u)u , whilethe dynami
al 
harge is de�ned as :Z�(u) = �p(u)�u= ��u (u : Z(u))= Z(u) + u�Z(u)�u (3.20)In the last expression, Z� appears 
omposed of two terms. The �rst one is simply the stati

harge. The se
ond 
orresponds to an additional dynami
al 
ontribution: it originates inthe transfer of 
harge produ
ed by the modi�
ation of the interatomi
 distan
e. Withinthe BOM, this last 
ontribution is asso
iated to o�-site orbital hybridization 
hanges andis dedu
ed from the universal dependen
e of the orbital intera
tion parameters on thebond length. We dedu
e that the di�eren
e between Z(u) and Z�(u) will be large if Z(u)
hanges rapidly with u. It 
an even be non-negligible when �Z(u)=�u is small, when the
harge is transferred on a large distan
e u.Moreover, this simple model naturally predi
ts anomalous amplitude of the dynami
al
harges, i.e. a value of Z�(u) not only larger than the stati
 
harge Z(u) but even largerthan the \nominal" ioni
 
harge. As the distan
e between X and Y is modi�ed from 0 tosome u, the distan
e 
orresponding to a 
omplete transfer of ele
trons from X to Y, thedipole moment evolves 
ontinuously from p(0) = 0 (sin
e there is no dipole for that 
ase)to p(u). Interestingly, Z u0 Z�(u) du = [p(u)� p(0)℄ = u Z(u) (3.21)so that: 1u Z u0 Z�(u)du = Z(u) (3.22)From the last relationship the mean value of Z�(u) from 0 to u is equal to Z(u) (the\nominal" ioni
 
harge). Consequently, if Z(u) 
hanges with u, Z�(u) must be larger
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e between Z�(u) and the nominal
harge Z(u) is usually referred to as the anomalous 
ontribution 3.Swit
hing now from a mole
ule to a linear 
hain ...-Y-X-Y-..., and displa
ing 
oherentlythe X atoms by du, shortened and elongated bonds will alternate all along the 
hain.For Harrison [132℄, the intera
tion parameters will be modi�ed su
h that \the 
ovalentenergy in
reases in the shorted bond, making it less polar by transferring ele
tron to thepositive atom". Inversely, ele
troni
 
harge will be transferred to the negative atom in theelongated bond. These transfers of 
harge will propagate all along the 
hain, so that evenif the net 
harge on the atom is not modi�ed, a 
urrent of ele
trons will be asso
iated tothe atomi
 displa
ement. The dire
tion of this ele
troni
 
urrent is opposite to that of thedispla
ement of positive atoms, so that it reinfor
es the 
hange of polarization asso
iatedto this displa
ement and may generate an anomalously large dynami
al 
harge. In ourexample, we have impli
itely 
onsidered a truly periodi
 system under the 
ondition ofzero ma
ros
opi
 ele
tri
 �eld so that the asso
iated dynami
al 
harge is Z�(T ). Underother 
onditions, the amplitude of the transfers of 
harge would be additionally in
uen
edby the presen
e of the �eld as dis
ussed in the previous Se
tion. We note that, 
ontraryto what was observed for the stati
 
harge, 
onsequen
es of the 
ovalen
e e�e
ts are toin
rease the amplitude of Z�(T ).The previous model 
an �nally be extended to three dimensional solids. For this 
ase,however, the 
al
ulation of the dynami
al 
ontribution may be
ome questionable whenthe identi�
ation of the 
harge transfers is restri
ted to some spe
i�
 bonds [168℄. As itwill be dis
ussed in Se
tions 3.5 and 3.6 the Harrison model remains however a meaningfulpi
ture of pra
ti
al interest to interpret more a

urate results.Up to now, we fo
used on a \delo
alized" model within whi
h the ele
troni
 
hargeredistribution indu
ed by an atomi
 displa
ement is visualized by transfer of 
harge in-du
ed by o�-site 
hanges of hybridization. In the past, various shell-models have howeveralso been developed to investigate the dynami
al properties of 
rystals. In these 
al
u-lations, an a

urate des
ription of Z�(T ) was mandatory in order to reprodu
e 
orre
tlythe splitting between longitudinal and transverse opti
 modes in the vi
inity of the �point. Contrary to the BOM, the shell-model is \lo
al" and treats the 
harges within theClausius-Mosotti limit. The previous dis
ussion in terms of a stati
 and dynami
al 
ontri-bution to Z�(T ) remains valid. However, the dynami
al 
ontribution results there simplyfrom the relative displa
ement of the shell 
harge as a whole with respe
t to the atom. Itis attributed to the polarizability of the ele
trons in the lo
al �eld at the atomi
 site. Inthe language of the BOM, su
h a displa
ement of the ele
troni
 
loud 
an be understoodin terms of on-site 
hanges of hybridizations. This approa
h 
ontrasts with the modeldevelopped by Harrison but 
an also yield plausible Born e�e
tive 
harge amplitudes [120℄.It must be emphasized that it is not possible to dis
riminate a priori between lo
alizedand delo
alized models. Within the re
ent theory of polarization, it has been 
lari�ed that3Nominal and stati
 
harges may di�er widely due to 
ovalen
y e�e
ts. As the stati
 
harge is illde�ned, one usually prefers to de�ne the anomalous 
ontribution in referen
e to the nominal 
harge.The di�eren
e between Born e�e
tive 
harge and stati
 
harge is sometimes referred to as the dynami
al
ontribution.
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Figure 3.2: S
hemati
 representation of the two basi
 me
hanisms that 
an explain thedispla
ement of the Wannier 
enter of a band under atomi
 displa
ement : (a) lo
alpolarizability, (b) interatomi
 transfers of 
harge.for the purpose of understanding polarization problems, \the true quantum me
hani
alele
troni
 system 
an be 
onsidered as an e�e
tive 
lassi
al system of quantized point
harges, lo
ated at the 
enters of gravity asso
iated with the o

upied Wannier fun
tionsin ea
h unit 
ell" [36℄. Consequently, the 
orre
t des
ription of the Born e�e
tive 
hargesdoes not require to reprodu
e 
orre
tly all the features of the valen
e 
harge distributionbut only the displa
ement of its Wannier 
enter (see Ref. [169℄). As s
hematized inFig. 3.2, antagonist models 
an reprodu
e a similar displa
ement of the Wannier 
enter.In real materials, both lo
al polarizability and transfers of 
harge do probably 
ontributeto the 
harge reorganisation. It will be emphasized later, in this Chapter and in Chapter4, how �rst-prin
iples investigations 
an help to identify the dominant me
hanism.In 
on
lusion, this Se
tion has shown that Z� is related to the stati
 
harge (seeEq. 3.20) but does not restri
t to it: Z� may also in
lude an additional, important,dynami
al 
ontribution. Whatever the me
hanism of the 
harge redistribution (lo
alizedor delo
alized), the amplitude of the dynami
al 
ontribution 
annot be estimated fromthe inspe
tion of the ele
troni
 density alone. So, we partly disagree with Meister andS
hwarz [130℄ who suggested that all the 
harges in
luding the GAPT are driven bythe same underlying parameter. In what follows, based on �rst-prin
iples 
al
ulations, weillustrate on di�erent examples that Z�(T ) may be
ome anomalously large and independentof the amplitude of the stati
 
harge Z. Moreover, two atoms with similar Z 
an alsoexhibit strongly di�erent Z�(T ).
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iples approa
hIn the previous Se
tion, the Born e�e
tive 
harge tensor Z��;�� was de�ned as the 
oeÆ
ientof proportionality relating the 
hange in ma
ros
opi
 polarization to a 
olle
tive nu
leardispla
ement : Z��;�� = 
0 �P����� ����E=0: (3.23)This standard de�nition of Z�, Eq. (3.23), emphasizes the response with respe
t to the
olle
tive nu
lear displa
ement. However, a thermodynami
al equality relates the ma
ro-s
opi
 polarization to the derivative of the ele
tri
 enthalpy ~E with respe
t to a homoge-neous ele
tri
 �eld. Similarly, another relationship 
onne
ts the for
es on the nu
lei to thederivative of the ele
tri
 enthalpy with respe
t to atomi
 displa
ements. Combining theseexpressions, Z� 
an be alternatively formulated, either as a mixed se
ond-order derivativeof the ele
tri
 enthalpy, Z��;�� = � �2 ~E�E����� ; (3.24)or as the derivative of the for
e felt by a nu
leus � with respe
t to an homogeneouse�e
tive ele
tri
 �eld E�, at zero atomi
 displa
ements :Z��;�� = �F�;��E� �������=0: (3.25)The three previous de�nitions { Eqs. (3.23), (3.24), and (3.25) { are formally equivalent.However, ea
h of them 
an provide a di�erent method the 
ompute the e�e
tive 
harges.A brief review of the most 
ommonly used �rst-prin
iples approa
hes for 
omputingthe Born e�e
tive 
harges has been reported in Ref. ( [169℄). Going beyond semi-empiri
alapproa
hes, ab initio te
hniques allow a

urate predi
tion of Z�(T ) in materials where itsamplitude is not ne
essarily dire
tly a

essible from the experiment. Going further, the�rst-prin
iples approa
hes are also o�ering a new opportunity to 
larify the mi
ros
opi
me
hanism modulating the amplitude of Z�(T ) without any preliminary hypothesis. Asit will be illustrated in the following se
tions, it reveals parti
ularly useful to understandthe origin of anomalously large Z�(T ) in ABO3 
ompounds.The results presented here have been obtained in the framework of the density fun
-tional formalism as des
ribed in Chapter 1. The ex
hange-
orrelation energy has beenevaluated within the lo
al density approximation, using a Pad�e parametrization [57℄ ofCeperley-Alder homogeneous ele
tron gas data [56℄. Integrals over the Brillouin-zonewere repla
ed by a sum on a mesh of 6 � 6 � 6 spe
ial k-points [71, 170℄ (10 points inthe irredu
ible Brillouin zone). The \all ele
tron" potentials were repla
ed by the sameab initio, separable, extended norm-
onserving pseudopotentials as in Ref. [135℄. Thewavefun
tions were expanded in plane waves up to a kineti
 energy 
uto� of 35 Hartree(about 4100 plane waves).As a se
ond derivative of the total energy, the Born e�e
tive 
harges have been de-du
ed from linear response 
al
ulations [42℄, using a variational formulation [43, 83, 84℄
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tive 
harges of BaTiO3 in the 
ubi
 stru
ture.Z�(T )Ba Z�(T )T i Z�(T )O? Z�(T )Ok Referen
eNominal +2 +4 �2 �2Experiment +2:9 +6:7 �2:4 �4:8 Ref. [133℄Models (Shell model) +1:63 +7:51 �2:71 �3:72 Ref. [120℄(SCAD model ) +2:9 +7:3 �2:2 �5:8 Ref. [174℄First-prin
iples (Linear response) +2:77 +7:25 �2:15 �5:71 Present(Berry phase) +2:75 +7:16 �2:11 �5:69 Ref. [136℄to the density fun
tional perturbation theory. The de
omposition of individual 
ontribu-tions from separate groups of o

upied bands has been performed following the s
hemedes
ribed in Ref. [169℄. The parameters used for the 
al
ulations guarantee a 
onvergen
ybetter than 0.5% on Z�(T ) as well as on ea
h of its band-by-band 
ontributions.3.5 The paraele
tri
 phase of ABO3 
ompounds3.5.1 Perovskite 
ompoundsThe Born e�e
tive 
harge tensors of perovskite ABO3 
ompounds have been at the 
enterof numerous investigations [134, 135, 136, 137, 138, 120, 171, 172, 101, 173℄. In the 
ubi
phase, they are fully 
hara
terized by a set of four independent numbers. The 
hargetensor of the A and B atoms is isotropi
 owing to the lo
al spheri
al symmetry at theatomi
 site. For oxygen, the lo
al environment is tetragonal and two independent elementsOk and O? must be 
onsidered, referring respe
tively to the 
hange of polarization indu
edby an atomi
 displa
ement parallel and perpendi
ular to the B-O bond. In Table 3.2, wesummarize the results obtained within di�erent approa
hes for the 
ubi
 phase of BaTiO3.The �rst reliable estimation of Z�(T ) in BaTiO3 is probably due to Axe [133℄, fromempiri
al �tting to experimental mode os
illator strengths 4. In ABO3 
ompounds, Z�(T )
annot be determined unambiguously from the experiment. However, within some realisti
hypothesis, Axe identi�ed the independent elements of the e�e
tive 
harges of BaTiO3 andalready pointed out their two essential features. First, the oxygen 
harge tensor is highlyanisotropi
. Se
ond, the 
harges on Ti and Ok 
ontain a large anomalous 
ontribution(i.e. an additional 
harge with respe
t to the nominal ioni
 value of +2 for Ba, +4 for Tiand -2 for O).Both these 
hara
teristi
s are 
on�rmed by the �rst-prin
iples 
al
ulations. Our ab4Let us mention that an early investigation of the Born e�e
tive 
harges of BaTiO3 was performed byLast in 1957 [175℄, but without identifying any anomaly. Another dis
ussion was reported in Ref. [176℄but without separating the respe
tive values of Z�(T ).
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tive 
harges of various ABO3 
ompounds in their 
ubi
 stru
ture.ABO3 Z�(T )A Z�(T )B Z�(T )Ok Z�(T )O? Referen
enominal 2 4 -2 -2CaTiO3 2.58 7.08 -5.65 -2.00 Ref. [136℄SrTiO3 2.56 7.26 -5.73 -2.15 Present2.54 7.12 -5.66 -2.00 Ref. [136℄2.55 7.56 -5.92 -2.12 Ref. [173℄2.4 7.0 -5.8 -1.8 Ref. [133℄BaTiO3 2.77 7.25 -5.71 -2.15 Present2.75 7.16 -5.69 -2.11 Ref. [136℄BaZrO3 2.73 6.03 -4.74 -2.01 Ref. [136℄PbTiO3 3.90 7.06 -5.83 -2.56 Ref. [136℄PbZrO3 3.92 5.85 -4.81 -2.48 Ref. [136℄nominal 1 5 -2 -2NaNbO3 1.13 9.11 -7.01 -1.61 Ref. [136℄KNbO3 0.82 9.13 -6.58 -1.68 Ref. [134℄1.14 9.23 -7.01 -1.68 Ref. [136℄1.14 9.37 -6.86 -1.65 Ref. [172℄nominal - 6 -2 -2WO3 - 12.51 -9.13 -1.69 Ref. [177℄initio results, 
omputed from linear response, are also in ex
ellent agreement with those ofZhong et al. [136℄, obtained from �nite di�eren
es of polarization. The 
harge neutralitysum rule, re
e
ting the numeri
al a

ura
y of our 
al
ulation, is ful�lled to within 0.02.We note that the values of Z�(T ) are also qualitatively reprodu
ed from a shell-model
al
ulation [120℄ and a

urately predi
ted within the SCAD model [174℄.The anomalous amplitude of the dynami
al 
harge, reported in this Se
tion, is nota spe
i�
 feature of BaTiO3. Similar 
omputations of Z�(T ) were performed on di�erentperovskite ABO3 
ompounds and they all reprodu
e the same 
hara
teristi
s than inBaTiO3. A non exhaustive list of these results is reported in Table 3.3. We observethat the 
hoi
e of the A atom has a rather limited in
uen
e on Z�(T )B and Z�(T )Ok , whi
happear 
losely related to the B atom. While the nominal ioni
 
harge of Ti and Zr is+4 in these 
ompounds, the Born e�e
tive 
harge is between +7:08 and +7:56 for Ti,and approximately equal to +6:03 for Zr. For Nb, the ioni
 
harge is +5, while the Borne�e
tive 
harge is between +9:11 and +9:37. Extending the investigations to WO3 in thereferen
e 
ubi
 phase (defe
t perovskite stru
ture), the ioni
 
harge on W is equal to +6,while the Born e�e
tive 
harge rea
hes the mu
h larger value of +12:51. For the 
lass ofperovskite ABO3 
ompounds, it 
an be 
he
ked that Z�(T )B evolves quasi linearly with thenominal 
harge of the B atom [177℄.For materials 
ontaining Pb, the previous 
onsiderations remain valid but there are
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on
erning Z�(T )A and Z�(T )O? . This feature is due to the more 
ovalentbonding of lead with oxygen that was illustrated in Ref. [98, 107℄. In what follows, wewill not be 
on
erned with these lead 
ompounds.3.5.2 Lithium niobateWe also 
al
ulated the Born e�e
tive 
harge tensors in LiNbO3. Table 3.4 summarizes theresults for Li1, Nb1 and the three O1, O2, O3 oxygen atoms. Due to the low symmetry,the full tensors must be 
onsidered. At the last line, we mention the eigenvalues of thesymmetri
 part of Z�O that are identi
al for all the oxygens. The labels of the atoms 
or-respond to those de�ned in Chapter 2. The tensors are reported in 
artesian 
oordinateswith z along the trigonal axis.Table 3.4: Born e�e
tive 
harges (in atomi
 units) of Nb1, Li1, O1, O2 and O3 in the twophases of lithium niobate. The last line gives the eigenvalues of the symmetri
 part of Z�O(identi
al for all the oxygens).paraele
tri
 phase ferroele
tri
 phaseLi1 1.15 0 0 1.19 -0.25 00 1.15 0 0.25 1.19 00 0 1.11 0 0 1.02Nb1 8.28 2.07 0 7.32 1.65 0-2.07 8.28 0 -1.65 7.32 00 0 9.17 0 0 6.94O1 -1.80 0 0 -1.62 0.31 -0.170 -4.48 2.46 0.23 -4.06 1.790 2.32 -3.43 -0.13 1.85 -2.66O2 -3.81 -1.16 -2.13 -3.22 -1.15 -1.46-1.16 -2.47 -1.23 -1.23 -2.46 -1.04-2.01 -1.16 -3.43 -1.53 -1.04 -2.66O3 -3.81 1.16 2.13 -3.68 0.96 1.631.16 -2.47 -1.23 0.88 -2.00 -0.752.01 -1.16 -3.43 1.67 -0.81 -2.66O (eig.) -6.40 -1.51 -1.80 -5.33 -1.41 -1.60Analysing the 
harges reported in Table 3.4, we observe that Z�Li is nearly isotropi
and that the diagonal elements have a value 
lose to the nominal 
harge of the lithium



CHAPTER 3 : IONIC CHARGES 55atom (+1). At the opposite, the amplitude of Z�Nb is highly anomalous in the sense thatit is signi�
antly larger than the nominal 
harge expe
ted in a purely ioni
 
rystal (+5).The niobium 
harge is slightly anisotropi
 with a signi�
antly di�erent value along thetrigonal axis. For the oxygen atoms, the anisotropy is mu
h stronger. This feature appears
learly form the inspe
tion of the tensor eigenvalues. The highest eigenvalue is stronglyanomalous (-6.4 for the paraele
tri
 phase, to be 
ompare to the nominal 
harge of -2)and the inspe
tion of the asso
iated eigenve
tor reveals that it is the 
harge asso
iatedto an oxygen displa
ement (nearly) along the Nb{O bond. In 
ontrast, the two othereigenvalues (asso
iated to oxygen displa
ement in the plane perpendi
ular to the Nb{Obond) are smaller than -2.Most of our observations on LiNbO3 are 
omparable to what has been reported forrelated perovskite 
ompounds like KNbO3 [101, 136℄ or NaNbO3 [136℄. For instan
e, theNb 
harge in the paraele
tri
 phase for a displa
ement along the Nb{O bond is respe
tivelyequal to 8.75, 9.11 and 9.23 in LiNbO3, NaNbO3 [136℄ and KNbO3 [136℄ while the Li, Naand K 
harges are equal respe
tively to 1.11, 1.13 and 1.14.3.5.3 Origin of the anomalous 
ontributionsThe approximate re
ipro
ity between Ok and B anomalous 
ontributions suggests thatthey should originate in a global transfer of 
harge between B and O atoms as des
ribed inSe
tion 3.3.2. In Ref. [132℄, Harrison had in fa
t already suggested the existen
e of giantBorn e�e
tive 
harges in perovskite materials. Being unaware of the earlier results of Axe,he had however no experimental eviden
e to 
orroborate his semi-empiri
al 
al
ulations.In Ref. [90℄, we report results obtained within the Harrison model (it follows themethod des
ribed for KCl in Ref. [132℄, p. 334.). For SrTiO3, from the universal tight-binding parameters of Harrison, we get a value of �8.18 for Z�(T )Ok , making plausible thegiant anomalous e�e
tive 
harges only by fo
using on the dynami
al 
hanges of hybridiza-tion between o

upied O 2s{O 2p states and the uno

upied metal d states. In BaTiO3,the hybridization between O 2p and Ti 3d orbitals is a well known feature, 
on�rmedby various sour
es (experiments [119, 113℄, LCAO 
al
ulations [117, 147, 148℄ and DFTresults [97, 98℄). In this 
ontext, it was therefore realisti
 to fo
us on O 2p - B d hy-bridization 
hanges to explain intuitively large anomalous 
ontributions [136℄.At the opposite, it may therefore appear surprizing that model 
al
ulations whi
h donot expli
itly in
lude transfers of 
harges are able to predi
t 
orre
tly the amplitude ofthe Born e�e
tive 
harges. For instan
e, in Table I, we observe that the values of Z�(T )are qualitatively reprodu
ed by a shell-model 
al
ulation [120℄. A similar agreementbetween ab initio and shell model results was highlighted for KNbO3 [178℄. In both 
ases,the 
al
ulation was performed within the \polarizability model" introdu
ed by Bilz etal. [23℄, whi
h in
ludes an anisotropi
 and non-linear polarizability of the O atoms. Inthe same spirit, at the level of the SCAD model, the Born e�e
tive 
harges are a

uratelyreprodu
ed while there is no expli
it transfer of ele
trons between the di�erent atomi
sites. As dis
ussed in Se
tion 3.3, antagonist models 
an be invoked to explain the originof anomalous 
ontributions as soon as they globally reprodu
e a similar displa
ement of
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enter of the valen
e 
harge distribution. What appears as a ma
ros
opi

urrent along the Ti{O 
hain within the BOM shows itself as an unusual polarizability ofthe oxygen atoms within the shell model.It was not possible to dis
riminate unambiguously between lo
alized and delo
alizedmodel until Posternak et al. [138℄ proposed a 
onvin
ing proof of the 
ru
ial role of\o�-site" hybridizations. Based on �rst-prin
iples 
al
ulations, they demonstrated forKNbO3 that the anomalous 
ontribution to the 
harge of Nb and Ok disappears if thehybridization between O 2p and Nb 4d orbitals is arti�
ially suppressed. In a similar spirit,the inspe
tion of the Wannier fun
tions of BaTiO3 and the analysis of their deformationunder an atomi
 displa
ement reported by Marzari and Vanderbilt [179℄ 
on�rm thepredominant role played by the Ti 3d orbitals and the explanation introdu
ed by Harrison.In Chapter 4, we will see that the evolution of the ele
tron lo
alization tensor at the phasetransition is also in favor of o�-site hybridization.In the next Se
tion, we propose a band-by-band de
omposition of the Born e�e
tive
harges [137, 120℄. This te
hnique appears as a tool of paramount importan
e to 
larifythe mi
ros
opi
 origin of anomalous 
ontributions. Identifying the dynami
al transfer of
harges without any preliminary hypothesis on the orbitals that intera
t, it will allow togeneralize the basi
 me
hanism that was proposed by Harrison.3.6 Identi�
ation of dynami
al 
hanges of hybridiza-tionIn ABO3 
ompounds, the ele
troni
 band stru
ture is 
omposed of well separated setsof bands. The hybridizations between the orbitals of the di�erent atoms are relativelysmall and ea
h band 
an be identi�ed by the name of the main atomi
 orbital whi
h
ontributes to this energy level in the solid. The Born e�e
tive 
harge is de�ned bythe 
hange of polarization asso
iated to a spe
i�
 atomi
 displa
ement. Our purposewill be to identify the 
ontribution of ea
h well separated set of bands to this 
hange ofpolarization [137, 120℄.3.6.1 Referen
e 
on�gurationIn Ref. [169℄, we have des
ribed how band-by-band 
ontributions to Z�(T ) 
an be separatedfrom ea
h others. Moreover, it has been demonstrated that the 
ontribution to Z�(T )�;��from a single o

upied band n 
an be interpreted as a 
hange of polarization 
o�P� =�2:
o�d� where �d� is the displa
ement in dire
tion � of the Wannier 
enter of band n,indu
ed by the unitary displa
ement of the sublatti
e of atoms � in dire
tion �.In order to understand the origin of the displa
ement of the Wannier 
enter of ea
hband, it is helpful to de�ne a referen
e 
on�guration that 
orresponds to what we wouldexpe
t in a purely ioni
 material. In su
h �
titious material, ea
h band would be 
omposedof a single non-hybridized orbital and the Wannier 
enter of ea
h band would be 
enteredon a given atom. In absen
e of any hybridization, when displa
ing a given sublatti
e of
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enter of the bands 
entered on the moving atoms would remain
entered on it, while the position of the 
enter of gravity of the other bands would remainuna�e
ted. The 
ontributions of these two kinds of bands to Z�(T )� would therefore be �2and 0 ele
trons, respe
tively.In the real material, the anomalous 
ontribution of a parti
ular band m to a givenatom � is de�ned as the additional part with respe
t to the referen
e value expe
ted inabsen
e of any hybridization: it re
e
ts how the Wannier 
enter of band m is displa
edrelatively to the atoms when the sublatti
e � moves 5. Considering ea
h band as a 
om-bination of atomi
 orbitals, su
h a displa
ement of the Wannier 
enter of a band withrespe
t to its referen
e position must be attributed to hybridization e�e
ts: it is asso
i-ated to the admixture of a new orbital 
hara
ter to the band. When the orbitals whi
hintera
t are lo
ated on di�erent atoms (\o�-site" hybridization), the dynami
al 
hangesof hybridization 
an be visualized as transfers of 
harge. If the intera
ting orbitals are onthe same atom (\on-site" hybridization), the me
hanism mu
h looks like a polarizability.Rigorously, our band-by-band de
omposition is performed within DFT and formallyonly 
on
erns the Kohn-Sham parti
les. It seems however that the results are ratherindependent of the one-parti
le s
heme [180℄ used for the 
al
ulation so that the resultspresented here should give a good insight on the physi
s of the ABO3 
ompounds.3.6.2 BaTiO3Let us �rst apply the band-by-band de
omposition to barium titanate. The band stru
tureof BaTiO3 has been dis
ussed in Chapter 2 (Fig. 2.10). Results of the de
omposition ofZ�(T ) in the theoreti
al 
ubi
 stru
ture of BaTiO3 are reported in Table 3.5. The �rstline (Z�) brings together the 
harge of the nu
leus and 
ore ele
trons in
luded in thepseudopotential. The other 
ontributions 
ome from the di�erent valen
e ele
tron levels.The sum of the band-by-band 
ontributions on one atom is equal to its global e�e
tive
harge while the sum of the 
ontributions to a parti
ular band from the di�erent atomsis equal to �2 (within the a

ura
y of the 
al
ulation), the o

upan
y of this band.Fo
using �rst on the titanium 
harge, we observe that the Ti 3s 
ontribution (�2:03)is 
lose to �2, 
on�rming that the Ti 3s ele
trons follow the Ti atom when moving,independently from the 
hange of its surrounding. At the opposite, it is shown thatthe giant anomalous 
harge of titanium essentially 
omes from the O 2p bands (+2:86).It 
orresponds to a displa
ement of the Wannier 
enter of the O 2p bands in oppositedire
tion to the displa
ement of the Ti atom. This observation is in perfe
t agreementwith the Harrison model: it 
an be understood by dynami
al 
hanges of hybridizationbetween O 2p and Ti 3d orbitals, produ
ing a transfer of ele
tron from O to Ti when theTi-O distan
e shortens. This explanation was 
on�rmed re
ently from the inspe
tion ofthe O 2p Wannier fun
tions [179℄. Beyond the previous observations, we note however5Depending from the stru
ture and from the intera
tions, the initial position of the ele
tron Wannier
enter is not ne
essarily on an atom. However, in the 
ubi
 perovskite stru
ture, symmetry imposes tothe Wannier 
enters to be lo
ated on an atom so that the anomalous 
ontribution exa
tly des
ribes thedispla
ement from su
h a 
entered position.
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omposition of Z�(T ) in the optimized 
ubi
 phase of BaTiO3.The 
ontributions have been separated into a referen
e value and an anomalous 
harge(see text). Band Z(T )Ba Z(T )T i Z(T )O? Z(T )Ok TotalZ� +10:00 +12:00 +6:00 +6:00 +40Ti 3s 0 + 0:01 �2� 0:03 0 + 0:00 0 + 0:02 �2:00Ti 3p 0 + 0:02 �6� 0:22 0� 0:02 0 + 0:21 �6:03Ba 5s �2� 0:11 0 + 0:05 0 + 0:02 0 + 0:01 �2:01O 2s 0 + 0:73 0 + 0:23 �2� 0:23 �2� 2:51 �6:01Ba 5p �6� 1:38 0 + 0:36 0 + 0:58 0� 0:13 �5:99O 2p 0 + 1:50 0 + 2:86 �6� 0:50 �6� 3:31 �17:95Total +2:77 +7:25 �2:15 �5:71 +0:01that there are also small anomalous 
harges from the Ti 3p, O 2s and Ba 5p bands.These 
ontributions are not negligible. The positive anomalous 
harges 
orrespond to adispla
ement of the 
enter of the Wannier fun
tion of the O and Ba bands in the dire
tionof the 
losest Ti when this atom has moved. Some of these features go beyond the Harrisonmodel, within whi
h anomalous 
ontributions to Z�(T )T i in Table 3.5 would be restri
tedto the O 2p and O 2s bands. They suggest other kind of hybridization 
hanges, that willbe now more expli
itly investigated.Fo
using on barium, the global anomalous e�e
tive 
harge (+0:77) is small 
omparedto that of Ti and this feature was �rst attributed to its more ioni
 
hara
ter [136℄. Thisioni
ity is inherent to the Harrison model [132℄ and was 
on�rmed in some ab initiostudies [98, 107℄. Surprisingly, our de
omposition reveals however that the anomalous
harges of the O 2s (+0:73) and O 2p (+1:50) bands are not small at all. They arenevertheless roughly 
ompensated by another Ba 5s (+0:11)and Ba 5p (+1:38) anomalous
ontributions. This result suggests that there are dynami
al 
hanges of hybridizationbetween Ba and O orbitals as it was the 
ase between O and Ti, ex
ept that the me
hanismis here restri
ted to o

upied states. This basi
ally 
orresponds to a unitary transformwithin the subspa
e of the o

upied states whi
h is unable to displa
e the global Wannier
enter of the valen
e 
harge. Our result so supports the hybridization of Ba orbitals,in agreement with experiment [119, 113℄, LCAO 
al
ulations [147, 148℄ and DFT [97℄
omputations. Similar 
ompensating 
ontributions were re
ently observed in ZnO whi
hhas 
onventional Born e�e
tive 
harges [180℄ and in a series of alkaline-earth oxides [181℄.We note that a 
onfusion sometimes appears that should be removed: the amplitude ofthe anomalous 
ontributions to Z�(T ) is not related to the amplitude of the hybridizationsbut to the rate of 
hange of these hybridizations under atomi
 displa
ements. It is 
learthat, in BaTiO3, the Ba 5p 
ontribution to the O 2p bands is smaller than the 
ontributionfrom the Ti 3d orbitals [97, 98℄. However, the high sensitivity of this relatively weak
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ovalent 
hara
ter under atomi
 positions is suÆ
ient to produ
e large band by bandanomalous 
ontributions to Z�(T ). From that point of view, the Born e�e
tive 
hargeappears therefore as a sensitive tool to identify the presen
e of even small hybridizations.Finally, 
on
erning the oxygen, even if Ok and O? are de�ned respe
tively for a dis-pla
ement of O in the Ti and Ba dire
tion, it seems only qualitative to asso
iate Z�(T )Ok withZ�(T )T i and Z�(T )O? with Z�(T )Ba as suggested in Ref. [136℄. The O 2p anomalous 
ontributionsto Ti and Ok do not exa
tly 
ompensate. Moreover, O 2p 
ontribution to Z�(T )Ba does not
ome from O? only but has equivalent 
ontributions from Ok. This seems to 
on�rm theidea of Bennetto and Vanderbilt [168℄ that in 3D materials, transfers of 
harges are notne
essarily restri
ted to a parti
ular bond, but is a rather 
omplex me
hanism that mustbe treated as a whole.To summarize, our study has 
lari�ed the mixed ioni
-
ovalent 
hara
ter of BaTiO3:it 
learly establishes that the 
ovalent 
hara
ter is not restri
ted to the Ti-O bond butalso partly 
on
erns the Ba atom. Moreover, it leads to a more general issue. It illustratesthat the presen
e of a large anomalous 
harge requires a modi�
ation of the intera
tionsbetween o

upied and uno

upied ele
troni
 states. The 
ontributions originating from the
hange of the intera
tions between two o

upied states 
orrespond to unitary transformswithin the subspa
e of the valen
e 
harge : they 
ompensate, and do not modify the globalvalue of Z�(T ).3.6.3 SrTiO3The same analysis is now performed on SrTiO3. Its band stru
ture (Fig. 3.3) is verysimilar to that of BaTiO3, ex
ept that the Ti 3p and Sr 4s bands are energeti
ally very
lose to ea
h others. Consequently, they strongly mix and it should be relatively mean-ingless to separate their respe
tive 
ontributions. The Sr 4p and O 2s states are in thesame energy region but 
an be separated, 
ontrary to what was observed in a study ofSrO [181℄.
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omposition of Z�(T ) in the experimental 
ubi
 phase ofSrTiO3. The 
ontributions have been separated into a referen
e value and an anomalous
harge (see text).Band Z(T )Sr Z(T )T i Z(T )O? Z(T )Ok TotalZ� +10:00 +12:00 +6:00 +6:00 +40Ti 3s 0 + 0:01 �2� 0:03 0 + 0:00 0 + 0:03 �1:99Sr 4sTi 3p o �2 + 0:02 �6� 0:18 0� 0:03 0 + 0:23 �7:99O 2s 0 + 3:08 0 + 0:02 �2� 1:31 �2� 0:48 �6:00Sr 4p �6� 3:11 0 + 0:37 0 + 1:42 0� 0:10 �6:00O 2p 0 + 0:56 0 + 3:08 �6� 0:12 �6� 3:41 �18:01Total +2:56 +7:26 �2:15 �5:73 +0:01The result of the de
omposition is very similar (Table 3.6) to that reported for BaTiO3.There is still a giant 
ontribution to Z�(T )T i from the O 2p bands. On the other hand, whilethe Ba 5p bands were approximately 
entered between O 2s and O 2p bands in BaTiO3,the Sr 4p ele
trons are 
loser to the O 2s bands and mainly hybridize with them in SrTiO3.This phenomenon produ
es large but 
ompensating 
ontributions from Sr 4p and O 2sbands to Z�(T )Sr . Su
h an evolution is in agreement with the pi
ture that anomalous
ontributions originate from o�-site orbital hybridization 
hanges.3.6.4 LiNbO3In spite of its di�erent stru
ture, the amplitude of the e�e
tive 
harges in LiNbO3 
anbe explained following the same line of thought as for perovskite 
ompounds. The Liatom is 
lose to a fully ionized 
on�guration and only 
arries its nominal 
harge. At theopposite, there is a partly 
ovalent intera
tion between Nb and O whi
h is responsiblefor their anomalous e�e
tive 
harges and for the strong anisotropy of the oxygen tensor.During an atomi
 displa
ement, the parameters that determine the 
ovalent intera
tionsbetween the Nb 4d and O 2p atomi
 orbitals (the hopping integrals) vary. This variationprodu
es a dynami
al 
harge transfer between the niobium and the oxygen atoms whi
his at the origin of the anomalous part of Z�Nb and Z�O.The essential role played by the O 2p bands 
an be emphasized from the analysisof the 
ontribution of the di�erent isolated sets of bands (as identi�ed in Figure 2.10)to the global niobium 
harge. The results of the de
omposition for the Nb 
harge aresummarized in Table 3.7. The full tensor is 
onsidered. The �rst line (Z
ore) bringstogether the nu
leus and 
ore ele
trons 
ontributions. The last line 
orresponds to thetotal 
harge. The se
ond 
olumn refers to the isotropi
 nominal value that would beexpe
ted in a purely ioni
 
ompound.
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Table 3.7: Band by band de
omposition of the Born e�e
tive 
harge of the niobium atom(LDA 
al
ulation).Bands Nominal paraele
tri
 phase ferroele
tri
 phaseZ
ore 13.00 13.00 0 0 13.00 0 00 13.00 0 0 13.00 00 0 13.00 0 0 13.00Nb 4s -2.00 -2.04 0.03 0.00 -2.06 0.02 0.00-0.03 -2.04 0.00 -0.02 -2.06 0.000.00 0.00 -2.02 0.00 0.00 -2.04Li 1s 0.00 0.01 -0.01 0.00 0.01 -0.00 0.000.01 0.01 0.00 0.00 0.01 0.000.00 0.00 0.00 0.00 0.00 0.00Nb 4p -6.00 -6.42 -0.06 0.00 -6.49 -0.05 0.000.06 -6.42 0.00 0.05 -6.49 0.000.00 0.00 -6.37 0.00 0.00 -6.35O 2s 0.00 0.57 0.09 0.00 0.60 0.10 0.00-0.09 0.57 0.00 -0.10 0.60 0.000.00 0.00 0.58 0.00 0.00 0.50O 2p 0.00 3.14 1.89 0.00 2.25 1.45 0.00-1.89 3.14 0.00 -1.45 2.25 0.000.00 0.00 3.89 0.00 0.00 1.71Total 5.00 8.26 2.07 0.00 7.30 1.62 0.00-2.07 8.26 0.00 -1.62 7.30 0.000.00 0.00 9.08 0.00 0.00 6.83



CHAPTER 3 : IONIC CHARGES 62Fo
using �rst on the deep Nb 4s and Li 1s levels, we do not identify any signi�
antanomalous 
ontribution, in agreement with the fa
t that these ele
trons do not parti
ipateto the bonding. To the 
ontrary, the anomalous O 2p 
ontribution is very large and mainlyresponsible for the total anomalous 
harge. This 
an be explained by dynami
al 
hangesof the Nb 4d orbital 
ontribution to the O 2p bands produ
ing a dynami
al transfer ofele
trons from O to Nb when the Nb{O distan
e shortens. We note �nally small and
ompensating anomalous 
ontributions at the level of the Nb 4p and O 2s bands : theyreveal the existen
e of hybridizations between these levels.3.6.5 Other examplesFrom the two previous results that 
on
ern ferroele
tri
 materials, it might be suggestedthat not only the dynami
al hybridization of the valen
e bands with uno

upied d-statesbut also the parti
ular stru
ture of ABO3 
ompounds plays a major role in determiningZ�(T ). For instan
e, the anomalous 
harge 
ould partly originate in the lo
al �elds at theatomi
 sites, known to be anomalously large at least in this 
ubi
 perovskite stru
ture [15℄It is interesting to observe that anomalous 
harges are not restri
ted to ferroele
tri
solids but were also dete
ted in a series of alkaline-earth oxides of ro
ksalt stru
ture (CaO,SrO, BaO) [182, 181℄ or even Al2Ru [183, 184℄, all examples where the uno

upied d-statesseem to play a major role. Interestingly, two materials belonging to the same stru
ture
an present 
ompletely di�erent 
harges. This was illustrated for the 
ase of TiO2 rutileand SiO2 stishovite [185, 186℄: while relatively 
onventional 
harges were observed on Si(+4.15) and O (-2.46) along the Si-O bond in stishovite, giant e�e
tive 
harges, similarto those of BaTiO3, were obtained on Ti (+7.33) and O (-4.98) along the Ti-O bond inrutile. Similarly, no anomalous 
harge was reported for MgO (Z�(T )O = �2:07), presentingthe same ro
ksalt stru
ture than BaO (Z�(T )O = �2:80) [181℄. In the same spirit, the sameatom in di�erent environments 
an present similar dynami
al 
harge, as illustrated forZ�(T )T i in BaTiO3 and TiO2 [186℄, or for Z�(T )Zr in BaZrO3 [136℄ and ZrO2 [187℄. Also, inthe family of ABO3 
ompounds, giant e�e
tive 
harges are observed on Ti in CaTiO3(Z�(T )T i = 7:08, [136℄) but not on Si in CaSiO3 (Z�(T )Si = 4:00, [188℄).We observe that the presen
e of partly hybridized d-states seems the only 
ommonfeature between the materials presenting giant anomalous e�e
tive 
harges, listed up todate. This feature �nds a basi
 justi�
ation within the BOM of Harrison: the intera
tionparameters involving d-states are indeed mu
h more sensitive to the interatomi
 distan
ethan those involving, for example, s and p orbitals [132℄: They will therefore be asso
iatedto larger dynami
al transfers of 
harge and will generate higher Z�(T ).3.7 Sensitivity of Z�(T ) to stru
tural featuresIn the litterature, 
al
ulations of Z�(T ) essentially fo
used on the 
ubi
 phase of ABO3
ompounds [134, 135, 136, 137, 138, 120, 171, 172℄. On the basis of an early studyof KNbO3 [134℄, it was 
on
luded that the Born e�e
tive 
harges are independent of the
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tive 
harges in the three ferroele
tri
 phases of BaTiO3. Tensors arereported in 
artesian 
oordinates, with the z-axis along the ferroele
tri
 dire
tion. For Baand Ti, the tensors are diagonal and only the prin
ipal elements are mentioned. For O,full tensors are reported. The eigenvalues of the symmetri
 part of Z�(T ) are mentionedin bra
kets; the eigenve
tor asso
iated to the highest eigenvalue approximately points inthe Ti dire
tion. In the 
ubi
 phase, we had: Z�(T )T i = 7:29, Z�(T )Ba = 2:74, Z�(T )Ok = �5:75and Z�(T )O? = �2:13.Tetragonal Orthorhombi
 RhombohedralZ�(T )Ba ( +2:72 +2:72 +2:83 ) ( +2:72 +2:81 +2:77 ) ( +2:79 +2:79 +2:74 )Z�(T )Ti � +6:94 +6:94 +5:81 � � +6:80 +6:43 +5:59 � � +6:54 +6:54 +5:61 �Z�(T )O1 0� �1:99 0 00 �1:99 00 0 �4:73 1A 0� �2:04 0 00 �3:63 +1:380 +1:57 �3:17 1A 0� �2:54 �0:99 +0:63�0:99 �3:68 +1:09+0:72 +1:25 �2:78 1A[ �1:99 �1:99 �4:73 ℄ [ �1:91 �2:04 �4:89 ℄ [ �1:97 �1:98 �5:05 ℄Z�(T )O2 0� �2:14 0 00 �5:53 00 0 �1:95 1A 0� �2:04 0 00 �3:63 +1:380 +1:57 �3:17 1A 0� �2:54 +0:99 +0:63+0:99 �3:68 �1:09+0:72 �1:25 �2:78 1A[ �1:95 �2:14 �5:53 ℄ [ �1:91 �2:04 �4:89 ℄ [ �1:97 �1:98 �5:05 ℄Z�(T )O3 0� �5:53 0 00 �2:14 00 0 �1:95 1A 0� �5:44 0 00 �1:97 00 0 �2:01 1A 0� �4:25 0 �1:260 �1:97 0�1:44 0 �2:78 1A[ �1:95 �2:14 �5:53 ℄ [ �1:97 �2:01 �5:44 ℄ [ �1:97 �1:98 �5:05 ℄ioni
 ferroele
tri
 displa
ements (i.e. they remain similar in the di�erent phases). Anotherinvestigation in the tetragonal phase of KNbO3 and PbTiO3 [136℄, seemed to 
on�rm thatZ�(T ) are quite insensitive to stru
tural details.These results were surprising if we remember that anomalous 
ontributions to Z�(T )are 
losely related to orbital hybridizations, these in turn, well known to be stronglya�e
ted by the phase transitions [98, 107℄. We will see in this Se
tion that, 
ontrary towhat was �rst expe
ted, Born e�e
tive 
harges in BaTiO3 are strongly dependent of thestru
tural features.We �rst investigate the sensitivity of the Born e�e
tive 
harges to the ferroele
tri
atomi
 displa
ements [120℄. For that purpose, we 
ompute Z�(T ) in the three ferroele
tri
phases at the experimental unit 
ell parameters, with relaxed atomi
 positions as reportedin Chapter 2. Table 3.8 summarizes the results for a 
artesian set of axis where the z-
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Figure 3.4: Born e�e
tive 
harge of Ti atoms in the dire
tion of the shortest Ti-O bondlength (dmin) as a fun
tion of this interatomi
 distan
e, for the 
ubi
 (square), tetragonal(lozenge), orthorhombi
 (
ir
le) and rhombohedral (triangle) phases.axis points in the ferroele
tri
 dire
tion. The Ba and Ti 
harge tensors are diagonalin ea
h phase for this parti
ular 
hoi
e. In the 
ase of O, we note the presen
e of asmall asymmetri
 
ontribution for the lowest symmetry phases. The eigenvalues of thesymmetri
 part of the tensor are also reported. In ea
h phase, the eigenve
tor asso
iatedto the highest eigenvalue of O approximately points in the Ti-O dire
tion and allows toidentify the highest 
ontribution as Ok. The other eigenvalues 
an be referred to as O?,by analogy with the 
ubi
 phase.Although the 
harges of Ba and O? remain globally un
hanged in the 4 phases, strongmodi�
ations are observed for Ti and Ok: for example, 
hanging the Ti position by 0.076�A(2% of the unit 
ell length) when going from the 
ubi
 to the rhombohedral phase, redu
esthe anomalous part of Z�(T )T i by more than 50% along the ferroele
tri
 axis (Table 3.8).Equivalent evolutions are observed in the other ferroele
tri
 phases. Similar 
hanges weredete
ted in KNbO3 [101℄ as well as in LiNbO3 (see Table 3.4) in spite of its di�erentstru
ture.In the isotropi
 
ubi
 stru
ture, Harrison had explained the large value of Z�(T ) interms of the Ti-O bond length. For the anisotropi
 ferroele
tri
 phases, it should beintuitively expe
ted that the shortest Ti-O distan
e dmin in the stru
ture will dominatethe bonding properties. It is therefore tempting to transpose the Harrison model tounderstand the evolution of Z�(T ) in terms of the distan
e dmin. In Fig. 3.4, the amplitudeof Z�(T )T i in the dire
tion of the shortest Ti-O bond length of ea
h phase is plotted withrespe
t to dmin. A similar graph 
an be obtained for O. For the di�erent phases, atthe experimental latti
e parameters, we observe that the anomalous parts evolve quasilinearly with dmin.Independently from the previous 
al
ulations, we also investigated the evolution ofZ�(T ) under isotropi
 pressure (Table 3.9). In 
ontrast with the 
hanges observed with



CHAPTER 3 : IONIC CHARGES 65Table 3.9: Evolution of the Born e�e
tive 
harges of BaTiO3 under isotropi
 pressure inthe 
ubi
 phase. ao (�A) Z�(T )Ba Z�(T )T i Z�(T )O? Z�(T )Ok3.67 +2:95 +7:23 �2:28 �5:613.94 +2:77 +7:25 �2:15 �5:714.00 +2:74 +7:29 �2:13 �5:754.40 +2:60 +7:78 �2:03 �6:31respe
t to the atomi
 displa
ements, the 
harge appears essentially insensitive to isotropi

ompression. In parti
ular, in the 
ompressed 
ubi
 
ell at 3.67 �A where the Ti-O distan
eis the same as the shortest Ti-O bond length in the tetragonal stru
ture 6, Z�(T )T i remainsvery 
lose to its value at the optimized volume. This new element 
learly invalidates theexpe
ted dependen
e from Z�(T ) to dmin.The fundamental di�eren
e between the 
ubi
 and tetragonal stru
tures lies in thefa
t that in the 
ubi
 phase every Ti-O distan
e is equal to the others, while in thetetragonal phase, along the ferroele
tri
 axis, a short Ti-O bond length (dmin) is followedby a larger one (dmax) whi
h breaks the Ti-O 
hain in this dire
tion. In order to verifythat it is not this large Ti-O distan
e whi
h, alternatively to dmin, is suÆ
ient to inhibitthe giant 
urrent asso
iated to the anomalous 
harges, we also performed a 
al
ulationin an expanded 
ubi
 phase where ao = 2:dmax: we observe however that the Ti 
harge iseven larger than in the optimized 
ubi
 phase.We 
on
lude from the previous investigations that the amplitude of Z�(T ) in BaTiO3is not dependent on a parti
ular interatomi
 distan
e (dmin, dmax) but is more 
riti
allya�e
ted by the anisotropy of the Ti environment along the Ti{O 
hains. In agreement withthis pi
ture, Wang et al. [101℄ reported re
ently an insensitivity of Z�(T ) to a tetragonalma
ros
opi
 strain in KNbO3. Also, the 
harges reported by Bellai
he et al. [189℄ in mixeda 
ompound as PZT, where the ioni
 environment be
omes anisotropi
, seem to 
on�rmour results.A band by band de
omposition of Z�(T )T i (Table 3.10) points out that the di�eren
ebetween the 
ubi
 and tetragonal phases is essentially lo
alized at the level of the O2p bands (+1.48 instead of +2.86) while the other 
ontributions remain very similar.This suggests an intuitive explanation. In the 
ubi
 phase the O 2p ele
trons are widelydelo
alized and dynami
al transfers of 
harge 
an propagate along the Ti-O 
hain assuggested by Harrison. In the tetragonal phase, the Ti-O 
hain behaves as a sequen
eof Ti-O dimers for whi
h the ele
trons are less polarizable. This smaller polarizability is
on�rmed by a similar redu
tion of the opti
al diele
tri
 
onstant along the ferroele
tri
6In the tetragonal phase, shortened and elongated Ti{O bonds alternate along the ferroele
tri
 axis.The shortened bond 
orresponds to an interatomi
 distan
e of 3.67 �A in our optimized tetragonal stru
-ture.



CHAPTER 3 : IONIC CHARGES 66Table 3.10: Band by band de
omposition of Z�(T )T i in di�erent stru
ture of BaTiO3. The
ontributions have been separated into a referen
e value and an anomalous 
harge (seetext).Band Z�(T )T i Z�(T )T i Z�(T )T i Z�(T )T i(
ubi
 - 3.67 �A) (
ubi
 - 3.94 �A) (tetragonal - exp) (
ubi
 - 4.40 �A)Z� +12:00 +12:00 +12:00 +12:00Ti 3s �2� 0:07 �2� 0:03 �2� 0:05 �2 + 0:01Ti 3p �6� 0:43 �6� 0:22 �6� 0:26 �6� 0:07Ba 5s 0 + 0:09 0 + 0:05 0 + 0:05 0 + 0:02O 2s 0 + 0:27 0 + 0:23 0 + 0:25 0 + 0:19Ba 5p 0 + 0:64 0 + 0:36 0 + 0:34 0 + 0:13O 2p 0 + 2:73 0 + 2:86 0 + 1:48 0 + 3:50Total +7:23 +7:25 +5:81 +7:78dire
tion. This analysis seems plausible from the Wannier fun
tion analysis reported byMarzari and Vanderbilt [179℄.We note that a behavior similar to the perovskite is observed in LiNbO3, even if theexplanation is not so straightforward due to its more 
omplex stru
ture : In Table 3.7,the redu
tion of the Nb 
harge at the phase transition originates in a neat de
rease of theO 2p 
ontribution.Finally, let us mention that if the evolution of Z�(T ) is relatively weak under isotropi
pressure, it would be wrong to 
onsider that the dynami
al properties of BaTiO3 areinsensitive to the volume: small 
hanges are observed that are of the same order ofmagnitude than for other 
ompounds like SiC [190, 191℄. The dire
tion of the evolutionis however di�erent. Moreover, the evolution of the di�erent 
harges is even not identi
al:while the absolute value of Z�(T )Ba and Z�(T )O? de
reases with in
reasing volume, the inversebehaviour is observed for Z�(T )T i and Z�(T )Ok .Here also, the band by band de
omposition (Table 3.11) reveals some hidden features.In the 
ompressed 
ubi
 phase, the anomalous part of the Ba 5p , Ba 5s and Ti 3pbands are 50% larger than in the optimized 
ubi
 
ell. This suggests an evolution of theintera
tions between o

upied orbitals that is 
oherent with the modi�
ation of the inter-atomi
 short-range for
es observed independently [53℄. At the opposite, in our expanded
ubi
 phase, most of the anomalous 
ontributions to Z�(T )Ba and Z�(T )T i have disappearedin agreement with the pi
ture of a more ioni
 material. The O 2p 
ontribution, is theonly one that remains surprisingly large. Comparing to the value obtained for the 
ubi
phase at the experimental volume, its evolution was even more important than the lineardependen
e upon the bond length, expe
ted from the Harrison model.



CHAPTER 3 : IONIC CHARGES 67Table 3.11: Band by band de
omposition of Z�(T )Ba in the optimized 
ubi
 phase of BaTiO3and in an expanded 
ubi
 stru
ture. The 
ontributions have been separated into a refer-en
e value and an anomalous 
harge (see text).Band Z�(T )Ba Z�(T )Ba(
ubi
 - 3.94 �A) (
ubi
 - 4.40 �A)Z� +10:00 +10:00Ti 3s 0 + 0:01 0� 0:01Ti 3p 0 + 0:01 0 + 0:01Ba 5s �2� 0:11 �2 + 0:00O 2s 0 + 0:73 0 + 0:37Ba 5p �6� 1:38 �6� 0:44O 2p 0 + 1:50 0 + 0:66Total +2:77 +2:593.8 Spontaneous polarizationThe spontaneous polarization (Ps) of the ferroele
tri
 phases 
an be determined by in-tegrating the 
hange of polarization along the path of atomi
 displa
ement from theparaele
tri
 
ubi
 phase (taken as referen
e) to the 
onsidered ferroele
tri
 stru
ture. Ifthe e�e
tive 
harges were roughly 
onstant, this integration should be approximated by:Ps;� = 1
o X�;� Z�(T )�;�� Æ��;� (3.26)However, we have seen, in the previous Se
tion, that the Born e�e
tive 
harges are stronglya�e
ted by the atomi
 displa
ements. It is therefore important to investigate their evolu-tion all along the path of atomi
 displa
ements from one stru
ture to the other.We performed the 
al
ulation for a transformation from the 
ubi
 to the rhombohedralstru
ture. The rhombohedral ma
ros
opi
 strain is very small and was negle
ted 7 :our 
al
ulation was performed by displa
ing the atoms to their theoreti
ally optimizedposition in rhombohedral symmetry, when keeping the 
ubi
 latti
e parameters. Theresult is reported in Figure 3.5, for Z�(T )T i along the ferroele
tri
 dire
tion. A similar
urve 
an be obtained for Z�(T )Ok . We observe that the evolution of Z�(T ) is approximatelyquadrati
 
lose to the 
ubi
 phase. However, it be
omes rapidly linear, and remains linearfor displa
ements even larger than those asso
iated to the ferroele
tri
 distortion.7The Born e�e
tive 
harges obtained for the rhombohedral stru
ture when negle
ting the strain (i.e. when keeping a 
ubi
 unit 
ell) are the following: Z�(T )Ba;11 = +2:79, Z�(T )Ba;33 = +2:79, Z�(T )Ti;11 = +6:54,Z�(T )Ti;33 = +5:61, Z�(T )O;? = �1:97, Z�(T )O;k = �5:05. These values must be 
ompared to those reported inTable 3.8, where the rhombohedral strain was taken into a

ounts. It 
an be 
he
ked that the e�e
t ofthis strain is negligible.
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tion all along thepath of atomi
 displa
ements from the 
ubi
 (� = 0) to the rhombohedral (� = 1) phase.The distortion of the 
ubi
 
ell has been negle
ted.Expe
ting a similar evolution of the dynami
al 
harges for the tetragonal and or-thorhombi
 displa
ements, an estimation of the spontaneous polarization in the ferroele
-tri
 phases 
an be found when using Eq. (3.26) with a mean e�e
tive 
harge determinedfrom its value in both phases. Using a mean 
harge estimated from the values in the para-and ferro-ele
tri
 phases, we obtain the spontaneous polarizations presented in Table 3.12.Our results are only in relative agreement with the experiment [192, 139℄ and suggestdi�erent 
omments. Firstly, we would like to mention that part of the dis
repan
y mustbe assigned to the theoreti
al overestimation of the 
omputed ferroele
tri
 displa
ements,dis
ussed in Chapter 2 : when using the experimental displa
ements of Ref. [105℄, were
over a better estimation of Ps as in Ref. [136℄. The dispersion of X-rays di�ra
tiondata makes however diÆ
ult the exa
t identi�
ation of the ferroele
tri
 displa
ements.Se
ondly, another part of the error 
ould be due to the la
k of polarization dependen
e ofthe LDA [193℄. Finally, we note that there is also some un
ertainty on the experimentalvalue of Ps.3.9 Con
lusionsIn this Chapter, we �rst analyzed the links between di�erent de�nitions of atomi
 
harge.We have shown that, 
ontrary to the stati
 de�nitions, dynami
al e�e
tive 
harges alsodepend on the ele
troni
 
harge reorganisation indu
ed by an atomi
 displa
ement. Theamplitude of this dynami
al 
ontribution is monitored not only by the bonding withthe other atoms but also, for large systems, by the 
ondition imposed on the ma
ro-s
opi
 ele
tri
 �eld. A uni�ed treatment of the 
on
ept of dynami
al 
harge in mole
ules,



CHAPTER 3 : IONIC CHARGES 69Table 3.12: Spontaneous polarization in the three ferroele
tri
 phases of BaTiO3 in�C/
m2. The results were dedu
ed from Eq. (3.26) when using either Z�(T ) from the 
ubi
phase (Cubi
) or a mean 
harge (Mean) de�ned as (Z�(T )mean = 0:68�Z�(T )
ubi
+0:32�Z�(T )ferro).Results are reported for the experimental (Exp) and theoreti
al (Theo) atomi
 ferroele
-tri
 displa
ements.Z�(T ) Positions Tetragonal Orthorhombi
 Rhombohedral Referen
e{ { 26.3 30.7 33.5 Exp. [192℄Cubi
 Exp 30 26 44 Ref. [136℄Cubi
 Theo 36.35 42.78 43.30 PresentMean Theo 34.02 39.68 40.17 PresentMean Exp 28.64 36.11 { Presentlarge 
lusters, and truly periodi
 systems has been presented, in whi
h the Born e�e
-tive 
harge and the opti
al diele
tri
 
onstant appear as the two fundamental quantities.The mi
ros
opi
 origin of the dynami
al 
ontribution has been dis
ussed in terms of lo
alpolarizability and delo
alized transfers of ele
trons.Based on various �rst-prin
iples results, we have then emphasized that the Born ef-fe
tive 
harges are anomalously large in the family of ABO3 
ompounds: their amplitude
an rea
h more than twi
e that of the nominal ioni
 
harges. This feature was explainedin terms of interatomi
 transfers of 
harge, produ
ed by \o�-site" dynami
al 
hanges ofhybridization. For BaTiO3 and SrTiO3, we have brought to light 
omplex dynami
al
hanges of hybridization, 
on
erning not only Ti and O but also Ba and Sr orbitals. Thehybridizations restri
ted to o

upied states generate however 
ompensating anomalous
ontributions so that, �nally, the total value of Z�(T ) is essentially a�e
ted by dynami
al
hanges of hybridization between O 2p and Ti 3d orbitals.As a more general issue, it appears that the existen
e of partial hybridizations betweeno

upied and uno

upied states is an important feature for 
andidate to large anomalousBorn e�e
tive 
harges. Moreover, the dynami
al transfers of 
harge are expe
ted to belarger when su
h a hybridization involve d states, for whi
h the intera
tions parameterswith other orbitals are parti
ularly sensitive to the interatomi
 distan
e.Investigating the evolution of Z�(T ) to the stru
tural features, we have shown thatthey are strongly a�e
ted by the ferroele
tri
 atomi
 displa
ements and mu
h less sen-sitive to isotropi
 pressure. The results have 
lari�ed that the amplitude of Z�(T ) is notmonitored by a parti
ular interatomi
 distan
e but is dependent on the anisotropy of theTi environment along the Ti-O 
hains.Finally, the e�e
tive 
harges were used to estimate the spontaneous polarization inthe ferroele
tri
 phases of BaTiO3. For that purpose, their evolution was investigated allalong the path of atomi
 displa
ements from the 
ubi
 to the rhombohedral stru
ture andreveal a highly non-linear 
hara
ter.All along this Chapter, we only fo
used on the mi
ros
opi
 me
hanisms that govern
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tive 
harges. In Chapter 5, it will be emphasized thatthe anomalously large Born e�e
tive 
harges produ
e a giant LO-TO splitting in ABO3
ompounds, spe
ially for the ferroele
tri
 phonon mode [136, 53℄. Moreover, it will bedemonstrated that this feature is asso
iated to the existen
e of an anomalously largedestabilizing dipole-dipole intera
tion, suÆ
ient to 
ompensate the stabilizing short-rangefor
es and indu
e the ferroele
tri
 instability [53℄. In materials where polar modes play amajor role, the Born e�e
tive 
harge appears therefore also as a \key 
on
ept" to relatethe ele
troni
 and stru
tural properties.In the next Chapters we will simplify the notations : Z� (without additional subs
ript)will refer to the Born e�e
tive 
harge ex
ept when it is expli
itely mentionned.3.10 Referen
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henaud, First-prin
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al
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-tri
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s 153, 91 (1994).� Ch. Lee, Ph. Ghosez and X. Gonze, Latti
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s and diele
tri
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tri
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Chapter 4Ele
tron lo
alization
4.1 Introdu
tionFrom a pure phenomenologi
al point of view, our understanding of the ele
troni
 prop-erties of 
rystalline solids is quite 
lear: the inner ele
trons are 
hemi
ally innert andlo
alized on the nu
leus while the outer ones are responsible for the 
ohesion betweenatoms. In insulators, they are 
on�ned to a parti
ular bond while they are free to movethrough the whole system in metals.At the opposite, in a mi
ros
opi
 des
ription based on quantum me
hani
s, the ele
-troni
 wavefun
tions have the Blo
h form and are delo
alized on the whole 
rystal. Thispi
ture is valid for the inner ele
trons as well as the outer ones, for insulators and metals.In order to des
ribe the properties of these systems we have to refer to their ex
itationspe
trum and to the fermioni
 nature of the parti
les.These two approa
hes allow to understand a huge number of physi
al phenomena butit does not seem trivial to make a 
onne
tion between them. In parti
ular, it appearsdiÆ
ult to de�ne a "
enter of gravity" for the ele
troni
 wavefun
tions as well as theirdegree of lo
alization be
ause of the extended nature of the Blo
h fun
tions. In 
on�nedsystems like mole
ules, these properties are simply related to the expe
tation values ofthe position operator and its square. But in 
rystalline solids the operators x and x2are in
ompatible with the usually adopted Born von Karman boundary 
ondidions and
annot be used. Even a des
ription based on lo
allized Wannier fun
tions [194℄ (WF)does not solve this problem be
ause of their nonuniqueness.During the last de
ade, the modern theory of polarization [35, 36, 34℄ and the apper-an
e of many body phase operators [195, 196℄ allowed these diÆ
ulties to be over
ome.While the former theory identi�es the 
enter of the ele
troni
 distribution to a Berry phaseof the Blo
h fun
tions, the latter one leads to a uni�ed treatment of polarization and lo-
alization. It shows that ele
tron lo
alization is a property of the many-body ground-statewavefun
tion, an idea already emphasized by W. Kohn in 1964 [197℄. It also permits oneto de�ne a 
hara
teristi
 lo
alization length [198℄ that is �nite in insulators and divergesin metals. In order to des
ribe anisotropi
 media, this length has been generalized to alo
alization tensor [199, 200℄ that is the basi
 quantity we are dealing with in this Chapter.71



CHAPTER 4 : ELECTRON LOCALIZATION 72In this Chapter, we will investigate the degree of ele
tron lo
alization in lithium nio-bate (LiNbO3). Similar results have been obtained on various oxides in
luding BaO andBaTiO3 as well as PbO and PbTiO3. In the next se
tion we will summarize the formalismof the lo
alization tensor and show how it 
an be de
omposed into 
ontributions 
omingfrom the di�erent groups of bands forming the energy spe
trum of a solid. These te
h-niques will then be applied to study the degree of ele
tron lo
alization in the two phasesof LiNbO3. In the dis
ussion we will make a 
omparison with the evolution of the Borne�e
tive 
harges and the ele
troni
 stru
ture of this 
ompound.4.2 Ba
kground and Formalism4.2.1 Lo
alization tensorOur ele
troni
 stru
ture 
al
ulations are performed in the framework of density fun
tionaltheory (DFT). In an in�nite 
rystal on whi
h we impose periodi
 Born von Karmanboundary 
onditions the one parti
le orbitals are of the Blo
h form nk(r) = eikrunk(r): (4.1)Their 
hoi
e is not unique. An equivalent set of wavefuntions 
an be obtained from aunitary (gauge) transformation [85℄���u0nkE = NXm=1Unm;k ��umk� (4.2)where N is the number of doubly o

upied bands. For the ground-state the most natural
hoi
e is the so 
alled "diagonal gauge" where the Hamiltonian is diagonalhumkjHkjunki = "nkÆnm (4.3)and where its matrix elemets are the Kohn-Sham eigenenergies.In an insulating 
rystal, the lo
alization tensor 
an be 
omputed from the Blo
hfun
tions and their �rst derivatives with respe
t to their waveve
tor [199, 200℄hr�r�i
 = V
N(2�)3 ZBZ dk( NXn=1��unk�k� ���� �unk�k� �� NXn;n0=1 ��unk�k� ���� un0k��un0k �����unk�k� �)(4.4)where V
 is the volume of the primitive unit 
ell in real spa
e and �, � are two 
arte-sian dire
tions. The derivatives ����unk�k� E are 
omputed from a linear response approa
h toDFT [83℄. As for the ground-state wavefun
tions we have a gauge freedom. The 
al
ula-tions are most easily performed within the so 
alled parallel gauge (subs
ript 'p') wherethe �rst order wavefun
tions are orthogonal to the subspa
e of o

upied states*unk ����� �umk�k� ����p+ = 0 m,n = 1, ...,N: (4.5)
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ompositionAs stated above, the lo
alization tensor is related to a kind of se
ond moment of theele
troni
 wavefun
tions. From standard statisti
s, it is known that when we take thesum of two s
alar random variables their varian
es do not simply add but there is asupplementary term that enters the sum: their 
ovarian
e. It indi
ates how these twovariables are related and it is zero if they are independent. In this 
ase the total twodimensional probability density fun
tion 
an be written as the produ
t of two s
alarfun
tions, ea
h beeing asso
iated to one variable only. Based on this argument, we proposea de
omposition of the lo
alization tensor on the di�erent groups of bands 
omposing theenergy spe
trum of a solid: Suppose that the band stru
ture is formed of Ng isolatedgroups that 
ontain ni bands. The lo
alization tensor of a parti
ular group is de�ned ashr�r�i
(i) = V
ni(2�)3 ZBZ dk(Xn2i ��unk�k� ���� �unk�k� � � Xn;n02i ��unk�k� ���� un0k��un0k �����unk�k� �)(4.6)where the sums have to be taken over the bands of group i. The 
ovarian
e of two groupsi and j (i 6= j) is given by the relationhr�r�i
(i; j) = �V
ninj(2�)3 ZBZ dkXn2i Xn02j ��unk�k� ���� un0k��un0k �����unk�k� � : (4.7)Its origin 
omes from the fa
t that the total, many-body wavefun
tion is a Slater deter-minant of the one-parti
le orbitals and not simply their produ
t. Using these de�nitions,the total tensor, asso
iated to the whole set of o

upied bands, 
an be written ashr�r�i
 = 1N NgXi=1 ni(hr�r�i
(i) + NgXj 6=i njhr�r�i
(i; j)) : (4.8)This global quantity is independent of the gauge 
hosen to 
al
ulate the ground-stateand �rst-order wavefun
tions. On the 
ontrary, the above de�ned de
omposition is onlymeaningful if there is no admixture between the wavefun
tions asso
iated to di�erentgroups of bands. That means that the Hamiltonian matrix and its �rst-order perturbationexpansion H(1)k have to be diagonal. This is the 
ase of the ground state wavefun
tions
al
ulated within the diagonal gauge (4.3) but not of their derivatives obtained withinthe parallel gauge (4.5). In order to give a physi
al sense to the di�erent terms in Eq.(4.8) we have to apply a gauge transformation to the set of �rst-order wavefun
tions thatdiagonalizes H(1)k [169℄.4.3 Results and dis
ussions4.3.1 Te
hni
al detailsAs in the previous Chapter, our results are obtained thanks to the abinit pa
kage. Forbulk LiNbO3, the wavefun
tions were expanded in plane waves up to a kineti
-energy
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uto� of 45 Hartrees and the Brillouin zone was sampled using a 6 � 6 � 6 Monkhorst-Pa
k mesh of spe
ial k-points. All 
al
ulations are performed at the optimized latti
e
onstants and atomi
 positions as they are reported in Chapter 2.We also 
omputed the lo
alization tensor for the isolated atoms Nb, Li and O bypla
ing ea
h atom at the origin of a periodi
 super
ell of 20 Bohrs. As this theoryonly applies to systems where the highest o

upied state is separated from the lowestuno

upied level by a �nite gap, we did not perform the 
al
ulations on the neutral atomswith partial �lling of the atomi
 orbitals. We used instead the ioni
 
on�gurations Li+and Nb5+. For the oxygen atom, the most natural 
hoi
e was the O2� ion. Unfortunately,su
h a system is diÆ
ult to des
ribe in the LDA so that we �xed the o

upation of thestates 2px, 2py and 2pz to 4/3 in order to get a

urate values for the O 2s state.4.3.2 Band by band de
omposition of the lo
alization tensorThe ele
troni
 properties of lithium niobate have been presented in Chapter 2. Its bandstru
ture is 
omposed of well separated groups of bands (Fig. 2.12). In Table 4.1, wesummarize the band by band de
omposition of the lo
alization tensor in the two phases.As the diele
tri
 tensor in uniaxial 
rystals, this quantity is diagonal when it is expressedin the prin
ipal axes. Its eigenvalues hr?r?i
 (two times degenerate) and hrkrki
 referto 
artesian dire
tions perpendi
ular and parallel to the opti
al axis. The �rst �ve linesgive the varian
e hr�r�i(i) (see Eq. (4.6)) for ea
h of the �ve groups of bands shownin Fig. 2.12. They are 
ompared to the lo
alization tensors of the 
orresponding atomi
states 
al
ulated on isolated atoms. The last three lines give the total varian
e1N NgXi=1 nihr�r�i(i);the total 
ovarian
e �1N NgXi=1 ni NgXj=1 njhr�r�i(i; j)and the lo
alization tensor 
al
ulated on the whole set of valen
e bands from Eq. (4.8).We see that the bands Nb 4s, Li 1s and O 2s present a degree of lo
alization similar to theasso
iated atomi
 orbitals in the two phases. The Nb 4p ele
trons are more delo
alizedin the 
rystal but these values are also quite una�e
ted by the phase transition. The onlyappre
iable variation 
on
erns the element hrkrki
 of the O 2p group whi
h de
reases ofabout 6.4 %.As it was shown earlier [199, 200℄, the lo
alization tensor is related to the spread ofthe so 
alled "maximally lo
alized WF" [179℄. Another quantity related to these WF isthe spontaneous polarization [35, 36, 34℄ whi
h depends on the displa
ement of the WF
enters during the phase transition. LiNbO3 exhibits a parti
ularly large spontaneouspolarization. Experimentally [201, 202℄, a value of 0.71 C/m2 has been measured whilewe obtained a value of 0.80 C/m2 from a Berry phase 
al
ulation. By 
ombining this
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omposition of the lo
alization tensor (Bohr2) in the twophases of lithium niobate and for the inner orbitals of the Nb, Li and O atoms. Theelements hr?r?i
 and hrkrki
 refer to two 
artesian dire
tions perpendi
ular and parallelto the threefold axis. The tensors 
al
ulated on the isolated atoms are isotropi
 andde�ned by their eigenvalues hr2i
.Bands Atom Paraele
tri
 phase Ferroele
tri
 phasehr2i
 hr?r?i
 hrkrki
 hr?r?i
 hrkrki
Nb 4s 0.479 0.514 0.514 0.516 0.514Li 1s 0.158 0.167 0.164 0.166 0.165Nb 4p 0.576 0.721 0.719 0.728 0.714O 2s 0.892 0.879 0.870 0.893 0.848O 2p 1.488 1.515 1.483 1.418Tot. varian
e 1.110 1.123 1.111 1.066Tot. 
ovarian
e -0.388 -0.384 -0.395 -0.377Tot. tensor 0.722 0.738 0.716 0.689result with the lo
alization tensors in Table 4.1 we see that the WF 
enters are stronglya�e
ted by the phase transition while their spread remains quite 
onstant. We also haveperformed 
al
ulations on other ABO3 
ompounds where we obtain similar results: thelo
alization tensor varies only slightly during the phase transtions.It is interesting to 
ompare the values in Table 4.1 to the band by band de
ompositionof the Born e�e
tive 
harge of the Nb atoms reported in Chapter 3. In Table 4.2 we re
allthe eigenvalues of the symmetri
 part of Z�Nb.For the Nb 4s and Li 1s bands, Z�Nb is nearly equal to its nominal value. This and thefa
t that the lo
alization tensors for these two groups are 
lose to the atomi
 ones allowus to 
on
lude that the 
orresponding atomi
 orbitals are inert and do not 
ontribute tothe 
hemi
al bonds in LiNbO3.For the Nb 4p and O 2s bands, we observe small anomalous 
ontributions indi
atingnon negligible intera
tions of the originalatomi
 states. This is 
oherent with the lo
al-ization tensor of the Nb 4p bands whi
h is larger than for the isolated Nb5+ ion. For theO 2s bands however we do not observe any sizeable delo
alization.The largest anomalous 
ontributions 
ome from the O 2p bands. During the transitionto the ferroele
tri
 state, their 
ontributions to Z�Nb? and Z�Nbk present an importantde
rease of 28 % and 56 %. This and the observation 
on
erning the evolution of Egmade in Chapter 2 suggest a strong variation of the Nb 4d - O 2p hybridization duringthe phase transtion. In spite of these important 
hanges, the lo
alization tensor of the O2p bands varies only slightly (6.4 %) suggesting that the se
ond moment of the ele
troni
distribution is less sensitive to the details of the 
ovalent intera
tion than Z� and Eg. It isinteresting to note that not only Eg varies during the phase transition but also the spreadof the O 2p bands. This latter quantity presents a 
hange (6.9 %) that is similar to what
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omposition of Z�Nb in the two phases of lithium niobate.Reported are the eigenvalues (in atomi
 units of 
harge) of the symmetri
 parts of thetensors. The elemets Z�Nb? and Z�Nbk refer to two 
atesian dire
tions perpendi
ular andparallel to the threefold axis.Bands Paraele
tri
 phase Ferroele
tri
 phaseNominal Z�Nb? Z�Nbk Z�Nb? Z�NbkZ
ore 13.00 13.00 13.00 13.00 13.00Nb 4s -2.00 -2.04 -2.02 -2.06 -2.04Li 1s 0.00 0.01 0.00 0.01 0.00Nb 4p -6.00 -6.42 -6.37 -6.49 -6.35O 2s 0.00 0.57 0.58 0.60 0.50O 2p 0.00 3.14 3.89 2.25 1.71Tot. 5.00 8.26 9.08 7.30 6.83we observe for the lo
alization tensor of the O 2p group.4.3.3 Charge transfer versus lo
al polarizabilityThe relative insensitivity of the lo
alization tensor to the phase transition 
ontrasts withthe evolution of the Born e�e
tive 
harges and, at �rst sight, may appear surprizing.However, as it is now dis
ussed, it is 
ompatible with the simple Harrison model introdu
edin the previous Chapter. Let us emphasize that results similar to those reported abovehave been obtained for 
ubi
 perovskites su
h as BaTiO3 so that they are not related tothe spe
i�
 stru
ture of lithium niobate.As illustrated in Fig. 4.1, the Born e�e
tive 
harges are related to the unusually highslope of the polarization in the graph of P versus ferroele
tri
 atomi
 displa
ements. Thede
rease of Z� from the paraele
tri
 to the ferroele
tri
 phase originates in the non-linearbehavior of P in this graph and in parti
ular to the de
rease of the slope. Along the samepath of displa
ements, and 
ontrary to P, the lo
alization length is only slightly varyingand tends to de
rease.To 
larify these evolutions we 
an dis
uss a simple one-dimensional model . Forsimpli
ity, let us 
onsider a Ti{O 
hain of atoms intended to mimi
k what happens inBaTiO3. The atoms are at a distan
e a from ea
h others. In Fig. 4.2, we report as
hemati
 view of ele
troni
 density asso
iated to the O 2p Wannier fun
tion. We 
aninvestigate separately the behavior expe
ted from the two extreme 
ases of (a) 
hargetransfer and (b) lo
al polarizability introdu
ed in the previous Chapter to explain theorigin of anomalous e�e
tive 
hargesWhithin the Harrison model (panel a), this density is 
entered on an oxygen atombut, due to small hybridizations with Ti 3d orbitals, is also slightly delo
alized on thetwo neighbouring Ti atoms. When the oxygen atom is displa
ed by a quantity �� ,
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Figure 4.1: S
hemati
 evolution of (a) the ma
ros
opi
 polarization and (b) the lo
al-ization length along the path of displa
ements from the paraele
tri
 to the ferroele
tri
phase. The Born e�e
tive 
harges are proportional to the slope of P in panel (a).the 
entral part of the density follows the atom while, due to 
hanges of O 2p { Ti 3dhybridizations, there is a 
harge transfer of ele
trons from one Ti atom to the other whi
his responsible for a large displa
ement � < x > > �� of the 
enter of gravity of theWannier fun
tion and the anomalous value of the Born e�e
tive 
harge. However, duringthe oxygen displa
ement, the se
ond moment of the 
entral part of the density remainsuna�e
ted. Moreover, the ele
trons delo
alized on the Ti atoms are transfered from oneside of the unit 
ell to the other but, roughly speaking, remain at a distan
e a of the Oatom so that, for those ele
trons, the se
ond moment remains essentially una�e
ted. More
orre
tly, a small redu
tion proportional to the atomi
 displa
ement is expe
ted be
ausemost of the ele
trons on the Ti atoms are now at a distan
e a��� from the oxygen.Alternatively, within a shell model (panel b), the ele
troni
 
harge is expe
ted to belo
ated on the oxygen. During an atomi
 displa
ement, there is no transfer of 
harge butthe anomalous value of Z� originates in the unusual polarizability of the oxygen atom.This means that the ele
troni
 
harge is globally displa
ed by a quantity � < x > > �� .This however would produ
e an in
rease of the se
ond moment of the ele
troni
 density.The results of the previous Se
tion are more 
ompatible with the �rst explanation andappear therefore as an additional proof of the validity of Harrison's model. We note thatthis model predi
ts an highly asymmetri
 
harge density in the ferroeloe
tri
 phase andtherefore suggests that the third moment of the density is anmalously high.4.4 Con
lusionsIn this Chapter, we brie
y summarized the formalism of the lo
alization tensor and shownhow this quantity 
an be de
omposed into 
ontributions 
oming from the di�erent groupsof bands 
omposing the energy spe
trum of a solid. This formalism has then been appliedto investigate the degree of ele
tron lo
alization in the two phases of LiNbO3. Our resultswere 
ompared to the ele
troni
 stru
ture and the Born e�e
tive 
harges of this 
ompound.We observed that the deepest levels Nb 4s and Li 1s are 
hemi
ally innert while theatomi
 states Nb 4p and O 2s present weak 
ovalent intera
tions that generate small
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Figure 4.2: S
hemati
 view of the ele
troni
 density asso
iated to the O 2p Wannierfun
tion along a one dimentional Ti{O 
hain berore (full line) and after (dashed line) theoxygen atom is displa
ed in 
ase of (a) 
harge transfer and (b) lo
al polarizability. Whenthe atom is displa
ed by �� , the 
enter of gravity of the Wannier fun
tion is displa
edby � < x >.anomalous e�e
tive 
harges and that delo
alize the Nb 4p ele
trons. The O 2p bandsare the only group that presents an appre
iable 
hange of ele
tron lo
alization duringthe phase transition. This variation is small 
ompared to what we observed for Eg andZ�Nb but of the same order of magnitude as the variation of the spread of these bands.These results suggest that the lo
alization tensor is less sensitive to the details of theele
troni
 stru
ture of a 
ompound than are for example the Born e�e
tive 
harges. Thisinsensitivity is 
ompatible with the Harrison model in whi
h the ele
trons of the O 2pbands are partly delo
alized on the Ti atoms.4.5 Referen
esA good review of the 
on
epts of Berry phase and geometri
 quantum distan
e is givenin the following 
ourse :� R. Resta, Berry's Phase and Geometri
 Quantum Distan
e : ma
ros
opi
 polariza-tion and ele
tron lo
alization, Troisi�eme Cy
le de la Physique en Suisse Romande(ann�ee a
ad�emique 1999-2000). A ele
troni
 version of this 
ourse is a

essible atthe URL : http://www-dft.ts.infn.it/sresta/publ/notes2000.ps.gz.The results presented in this Chapter are dis
ussed in:� M. Veithen, X. Gonze and Ph. Ghosez, Ele
tron lo
alization in lithium niobate, In"Fundamental Physi
s of Ferroele
tri
s", AIP CP , ed. R. E. Cohen (AIP, Melville,2002), in press.
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Chapter 5Latti
e dynami
s
5.1 Introdu
tionBaTiO3 is well known to exhibit a ferroele
tri
 instability and sin
e long there have been
onsiderable e�orts to understand the mi
ros
opi
 origin of its su

essive phase transi-tions [14℄. Among all these works, the most gratifying explanation is probably due toCo
hran [17℄ who realized that the problem 
ould be interestingly re
ast in the frame-work of latti
e dynami
s 1. Within a shell-model approa
h, he asso
iated the ferroele
tri
transition with the softening of a transverse opti
 phonon, originating in the near 
an
el-lation of Coulomb and short-range intera
tions. The destabilizing role of dipolar for
eshad been previously pointed out by Slater [15℄, but it appeared more 
oherently within theshell-model. In spite of the qualitative 
hara
ter of Co
hran's investigations, the deli
atebalan
e between short-range repulsions and long-range destabilizing ele
trostati
 for
es isstill now usually referred to as the origin of the ferroele
tri
ity [93, 98, 44℄.Co
hran, when introdu
ing the 
on
ept of \soft mode", was the �rst who asso
iatedthe ferroele
tri
 instability to the latti
e dynami
s. Consequently to his work, the latti
edynami
s of ABO3 
ompounds has been subje
t to various investigations. A large numberof experiments have been performed in order to 
on�rm the existen
e of a soft ferroele
tri
mode in BaTiO3 (and other ABO3 
ompounds. They in
lude infra-red [203, 204, 205, 206℄and Raman [207, 208, 209, 210, 211, 212, 213, 214℄ measurements of the � phonon modes aswell as various neutron di�ra
tion data [215, 216, 217, 218, 219, 220℄. These experimentsfo
used on the temperature behaviour of the soft phonon and were mainly 
on
erned bythe low frequen
y modes.Simultaneously, theoreti
al phonon dispersion 
urves of BaTiO3 were dedu
ed from a�t of the experimental data using di�erent shell models. Let us mention the pseudo-ioni
model developed by Gnininvi and Bouillot [221℄ or the rigid-shell model used by Jannot etal. [220℄. These models were however not parti
ularly suited to des
ribe the ABO3 
rystals.During the seventies, Migoni, Bilz and B�auerle [22℄ pointed out that the behaviour of theferroele
tri
 soft mode in the oxidi
 perovskites originates from an unusual anisotropi
1A similar approa
h was taken independently by Anderson [18℄.80



CHAPTER 5 : LATTICE DYNAMICS 81polarizability of the oxygen that, in turn, may be 
onne
ted to hybridization between O 2pand B d states. A more sophisti
ated \polarizability model" [23, 24℄ was then introdu
edin order to in
lude the spe
i�
 physi
al features of ABO3 
ompounds. The appli
ation ofthis model to BaTiO3 was reported by Khatib et al. [141℄. In their work, they obtained afull phonon band stru
ture and investigated the temperature behaviour of the ferroele
tri
soft mode. However, their interesting results still remained at a semi-empiri
al level.Sin
e a few years, theoreti
al advan
es have enabled one to determine the phononfrequen
ies of solids from �rst prin
iples. The phonon frequen
ies at the � point havebeen 
omputed for various ABO3 
ompounds using frozen phonon or linear responsete
hniques. Going further, ab initio phonon dispersion 
urves are now available for nu-merous 
ompounds (KNbO3 [222℄, SrTiO3 [173℄, BaTiO3 [223℄, PbTiO3 [91℄, PbZrO3 [91℄,LiNbO3 ).In this Chapter, we will �rst reintrodu
e some basi
s 
on
erning the latti
e dynami
sof ioni
 
rystals. We shall then summarize results 
on
erning di�erent ABO3 
ompounds,paying a parti
ular attention to the 
ase of BaTiO3. We will report on the phononfrequen
ies at the � point in the 
ubi
 and rhombohedral stru
ture. The phonon disper-sion 
urves will then be dedu
ed in the 
ubi
 phase and the interatomi
 for
e 
onstantsanalysed. Finally, the behavior of BaTiO3 will be 
ompared to that of other perovskite
ompounds and the latti
e dynami
s of mixed 
ompounds will be dis
ussed. These resultswill allow to address some fundamental questions 
on
erning the ferroele
tri
 instability.First, the di�erent quantities involved in the Co
hran model are dire
tly a

essiblefrom our �rst-prin
iples 
al
ulations. This will enable us to investigate the 
on
omitantrole played by Coulomb and short-range intera
tions in a more general 
ontext, going be-yond Co
hran's results [53℄. In this framework, we will be able to highlight the 
onne
tionbetween the ele
troni
 and dynami
al properties.Se
ond, the analysis of the phonon dispersion 
urves will suggest that the appearan
eof the ferroele
tri
 instability requires some spe
i�
 
orrelations of the atomi
 displa
e-ments. This feature will be investigated with the help of the interatomi
 for
e 
onstants.Our results will be 
ontrasted with some experimental eviden
es. They will be dis
ussedin 
onne
tion with the existing \8-sites" model [27, 224℄ and the model of H�uller [28℄.Third, the latti
e dynami
s and stru
tural instabilities of the perovskite ABO3 
om-pounds 
an be very di�erent in spite of their identi
al stru
ture at high temperature.From the inspe
tion of the interatomi
 for
e 
onstants, we will point out that all these
ompounds are very similar and that their di�erent behavior originates in small di�eren
esof only few key quantities.5.2 The dynami
al equationIn Chapter 1, we have reported atomi
 positions for the ions. Impli
itely, we have 
on-sidered that the position Ra� of atom � in unit 
ell a is �xed and given by :Ra� = (Ra +R�) (5.1)
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tor de�ning the position of unit 
ell a and R� gives the position of theatom within the unit 
ell. In fa
t, these Ra� are mean positions around whi
h the atoms
an os
illate.In the present Chapter, we 
onsider that the instantaneous position Ra�(t) of atom �in unit 
ell a may be of a small deviation � a�(t) around the mean position :Ra�(t) = (Ra +R�) + � a�(t): (5.2)The movement of the ions will be treated thanks to 
lassi
al equations of motions. Weshall 
onsider ioni
 displa
ements that are small 
ompared with the interioni
 spa
ing,so that it remains possible to work in the harmoni
 approximation. Moreover, we shallremain in the adiabati
 approximation, in whi
h it is 
onsidered that the ele
trons are intheir ground-state for any instantaneous ioni
 
on�guration.In the harmoni
 approximation, the total energy of a periodi
 
rystal with small latti
edistortions from the equilibrium positions 
an be expressed asEharme+i (fRa�g) = E(0)e+i +Xa��Xb�0� 12  �2Ee+i��a���� b�0�! �a��� b�0� (5.3)where �a�� is the displa
ement along dire
tion � of the atom � in the 
ell a (with ve
torRa), from its equilibrium position Ra+R�. The 
lassi
al equations of motion for the ionsare then: M��2�a���t2 = ��Eharme+i��a�� = �Xb�0� � �2Ee+i��a����b�0�� �b�0� (5.4)We have 3 equations of motions of this type (one for ea
h dire
tion) for ea
h atom in the
rystal. We seek a general solution of the form:�a��(t) = �am(��)e�i!mt (5.5)Due to the latti
e periodi
ity, the matrix of the se
ond derivative of the energy appearingin Eq. (5.3) is invariant against a rigid body translation of the 
rystal by a latti
etranslation ve
tor. Coherently with this property, we 
an propose a more expli
it solutionof the form: �a��(t) = �mq(��) eiq:Ra e�i!mt (5.6)for whi
h the vibrations of the ions have been 
lassi�ed a

ording to a wave ve
tor q.This approa
h is stri
tly equivalent to that taken for the ele
trons through the Blo
htheorem. For an in�nite solid, it will allow to repla
e the problem of solving a in�nite setof 
oupled equations (Eq. 5.4) by another problem of 3�Nat equations (where Nat is thenumber of atoms per basi
 unit 
ell) to be solved for an in�nite number of wave ve
torq. For a �nite solid 
omposed of N unit 
ells, only q-ve
tors 
ompatible with Born-vonKarman boundary 
onditions must be 
onsidered. In pra
ti
e, we will see later that thefull dispersion 
urves 
an be dedu
ed from 
al
ulations on a very small set of q-ve
tors.



CHAPTER 5 : LATTICE DYNAMICS 83A few de�nitions are now introdu
ed. The matrix of the interatomi
 for
e 
onstants(IFCs) in real spa
e is de�ned asC��;�0�(a; b) =  �2Ee+i��a���� b�0�! ; (5.7)while its dis
rete Fourier transform takes the following form:~C��;�0�(q) = 1N Xab C��;�0�(a; b)e�iq�(Ra�Rb)= Xb C��;�0�(0; b)eiq�Rb ; (5.8)where N is the number of 
ells of the 
rystal in the Born-von Karman approa
h. Thislast quantity is 
onne
ted to the dynami
al matrix ~D��;�0�(q) by~D��;�0�(q) = ~C��;�0�(q)=(M�M�0)1=2 : (5.9)From these de�nitions, the movement of the ions 
an be des
ribed in terms of thefollowing dynami
al equation:X�0� ~C��;�0�(q)�mq(�0�) =M�!2mq�mq(��) : (5.10)Equivalently, the normal modes of vibrations are solution of the following eigenvalueproblem: X�0� ~D��;�0�(q)
mq(�0�) = !2mq
mq(��) : (5.11)The square root of the eigenvalues of the previous equations !mq are the phonon fre-quen
ies at wave ve
tor q, while 
mq are their asso
iated phonon eigenve
tors. The �mqare usually referred to as the phonon eigendispla
ements. They are normalized su
hthat < �jM j� >= 1, where M = M�Æ��0 is the mass matrix. Phonon eigenve
tors andeigendispla
ements are therefore related by: 
 = pM:�.Let us emphasize that !2 are the eigenvalues of the dynami
al matrix and are thereforedire
tly related to the se
ond derivatives of the energy with respe
t to the atomi
 positions.When the referen
e 
rystalline phase of interest is stable and the asso
iated mean positionof the atoms 
orresponds to a minimum of energy, the 
urvature of the energy surfa
earound this minimum is always positive as well therefore as !2 and the phonon frequen
ies.At the opposite, when the referen
e ioni
 
on�guration is unstable and related to a morestable phase through a double-well energy pro�le for a given pattern of ioni
 displa
ements,the 
urvature of the energy at the origin, along this path of displa
ements, will be negative.This yields a negative !2 and an imaginary phonon frequen
y 2.2This imaginary frequen
y is asso
iated, within the harmoni
 approximation, to atomi
 displa
ementsin
reasing exponentially with time. In pra
ti
e, this does not happen and the ions are stabilized inanother stru
ture by the anharmoni
ities.
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 approximation, an imaginary phonon frequen
y 
orrespondstherefore to a 
rystal instability and the asso
iated phonon eigendispla
ement patternprovides the path of displa
ements along with the energy is de
reasing. In this 
ontext,the 
omputation of the phonons appears therefore as an interesting tool to identify and
hara
terize stru
tural instabilities. In this study, it will reveal of paradigm importan
e.5.3 First-prin
iples 
al
ulationsFrom the dynami
al equation, the basi
 ingredient to be known to 
ompute the phononfrequen
ies is the dynami
al matrix. To determine this matrix, di�erent theoreti
al ap-proa
hes 
an be 
onsidered.In semi-empiri
al shell-models (like the model of Co
hran [17℄ dis
ussed later in thisChapter or the polarizability model of Bilz [23℄), the 
rystal is des
ribed in terms of atoms
omposed of an ioni
 
ore and an ele
troni
 shell, ea
h of these having their own 
hargeand being 
onne
ted to ea
h others and neighboring atoms by springs. The intera
tionsto be 
onsidered are 
hosen a priori and unambiguously de�ne the form of the dynami
almatrix. However, ea
h pair intera
tion is des
ribed with one or more parameters that needto be adjusted to reprodu
e the 
orre
t dispersion 
urves. Consequently, the method ishelpful to understand the shape of the dispersion 
urves from a mi
ros
opi
 simple modelbut is not predi
tive.Using a �rst-prin
iples approa
h, it is possible to 
ompute the total energy of a 
rys-tal as a fun
tion of the atomi
 positions and therefore to determine the phonon bandstru
ture a priori with an a

ura
y usually around 5 % with the experimental data. Thedynami
al matrix is 
onstru
ted by 
omputing dire
tly the 
hange of the total (ele
troni
and ioni
) energy under atomi
 displa
ements. This 
an be done using a so-
alled frozenphonon te
hnique : �nite atomi
 displa
ements are frozen in the stru
ture and the se
ondderivative of the energy is extra
ted (either from the 
urvature of the energy or from �nitedi�eren
es of the atomi
 for
es). The approa
h is straightforward at the Brillouin zone
enter. For non-� phonons, a super
ell must be 
onsidered 
ompatible with the q-ve
torof interest.Alternatively, the se
ond derivative of the energy 
an also be determined using per-turbation theory as dis
ussed in Chapter 1. This method requires some additional im-plementation e�orts 3 but presents the advantage that it allows to keep the simpli
ity ofa single 
ell 
al
ulation whatever the q-ve
tor whi
h is 
onsidered and that 
an even bein
ommensurate with the 
rystal latti
e.All the results reported here have been obtained using a variational formulation [83, 84℄of the density fun
tional perturbation theory [42℄.3It is relatively straightforward for plane-wave 
odes but it not so easy with ultra-soft pseudopotentialsor using LAPW te
hniques
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rystals5.4.1 Introdu
tionThe 
hemi
al intera
tions between atoms in a 
rystal are expe
ted to produ
e relativelyshort-range for
es. However, in ioni
 
ompounds, there is an additional Coulomb inter-a
tion between 
harged spe
ies whi
h has a long-range 
hara
ter.Let us 
onsider for simpli
ity a latti
e of point 
harges Z� in va
uum, the for
e betweena given pair of atoms is derivable from a two-body potential whi
h depends only on themagnitude of the separation d = kRa� �Rb�0k between the atoms :V C(d) = Z� Z�0d : (5.12)It 
an be 
he
ked that this gives rise to interatomi
 for
e 
onstants of the form [225℄:CDD��;�0�(a; b) = Z�Z�0(Æ��d3 � 3d�d�d5 ) (5.13)This demonstrates that the interatomi
 for
e 
onstants asso
iated to the Coulomb in-tera
tion exhibit a long-range 1=d3 behavior. This distan
e dependen
e is typi
al of adipole-dipole intera
tion (as emphasized in the DD supers
ript used all along this Chap-ter) and may appear surprizing be
ause we are dealing with point 
harges. Physi
ally, it
an be viewed as arising from the fa
t that when a given 
harge Z� is displa
ed by a dis-tan
e � , the di�eren
e of 
harge 
on�guration after and before displa
ement 
orrespondsto a dipole made of 
harges �Z� at a distan
e tau. When two atoms are displa
ed, twosu
h dipoles are indu
ed so that the Coulomb interatomi
 for
e 
onstants take the formof a dipole-dipole intera
tion. We will see in Se
tion 5.6.2 that, in a real solid, we keep avery similar expression. However, the 
harge to be 
onsidered in Eq. (5.13) is the Borne�e
tive 
harge tensor and the s
reening must be in
luded through an additional 1=�1fa
tor.In pra
ti
al 
al
ulations, the long-range 
hara
ter of the Coulomb intera
tion 
an be
orre
tly treated by summing intera
tions up to in�nite distan
es thanks to the use ofEwald summation te
hniques [226℄ and should appear has a rather te
hni
al point. How-ever, a good understanding of the Coulomb intera
tion is helpful to 
larify the spe
i�
behavior of ioni
 
rystals and some of the theoreti
al investigations on ferroele
tri
 per-ovskite that are reported later in this Chapter.In this Se
tion, we �rst re
all the de�nition of some basi
 
on
epts su
h as the ma
ro-s
opi
 ele
tri
 �eld, the depolarizing �eld, the lo
al �eld and we establish the relationshipsbetween them 4. We also make the 
onne
tion between ma
ros
opi
 quantities (obeyingto the equations of the ele
trostati
s) and mi
ros
opi
 
on
epts (useful to des
ribe thelo
al behavior of the atoms). We re
all the origin of the splitting between longitudinaland transverse opti
al mode in the long-wavelength limit and dedu
e an expression forthe stati
 diele
tri
 tensor.4A good review of these 
on
epts (from whi
h this Se
tion is mainly inspired) is given in the book ofAsh
roft and Mermin [68℄.
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ros
opi
 and mi
ros
opi
 ele
tri
 �eldsWhen viewed at the atomi
 s
ale, the 
harge density n(r) of any insulator is a rapidlyvarying fun
tion of position, re
e
ting the mi
ros
opi
 atomi
 stru
ture of the 
rystal. Onthe same atomi
 s
ale, the ele
trostati
 potential v(r) and the ele
tri
 �eld Emi
ro(r) =�rv(r) also have strong and rapid variations sin
e they are related to n(r) byr:Emi
ro(r) = 4� n(r): (5.14)On the other hand, in 
onventional ele
tromagneti
 theory of insulators, the 
hargedensity nma
ro(r), potential �(r), ele
tri
 �eld E(r) and ele
tri
 displa
ement �eld D (r)show no su
h rapid variations. In the 
ase of an insulator bearing no ex
ess 
harge, theMaxwell equations yield : r:D(r) = 0; (5.15)in addition with D(r) = E(r) + 4�P(r): (5.16)This implies that the ma
ros
opi
 ele
tri
 �eld satis�es :r:E(r) = �4� r:P(r): (5.17)where P(r) is the ma
ros
opi
 polarization.As �rst derived by Lorentz, mi
ros
opi
 and ma
ros
opi
 quantities 
an be related toea
h others. The ma
ros
opi
 ele
tri
 �eld E(r) is de�ned to be an average of Emi
ro(r)over a region about r of 
hara
teristi
 size r0 that is small at the ma
ros
opi
 s
ale , butlarge 
ompare to 
hara
teristi
 atomi
 dimensions:E(r) = Z dr0 Emi
ro(r� r0)f(r0); (5.18)where f is a slowly varying pair fun
tion, normalized to 1 and whi
h vanishes for r > r0.Beyond these assumptions, the theory is independent of the properties of the weightfun
tion f . This implies thatr:E(r) = Z dr0 r:Emi
ro(r� r0)f(r0) = 4� Z dr0 n(r� r0)f(r0); (5.19)and also that r:P(r) = � Z dr0 n(r� r0)f(r0): (5.20)In 
on
lusions, ma
ros
opi
 and mi
ros
opi
 quantities are dire
tly related to ea
hothers. Consequently, the relationships imposed by Maxwell equations translate intoequivalent 
onstraints at the mi
ros
opi
 level.
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ros
opi
 �eld within a diele
tri
Contrary to what happens for a metal, the ele
tri
 �eld inside an insulator is not ne
es-sarily zero be
ause 
harge 
annot 
ow freely in it. As a �rst step, it is important to de�newhat we 
all the ma
ros
opi
 �eld.Let us assume that an insulator is pla
ed in an external ele
tri
 �eld Eapp. The �eldpolarizes the material and the ma
ros
opi
 �eld, E , within the sample is di�erent fromEapp. It will be the sum of the external applied �eld Eapp with the so-
alled depolarizing�eld Edep : E = Eapp + Edep (5.21)where Edep is the �eld asso
iated to the ma
ros
opi
 polarization P (i.e. the �eld produ
edby the indu
ed dipoles within the sample in a Clausius Mosotti model).From the ele
trostati
, it is well known that the ma
ros
opi
 �eld indu
ed by a uniformpolarization is equivalent to the �eld indu
ed, in the va
uum, by a 
harge density � = n̂:Pat the surfa
e of the sample (here, n̂ is a unitary ve
tor perpendi
ular to the surfa
e andpointing outside). It follows that for a thin platelet sample in a perpendi
ular external�eld, the depolarizing �eld perpendi
ular to the surfa
e simply writes :Edep;? = �4�j�j = �4�P? (5.22)Similarly, for an ellipsoid with its prin
ipal axis along the 
artesian 
oordinates, it 
anbe 
he
ked that an homogeneous external �eld will indu
ed an homogeneous polarizationand that the asso
iated depolarizing �eld writes [227℄ :Ex;dep = �nxPx; Ey;dep = �nyPy; Ez;dep = �nzPz; (5.23)where the ni's are 
alled the depolarizing fa
tors. They depend on the shape of theellispoid. They are positive, inversly proportional to the length of the prin
ipal axis ofthe ellipsoid and satisfy nx+ny+nz = 1. In the 
ase of a sphere : ni = 4�=3. In the 
aseof a platelet, we re
over : n? = 4� and nk = 0. In the 
ase of a needle, we get n? = 2�and nk = 0.The measurable ele
tri
 �eld inside a diele
tri
, whi
h is also the �eld appearing inMaxwell equations is the totalma
ros
opi
 �eld E . It is therefore the sum of the (eventual)applied �eld Eapp with an additional depolarizing �eld Edep;i = �niPi, the amplitude ofwhi
h depends of the ma
ros
opi
 shape of the sample. It 
an be non-zero even in absen
eof external �eld when the polarization is non-vanishing as it 
an happen when atoms aredispla
ed in an ioni
 
rystal.5.4.4 Lo
al ele
tri
 �eldSin
e ea
h ion in a solid as mi
ros
opi
 dimensions, its displa
ement and distortion fromequilibrium position will be dependent of the for
e due to the mi
ros
opi
 �eld at theposition of the ion (diminished by the 
ontribution to the �eld from the ion itself). This�eld is frequently 
alled the lo
al �eld, Elo
.



CHAPTER 5 : LATTICE DYNAMICS 88It is important to realize that the lo
al ele
tri
 �eld at an atomi
 site 
an be di�erentfrom the ma
ros
opi
 ele
tri
 �eld. As an example, let us 
onsider a ma
ros
opi
 simple
ubi
 
ristal of spheri
al shape, 
omposed of well separated polarizable atoms at ea
h siteand in an external �eld oriented along z. The ma
ros
opi
 �eld within the sample simplywrites : E = Ez;app � 4�3 Pz (5.24)The lo
al �eld at the 
enter of the 
rystal is de�ned as the sum of (i) the applied �eldand (ii) the �eld produ
ed by the dipoles p = pzẑ indu
ed on ea
h atom by the external�eld : Elo
 = Ez;app + Ez;dip: (5.25)Ez;dip is obtained from a sum on the di�erent sites :Ez;dip = Xi 3(p:ri)zi � ri2pzr5i (5.26)= pzXi 3z2i � (x2i + y2i + z2i )r5i (5.27)= pzXi 2z2ir5i �Xi x2ir5i �Xi y2ir5i (5.28)Be
ause, the 3 dire
tions x; y; z are equivalent by symmetry in this simple example, Ez;dipsums up to zero so that the lo
al �eld is simply E = Ez;app. It di�ers from the ma
ros
opi
�eld.As the lo
al �eld appears as a useful 
on
ept, we 
an try to obtain its expression at agiven site of a 
rystal non ne
essary of 
ubi
 symmetry. We will 
onsider that the solidhas the shape of an ellipsoid. The lo
al �eld is the sum of the applied �eld indu
ed byexternal sour
es and the �eld produ
ed by all the indu
ed dipoles inside the sample. Thelatter 
an be de
omposed in three terms if we 
onsider our sample as 
omposed of tworegions:1. a near spheri
al region 
omposed of all the atoms within a small �
tive sphere
entered on the site of interest;2. a far region 
omposed of the part of the 
rystal outside from the sphere and assim-ilated to a 
ontinuum.We write : Elo
 = Eapp + Edep + ELorentz + Eint (5.29)where:



CHAPTER 5 : LATTICE DYNAMICS 891. Eapp is the usual applied external �eld ;2. Edep is depolarizing �eld indu
ed by the surfa
e 
harge density � = n̂:P at thesurfa
e of the ellipsoid ;3. ELorentz is the Lorentz �eld indu
ed at the surfa
e of the internal sphere by thepolarization in the far region ;4. Eint is the internal �eld, produ
ed by the individual dipoles within the internalsphere.The sum of the internal and depolarization �eld 
orrespond to the ma
ros
opi
 �eld E .Moreover, the Lorentz �eld is the ele
tri
 �eld produ
ed by the 
harge density � = n̂:Pappearing at the surfa
e of the internal sphere and, as su
h, it simply writesELorentz = 4�3 P: (5.30)In general, the lo
al �eld therefore writes (independently of the symmetry of the 
rystal) :Elo
 = E + 4�3 P + Eint (5.31)If we now assume a 
rystal of 
ubi
 symmetry, the internal �eld indu
ed by the dipoleswithin the internal sphere will be zero (as demonstrated above in this Se
tion) so that we�nally obtain the well-known Lorentz relation :Elo
 = E + 4�3 P (5.32)This result is widely used in the theory of diele
tri
s. It is very important to remember theassumptions underlying it, parti
ularly that of 
ubi
 symmetry about every atomi
 site.We note that for a 
rystal of spheri
al shape, the Lorentz �eld 
ompensate exa
tly thedepolarizing �eld so that Elo
 = Eapp, as obtained in the simple example at the beginningof this Se
tion.Let us emphasize that Elo
 is the total mi
ros
opi
 �eld at the atomi
 site. In additionto the eventual external �eld, it summarizes the �eld produ
ed by all the individualdipole all over the material (generated by the external �eld and/or atomi
 displa
ements).To 
ompute the for
e on an atom it is therefore equivalent to sum individual Coulombintera
tions or to treat them globally through the lo
al �eld they generate at a givenatomi
 site. As it will be illustrated later, this latter approa
h is sometimes preferred inshell-models.5.4.5 Diele
tri
 
onstant and lo
al polarizabilityThe diele
tri
 
onstant � of a diele
tri
 medium is a ma
ros
opi
 quantity de�ned fromthe ma
ros
opi
 �eld as : � = E + 4�PE = 1 + 4�� (5.33)
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eptibility � is de�ned as � = �� 14� (5.34)These ma
ros
opi
 
on
epts 
an be related to mi
ros
opi
 quantities. The polarizabil-ity �i of an atom i is the quantity whi
h relates the indu
ed dipole moment to the lo
alele
tri
 �eld on the atom : pi = �i E ilo
: (5.35)The lo
al �eld is E ilo
 = � + 23 P (5.36)and the polarization is the dipole moment per unit volume :P = 1
0 Xi pi: (5.37)Combining the last three expressions we get the well-known Clausius { Mossotti rela-tion : �� 1� + 2 = 4�3
0 Xi �i (5.38)where 
0 is the volume of the unit 
ell and the sum over i extends to atoms within theunit 
ell. This relationship 
onne
ts the lo
al atomi
 polarizability to the ma
ros
opi
diele
tri
 
onstant. We noti
e that it is based on the Lorentz relation to relate ma
ros
opi
and lo
al �elds. It makes therefore impli
itely the assumption of 
ubi
 symmetry.Theories treating the Coulomb intera
tion through the lo
al �eld will make use of lo
alquantities su
h as the lo
al polarizability and the Szigeti 
harge. Theories working withthe ma
ros
opi
 ele
tri
 �eld will 
onsider instead the ma
ros
opi
 diele
tri
 
onstant andthe Born e�e
tive 
harges.5.4.6 Long-wavelength opti
al modes in ioni
 
rystalsIn ioni
 
rystals, long-wavelength longitudinal and transverse opti
al modes exhibit di�er-ent frequen
ies. This parti
ular feature is a dire
t 
onsequen
e of the 
onditions imposedby the Maxwell equations on the ma
ros
opi
 �eld in both 
ases.In a long-wavelength (q � 0) opti
al mode, the oppositely 
harged ions in ea
h unit 
ellundergo oppositively dire
ted displa
ements, giving rise to a non-vanishing polarizationdensity P. Asso
iated with this polarization, there will in general be ma
ros
opi
 ele
tri
and displa
ement �elds related by :D = � E = E + 4�P (5.39)
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e of free 
harge, we have :r:D = 0: (5.40)Furthermore, Emi
ro, and 
onsequently E are the gradient of a potential 5 :r� E = r��r� = 0: (5.41)In a 
ubi
 
rystal, D; E ;P are parallel to ea
h others. If they have the spa
ial depen-den
e, D = Re(D0eiq:r); E = Re(E0eiq:r); P = Re(P0eiq:r); (5.42)then, Eq. (5.40) redu
es to q:D0 = 0, orD = 0 or D; E ; P ? q (5.43)while, Eq. (5.41) redu
es to q� E0 = 0, orE = 0 or D; E ; P k q (5.44)In a longitudinal opti
al (LO) mode, P is parallel to q so that D must vanish andE = �4�P (� = 0) (5.45)In a transverse opti
al (TO) mode, P is perpendi
ular to q so that E must vanish andE = 0 (� =1) (5.46)It 
an now be understood why longitudinal and transverse frequen
ies di�er in thelong-wavelength limit. This is in fa
t be
ause the atoms experien
es di�erent ele
trostati
restoring for
es. If we evaluate the lo
al �eld, we obtain for a LO mode :ELOlo
 = E + 4�3 P = �8�3 P (5.47)while for a TO mode : ETOlo
 = 4�3 P (5.48)In longitudinal modes, the lo
al �eld a
ts to redu
e the polarization; it therefore produ
esan additional restoring for
e whi
h produ
es a sti�ening of the mode. At the opposite,in TO modes, the lo
al �eld a
ts to support the polarization and produ
es therefore asoftening.5This is not stri
tly through sin
e the right side of the Maxwell equation r�E = �(1=
)�B=�t needsnot to be negligible. However, a rigorous ele
trodynami
 treatment leads to 
on
lusions very similar towhat is reported here.
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ussion, we expe
t the frequen
ies of the zone-
enter LO modes todi�er from those of TO modes due to the di�erent 
ondition on the ma
ros
opi
 ele
tri
�eld. This �eld is related to the polarization �eld asso
iated to phonon modes with apolar pattern of displa
ement and only su
h polar (IR a
tive) modes will be splitted.In order to get better insight on the LO-TO splitting, the interatomi
 for
e 
onstantmatrix 
an be 
onveniently separated into two parts 6 :~C��;�0�(q! 0) = ~CTO��;�0�(q = 0) + � ~CLO��;�0�(q! 0) (5.49)The �rst term ~CTO��;�0�(q = 0) is the IFC matrix, obtained as a sum of the ele
troni
 andioni
 
ontributions previously reported, but from whi
h the intera
tion with the ma
ro-s
opi
 ele
tri
 �eld has been ex
luded. The se
ond 
ontribution � ~CLO��;�0�(q ! 0) is anadditional term that treats 
orre
tly the intera
tion with the eventual ma
ros
opi
 ele
tri
�eld. The amplitude of this term depends expli
itely of the dire
tion taken to approa
hthe � point.Separating the 
ontribution involving the ma
ros
opi
 ele
tri
 �eld from the other
ontributions, the driving for
e indu
ed on atom 0� in a surrounding of displa
ed atomsmay be written as 7 :F0�;� = �Xb;�0;�CTO��;�0�(0; b) � b�0;� +X�0 Z��;�0� : E�0 (5.50)so that the equation of motion for the ions be
omes:M��2��a���t2 = [�Xb;�0;�CTO��;�0�(0; b) � b�0;� +X�0 Z��;�0� : E�0℄ (5.51)The amplitude of ele
tri
 �eld E� must now be determined. It 
an be dedu
ed from
onditions on the ele
tri
 �eld and displa
ement �eld derived from Maxwell's equations.The 
hange of ele
tri
 �eld asso
iated to the appearan
e of a phonon is dire
ted alongq̂ = (qx; qy; qz): E� = jEj:q�. The indu
ed displa
ement �eld is given by :D� = E� + 4� P� (5.52)The ma
ros
opi
 polarization is related to atomi
 displa
ements and ma
ros
opi
 ele
tri
�eld through: P� = Xb;�0;� �P��� b�0;� jE=0 � b�0;� +X� �P��E� j�=0 jEj q� (5.53)= 1
0 Xb;�0;�Z��0;��� b�0;� +X� �1�� jEj q� (5.54)6Matemati
ally, a divergen
e problem arises at q = 0 so that this de
omposition is also performed inthe 
al
ulations to 
ompute LO modes at the � point.7An alternative expression (Z�(S)�;�0� : Elo
;�0) 
an be used for the intera
tion with the ele
tri
 �eld. Ashighlighted in Chapter 3, both are stri
tly equivalent
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0 Xb;�0;�Z��0;��� b�0;� + jEjX� �1��q� (5.55)Along dire
tion q, the 
omponent of the displa
ement �eld must be preserved so that wehave the 
ondition: q:D = 0. From q�:D� = 0, we dedu
e:jEj = �4�
0Pb;�0P�0� � b�0;� Z��0;��0 q�0P�0�0 q�0�1�0�0q�0 : (5.56)From this equation, it appears that the ma
ros
opi
 ele
tri
 �eld asso
iated to the phonon(E) is 
onne
ted to the polarization �eld indu
ed by the atomi
 displa
ement (Z�:��)thanks to the diele
tri
 
onstant (�1). Introdu
ing this result in equation (5.51) we get:M��2�a���t2 = �Xb;�0;��� b�0;�[CTO��;�0�(0; b)+4�
0P�0 (Z��;�0� q�0)P�0 (Z��0;�0� q�0)P�0�0 q�0�1�0�0q�0 ℄: (5.57)so that the additional 
ontribution to the IFC matrix for the LO modes 
an �nally bewritten as: � ~CLO��;�0�(q! 0) = 4�
0 P�0 (Z��;�0� q�0)P�0 (Z��0;�0� q�0)P�0�0 q�0�1�0�0q�0 : (5.58)It is this term that is added in order to 
ompute the LO-TO splitting in the limit of the �point. Note that for LO modes, the full dynami
al matrix in
luding this � ~CLO��;�0�(q! 0)must be diagonalized. When there are more than one polar modes, this additional term
an mix them up so that LO and TO eigenve
tors are not ne
essarily identi
al.5.4.8 Stati
 diele
tri
 
onstantWhen a insulator is pla
ed in a stati
 homogeneous ele
tri
 �eld (su
h as that existingbetween the plates of a 
apa
itor), the �eld will polarize the material and many important
onsequen
es of the resulting internal distortions 
an be dedu
ed if one knows the stati
diele
tri
 tensor, �0��, of the material. The 
al
ulation of �0�� is therefore an importantaim of any mi
ros
opi
 theory of insulators.The diele
tri
 
onstant is dire
tly related to the su
eptibility :�0�� = 1 + 4��0��= 1 + 4��P��E� (5.59)(5.60)
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tri
 �eld is stati
 (or suÆ
iently slowly varying), the ions 
an relax so that the
hange of polarization is the sum of ioni
 and ele
troni
 
ontributions :�0�� = 1 + 4�(�P��E� j�=0 +X�;�0 �P�����0 jE=0����0�E� )= �1�� + 4�
0 X�;�0 Z��;�0�����0�E� (5.61)The only unknown in the previous equation is the derivative of the atomi
 positions withrespe
t to the �eld. This 
an be worked out sin
e the ions will relax until the for
e theyfeel be
omes equal to zero. This 
ondition 
an be imposed on Eq. (5.50) :�Xb;�0;�CTO��;�0�(0; b) � b�0;� +X�0 Z��;�0� : E�0 = 0 (5.62)In order to get a familiar expression for the diele
tri
 
onstant, we 
an 
hoose to expressthe atomi
 displa
ements in terms of the TO modes eigenve
tors whi
h de�ne a 
ompletebasis (�a�;� ! �i�TOi�;� ). This provides the following equivalent 
ondition :�!2TOi �i +X�;� X� Z��;�� �TOi�;� E� = 0 (5.63)or �i = 1!2TOi X�;� X� Z��;�� �TOi�;� E� (5.64)Introdu
ing this in Eq. (5.61), we �nally get :�0�� = �1�� + 4�
0 Xi (X�;�0 Z��;�0��TOi�;�0 ) 1!2i (X�;�0 Z��;�0� �TOi�;�0 )= �1�� + 4�
0 Xi Si;��!2TOi (5.65)where we have de�ned the mode os
illator strength asSi;�� = (X�;
 Z��;
� �TOi�;
 )�(X�;
 Z��;
� �TOi�;
 ): (5.66)This quantity requires the knowledge of the Born e�e
tive 
harges and phonon eigenve
-tors, two quantities dire
tly a

essible from our 
al
ulations.In order to exhibit a large diele
tri
 
onstant, the material must have modes 
ombininglarge os
illator strength (favored by large Z�) and small frequen
ies (soft modes). We willsee that these two 
onditions are not ne
essarly independent sin
e, as it will be illustratedlater, large Z� produ
e a strong destabilizing Coulomb intera
tion produ
ing a softeningof the phonon frequen
ies.
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ies (
m�1) at the � point for 
ubi
 BaTiO3. The LO-TOsplitting has been 
omputed with the help of the s
issors 
orre
ted diele
tri
 
onstant.Mode Exp.[203℄ ao=3.67�A ao=3.94�A ao=4.00�A Ref. [136℄F1u(TO1) soft 214 113i 219i 178iF1u(LO1) 180 250 180 159 173F1u(TO2) 182 296 184 166 177F1u(LO2) 465 513 460 447 453F1u(TO3) 482 737 481 453 468F1u(LO3) 710 1004 744 696 738F2u 306a 308 288 281 �a This value has been measured in the tetragonal phase.5.5 BaTiO3 phonon modes at the � pointAs a �rst step, we investigate the latti
e dynami
s of barium titanate at the � point in its
ubi
 and rhombohedral stru
tures. We 
onsider 
ubi
 phases at the experimental andtheoreti
ally optimized volumes 
orresponding to a latti
e parameter ao equal respe
tivelyto 4.00 and 3.94 �A. We will also study a 
ompressed 
ubi
 phase with ao=3.67 �A. For therhombohedral phase, we adopt the experimental unit 
ell parameters and relaxed atomi
positions, as des
ribed in Chapter 1.There are 12 opti
 phonons in BaTiO3. In the 
ubi
 phase, at the � point, we havethree modes of F1u symmetry and a silent mode of F2u symmetry, ea
h of them triplydegenerated. Going to the rhombohedral phase, ea
h triply degenerated F1u mode (resp.F2u) gives rise to a mode of A1 (resp. A2) symmetry and a doubly degenerated mode ofE symmetry.5.5.1 Cubi
 phaseOur phonon frequen
ies in the 
ubi
 phase, as well as experimental and other theoreti
alresults, are reported in Table 5.1. Our values are in good agreement with the experi-ment [203℄ and another 
al
ulation by Zhong et al.[136℄. In parti
ular, we identify theinstability 8 of the TO1 mode that 
orresponds to the vibration of Ti and Ba against theO atoms. The phonon frequen
ies 
hange by a noti
eable amount when going from theexperimental to the optimized volume. This behavior is di�erent to the one previouslyobserved for other physi
al quantities like Z��. This sensitivity is parti
ularly large for thesoft TO1 mode : Its instability even disappears in our 
ompressed 
ubi
 phase.The eigendispla
ements asso
iated with the F1u(TO) modes are des
ribed in Table 5.2.8An instability is asso
iated to a negative 
urvature of the energy hypersurfa
e whi
h yields an imag-inary phonon frequen
y.
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ement patterns for the F1u(TO) mode of the 
ubi
 phaseof BaTiO3. In 
omparison with results of Cohen and Krakauer (CK), we report values atthe experimental (Vexp) and optimized (Vopt) volume, as well as for a 
ompressed (V
omp)
ubi
 phase. Eigendispla
ements � are normalized su
h that h�TOjM j�LOi = 1, with Min atomi
 mass units.Mode Volume Ba Ti O1 O2 O3F1u(TO1) Vexp -0.002 -0.096 0.158 0.071 0.071Vopt -0.002 -0.098 0.137 0.087 0.087V
omp -0.028 0.121 0.026 -0.074 -0.074Ref. [107℄ -0.006 -0.091 0.144 0.091 0.091F1u(TO2) Vexp -0.055 0.080 0.068 0.081 0.081Vopt -0.055 0.082 0.071 0.077 0.077V
omp -0.047 0.017 0.085 0.133 0.133Ref. [107℄ -0.054 0.088 0.053 0.075 0.075F1u(TO3) Vexp -0.002 0.032 0.170 -0.124 -0.124Vopt -0.001 0.018 0.186 -0.116 -0.116V
omp 0.002 -0.040 0.224 -0.061 -0.061Ref. [107℄ -0.003 0.022 0.186 -0.115 -0.115They are in agreement with those obtained by Cohen and Krakauer [107℄ from a frozenphonon 
al
ulation. These eigenve
tors remains relatively similar at the experimental andoptimized volume. By 
ontrast, there is a mixing between the three F1u(TO) modes inthe 
ompressed 
ubi
 phase so that not a single one 
orresponds to the unstable mode ofthe optimized 
ubi
 
ell (see also Table 5.3).The 
orrelation between the LO and TO modes 
an be measured by the overlap matrixbetween their respe
tive eigenve
tors. A priori, the eigendispla
ements of the LO modes(�LO) do not ne
essarily 
orresponds to those of the TO modes (�TO), be
ause of thelong-range Coulomb intera
tion. The overlap matrix reported in Table 5.3 ( h�TOjM j�LOi,where M is su
h that M = M�Æ��0 and M� is the mass of atom �) establishes howeverthat the mixing is very small: we observe a one-to-one 
orresponden
e. Interestingly,the softest TO mode, F1u(TO1), is asso
iated with the hardest LO mode, F1u(LO3),suggesting a giant LO-TO splitting [136℄. The same kind of results has been reported forKNbO3 [136, 101℄, even if the overlap between LO and TO modes was not so large forthat 
ompound.The amplitude of the LO-TO splitting lies essentially in the value of the mode e�e
tive
harges. This quantity is de�ned asZ�TO = 




P�;� Z��;�� �TO�;�h�TOj�TOi 




 : (5.67)



CHAPTER 5 : LATTICE DYNAMICS 97Table 5.3: Overlap matrix elements between the eigenve
tors of the F1u(TO) modes ofthe optimized 
ubi
 phase and those respe
tively of the asso
iated F1u(LO) mode and ofthe F1u(TO) mode of the 
ompressed 
ubi
 phase. VoptF1u(TO1) F1u(TO2) F1u(TO3)F1u(LO1) 0.17 -0.99 0.01Vopt F1u(LO2) -0.36 -0.07 -0.93F1u(LO3) 0.92 -0.16 0.37F1u(TO1) 0.71 -0.54 0.46V
omp F1u(TO2) -0.49 -0.84 -0.22F1u(TO3) -0.51 0.07 0.86Table 5.4: Mode e�e
tive 
harge and respe
tive partial 
ontribution due to ea
h atom forthe F1u(TO) modes of the optimized 
ubi
 phase.Mode Partial 
ontribution due to Mode 
hargeBa Ti Ok O? O? Z�TOF1u(TO1) 0.03 3.42 3.77 0.90 0.90 9.02F1u(TO2) 0.92 -3.66 2.48 1.02 1.02 1.79F1u(TO3) -0.01 -0.53 4.28 -1.01 -1.01 1.74The mode 
harges are reported in Table 5.4 where we identify the respe
tive 
ontributiondue to ea
h atom. We observe that the very large Z�TO1, responsible of the strong Coulombintera
tion of this mode, originates essentially from the large Born e�e
tive 
harges on Tiand Ok, that 
ombine a

ording to the spe
i�
 pattern of eigendispla
ement asso
iated tothis mode. In 
omparison, for the TO2 mode, Ti and O 
ontributions remain large but
an
el out so that the global 
harge is smaller.As a 
onsequen
e of the observed similarity between eigenve
tors, we 
an predi
t �
ti-tious LO frequen
ies on the basis of the Born e�e
tive 
harges, by the simple approximateformula 9 !2LO(q! 0) = !2TO + 4�
0 (P� q�(P�;� Z��;�� �TO�;� ))2P�� q� �1�� q� (5.68)9This equation allows to 
ompute the splitting within the hypothesis that the eigenve
tor was notmodi�ed by the intera
tion with the ma
ros
opi
 ele
tri
 �eld. Note that the additional 
ontribution onthe right hand is always positive. It should also be 
onveniently expressed in terms of the mode os
illatorstrengths introdu
ed later.
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ies (
m�1) at the � point for rhombohedral BaTiO3.Mode ModeA1(TO1) 168 E(TO1) 161A1(LO1) 180 E(LO1) 173A1(TO2) 265 E(TO2) 205A1(LO2) 462 E(LO2) 438A1(TO3) 505 E(TO3) 461A1(LO3) 702 E(LO3) 725A2 274 E 293where 
0 is the volume of the unit 
ell, � and � indi
es denote the spa
e dire
tion and� labels the atom within the unit 
ell. We �nd values respe
tively of 701, 214 and 508
m�1, in 
lose agreement with real LO frequen
ies (180, 460 and 744 
m�1). This resultemphasizes again the giant LO-TO splitting of the unstable mode (113i ! 701 
m�1) in
omparison to that of the two other modes (184 ! 214 
m�1, 481 ! 508 
m�1). Thisunusual splitting is asso
iated to a parti
ularly strong Coulomb intera
tion that will bedis
ussed later.5.5.2 Rhombohedral phaseThe phonon frequen
ies of the rhombohedral phase are reported in Table 5.5. The onlyother result we found is experimental [211℄ and lo
alizes the phonon frequen
ies in threeregions (100-300 
m�1, 480-580 
m�1, and 680-750 
m�1), in qualitative agreement withour values.There is no unstable mode in the rhombohedral stru
ture. If we 
ompare the eigen-ve
tors to those of the 
ubi
 phase, we observe that they are very similar in both 
ases.This is illustrated for the A1 mode in Table 5.6. Similar overlaps are obtained for the Emodes. They point out that A1(TO2) and E(TO2) originate from the hardening of thesoft mode.If we 
ompute the overlap matrix between LO and TO modes (Table 5.6), we observethat the mixing produ
ed by the Coulomb intera
tion is larger than in the 
ubi
 phase.Moreover, the ferroele
tri
 A1(TO2) mode is the most 
losely asso
iated with the A1(LO3)mode.In this phase, the mode e�e
tive 
harges of the A1 (resp. E) modes are respe
tively of2.79 (4.48), 6.99 (8.41) and 2.33 (1.99). The TO2 modes, originating from the soft TO1mode of the 
ubi
 phase, 
ontinue to 
ouple strongly with the ele
tri
 �eld but the smallerBorn e�e
tive 
harges makes their mode e�e
tive 
harge smaller. This is parti
ularly truefor the A1 modes polarized along the ferroele
tri
 dire
tion.All the 
omputed phonons are stable in the rhombohedral phase, and we 
an obtain



CHAPTER 5 : LATTICE DYNAMICS 99Table 5.6: Overlap matrix elements between the eigenve
tors of the A1(TO) modes of therhombohedral phase and those respe
tively of the asso
iated A1(LO) modes and of theF1u(TO) mode of the optimized 
ubi
 phase.A1(TO1) A1(TO2) A1(TO3)A1(LO1) 0.96 0.29 0.02A1(LO2) -0.15 0.56 -0.81A1(LO3) 0.25 -0.77 -0.58F1u(TO1) 0.13 -0.97 0.19F1u(TO2) -0.99 -0.13 -0.01F1u(TO3) -0.02 -0.18 -0.98the low frequen
y (infra-red) diele
tri
 tensor by adding to �1 the ioni
 
ontribution(evaluated here in the harmoni
 approximation, without damping). The expression is thegeneralization of that we have obtained in the stati
 
ase :���(!) = �1�� + 4�
0 XTOi Si;��!2TOi � !2 (5.69)The value of the diele
tri
 
onstant along some dire
tion q̂ = (qx; qy; qz) is evaluated from:�q̂(!) =X�� q����(!)q� (5.70)We obtain for the stati
 diele
tri
 
onstant (! = 0) a value of 33.09 along the ferroele
-tri
 axis and of 68.89 perpendi
ularly to it. In both dire
tions, the main ioni
 
ontribution
omes from the TO2 modes (73% and 62% respe
tively). This is another manifestation ofthe large e�e
tive 
harge of this mode. The large anisotropy of the stati
 diele
tri
 tensoris asso
iated with the smaller value of Z� and �1 along the ferroele
tri
 dire
tion.The determination of the low frequen
y diele
tri
 
onstant is sometimes asso
iated toa measurement of the re
e
tivity R(!) of opti
al waves normal to the surfa
e, with theirele
tri
 �eld along an opti
al axis of the 
rystal q̂, and de�ned as:R(!) = j�1=2q̂ (!)� 1�1=2q̂ (!) + 1 j2 (5.71)The result is presented in Fig. 5.1 10 for q̂ aligned along the ferroele
tri
 dire
tion.Unfortunately, no experimental data 
an be 
ompared to our theoreti
al results.10The saturation to one observed for the 
urve of Fig. 5.1 is due to the absen
e of damping.
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e
tivity of rhombohedral BaTiO3, with q̂ along the ferroele
tri
dire
tion.5.6 Origin of the ferroele
tri
 instabilityIn the previous Se
tion we have reported �rst-prin
iples results 
on
erning the � phononsof BaTiO3. We have 
hara
terized the unstable mode in the experimental 
ubi
 phase.It seems now important to investigate the mi
ros
opi
 origin of the stru
tural instabilityand the reason of its disappearan
e in the rhombohedral phase or in our 
ompressed 
ubi
stru
ture.5.6.1 The model of Co
hranDuring the sixties, Co
hran [17℄ investigated the dynami
s of ABO3 
ompounds withina shell model approa
h and he related the ferroele
tri
 transition to the softening of atransverse opti
 phonon at the � point. In his model, the interatomi
 for
es are sepa-rated into two parts: the short range for
es and the long range Coulomb (dipole-dipole)intera
tion. In this framework, he was able to isolate the 
ontribution of ea
h kind offor
e on the frequen
y of the transverse modes and to identify the stru
tural instabilitywith the possible 
an
ellation of the two terms. This 
ompetition between for
es, �rstsuggested by Slater [15℄, is still now usually invoked to explain the mi
ros
opi
 origin ofthe ferroele
tri
ity [93, 98, 44℄.The polarizable ion model of Co
hran is a simple appli
ation of the latti
e shell-model.For simpli
ity, it will be des
ribed here in the simple 
ase of a one-dimensional latti
e. It
an be easily generalize for three dimensional systems.Linear atomi
 
hainLet us 
onsider the atomi
 
hain of Fig. 5.2. Ea
h unit 
ell of latti
e parameter a 
ontainstwo atoms : one 
ation of mass m+ and stati
 
harge +Z and one anion of mass m� and
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harge �Z. The anion 
onsists of a spheri
al ele
troni
 shell of negligible mass 11and 
harge �Y 
oupled to an ion 
ore of 
harge +X and mass m�. The 
harge neutralityimposes the relation X�Y = �Z. The 
ation is 
onne
ted to the anion-shell by a springof for
e 
onstant f . The anion 
ore and shell are 
onne
ted through a spring of for
e
onstant k. For the j-th 
ell, the relative displa
ements of the 
ation, anion-
ore andion-shell are respe
tively u+(j), u�(j) and v(j).

Figure 5.2: Shell-model of Co
hran with a polarizable anion : the 
ase of a linear diatomi

hain.Mi
ros
opi
 approa
hEquations of motionWhen the atoms are displa
ed from their equilibrium positions they experien
e for
esdue to (i) the short-range intera
tions with the neighboring atoms des
ribed by 
ore-shell springs and (ii) a long-range Coulomb intera
tion. As usual within a shell-modelapproa
h, the latter is des
ribed by the produ
t of the 
ore or shell 
harge by the lo
al�eld indu
ed by all the other atoms. The resulting equations of motion for 
ores and shellare : m+�u+(j) = f [v(j) + v(j + 1)� 2u+(j)℄ + ZElo
m��u�(j) = k[v(j)� u�(j)℄ +XElo
 (5.72)0 = f [u+(j) + u+(j � 1)� 2v(j)℄ + k[u�(j)� v(j)℄� Y Elo
11This assumption is equivalent to the adiabati
 approximation
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hain, the displa
ements, solutions of these equations, have the generalform : u+(j) = U+ei[q:(ja)�!t℄; u�(j) = U�ei[q:(ja)�!t℄; v(j) = V ei[q:(ja)�!t℄: (5.73)In what follows we will fo
us only on � modes su
h that q = 0. Introdu
ing, for thisspe
i�
 
ase, the displa
ements in the equations of motion, we get:m+!2U+ = F (U +W )� ZElo
m�!2U� = kW �XElo
 (5.74)0 = F (U +W ) + kW � Y Elo
where we have de�ned F = 2f , U = U+�U� and W = U�� V . The last equation yieldsrelative 
ore-shell displa
ement W = �FU � Y Elo
k + F (5.75)so that only the displa
ements of the two ion 
ores must be expli
itely 
onsidered. Weobtain therefore two equations des
ribing the movement of the two ions:m+!2U+ = �U � Z�SElo
 (5.76)m�!2U� = ��U + Z�SElo
 (5.77)We have introdu
ed a global e�e
tive for
e 
onstant between both ions� = FkF + k (5.78)in
luding both short-range intera
tions and intra-ioni
 for
es, and the Szigeti 
harge 12Z�S = Z � FF + kY (5.79)whi
h is an e�e
tive dynami
al 
harge in
luding the stati
 
harge and the e�e
t resultingfrom 
ore-shell deformations.The energy of the ioni
 
hain is invariant under translation so that only the relativedispla
ement U of both type of ions is important. Introdu
ing the redu
ed mass � =m+m�=(m++m�), we �nally obtain the following equation of motion for relative anion-
ation displa
ements: �!2U = �U � Z�SElo
 (5.80)12The dynami
al 
harge appearing here is the 
harge experien
ed in the lo
al ele
tri
 �eld. From thedis
ussion of Chapter 2, it 
orresponds therefore to the Szigeti 
harge. This will appear more 
learlyfrom Eq. (5.82) where it is shown that it 
orresponds to �P=�U in zero lo
al �eld.
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ies ! still requires to identify the rela-tionship between the lo
al �eld and the atomi
 displa
ements.Lo
al �eld, atomi
 polarizability and Szigeti 
hargeFrom Eq. [5.48℄-[5.47℄, the lo
al �eld is dire
tly related to the ma
ros
opi
 polariza-tion : Elo
 = 4�3 
P (5.81)with 
 = 1 for transverse modes and to �2 for longitudinal modes. The polarization 
anbe de
omposed into ioni
 and ele
troni
 
ontributions :P = Pi + Pe= 1
[ZU � YW ℄= 1
[ZU + Y FU � Y Elo
k + F ℄= 1
[(Z + Fk + F Y )U + Y 2k + F Elo
℄= 1
Z�SU + 1
 (Y )2(k + F )Elo
 (5.82)This allows to write the total polarization as the sum of two terms :P = 1
Z�SU + 1
�eElo
 (5.83)where we have introdu
ed the ele
troni
 polarizability :�e = Y 2k + F (5.84)Introdu
ing this result in Eq. 5.81, we get a relationship between the lo
al �eld andthe atomi
 displa
ements : Elo
 = 4�
3
 Z�S(1� 4�
�e3
 )U (5.85)This allows to write the polarization in terms of the Szigeti 
harge and the ioni
polarizability : P = 1
 Z�S(1� 4�
�e3
 )U (5.86)Transverse and longitudinal frequen
ies
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ing the expression of Elo
 in the equation of motion, we obtain :�!2 = �� (Z�S)2( 3
4�
 � �e) (5.87)This yields the following frequen
ies:!2TO = 1� [�� 4�3
 (Z�S)2(1� 4��e3
 ) ℄ (5.88)!2LO = 1� [� + 8�3
 (Z�S)2(1 + 8��e3
 ) ℄ (5.89)Transverse and longitudinal frequen
ies are not identi
al due to the di�erent 
onditionon the ele
tri
 �eld. Both frequen
ies result from 
ontributions from short-range andCoulomb for
es.Ma
ros
opi
 approa
hMa
ros
opi
 �eld, diele
tri
 
onstant, Born e�e
tive 
hargeInstead of working in terms of lo
al quantities (lo
al �eld, polarizability, Szigeti
harge), we 
an reformulate the previous relations in terms of ma
ros
opi
 
on
epts :ma
ros
opi
 �eld, diele
tri
 
onstant, Born e�e
tive 
harges.In the Lorentz approximation, the ma
ros
opi
 �eld is related to the lo
al �eld throughElo
 = E + 4�3 P (5.90)so that the polarization takes the form :P = 1
Z�SU + �eE(1� 4��e3
 ) (5.91)The ele
troni
 
ontribution to the diele
tri
 
onstant is related to the 
hange of polariza-tion in an ele
tri
 �eld and 
orresponds to :�1 = 1 + 4��P�E jU=0= 1 + 4��e
 ( 11� 4��e3
 ) (5.92)The Born e�e
tive 
harge 
orresponds to the polarization indu
ed by an atomi
 displa
e-ment in zero-�eld and is therefore equal toZ�T = 
�P�U jE=0= Z�S(1� 4��e3
 )= �1 + 23 Z�S (5.93)
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over the usual relationship between Born and Szigeti 
harges.In terms of these ma
ros
opi
 quantities, the polarization therefore writes :P = 1
Z�TU + �1 � 14� E (5.94)Introdu
ing this relation in Eq. 5.81, we get the relationship between the lo
al �eld andma
ros
opi
 quantities : Elo
 = 4�3
Z�TU + �1 + 23 E (5.95)Transverse and longitudinal frequen
iesUsing the previous relationships, the equations of motion be
ome :�!2 = (� + 4�
 Z�2T�1 + 2)U + Z�TE (5.96)The transverse and longitudinal modes 
orrespond respe
tively to the 
ondition E = 0and E = �4�P. This yields the following frequen
ies:!2TO = 1� [(�� 4�
 Z�2T(�1 + 2))℄ (5.97)!2LO = 1� [(�� 4�
 Z�2T(�1 + 2)) + 4�
 Z�2T�1 ℄ (5.98)These equations are stri
tly equivalent to those dedu
ed from the mi
ros
opi
 approa
h.We observe that we re
over the usual expression for the LO-TO splitting in terms of theBorn e�e
tive 
harges and the opti
al diele
tri
 
onstant.Stru
tural instabilityThe previous model gives some insight on the origin of the instability of the ferroele
tri
mode. As �rst highlighted by Co
hran, the TO frequen
y results from the 
ompensationbetween two 
ontributions. The �rst one arises from what we will refer to as the short-range for
es. It is positive whi
h means that it tends to stabilize the 
rystal. The se
ond
omes from the long range Coulombi
 intera
tion and, 
onsequently to the opposite 
hargeof both kind of ions, it is negative so that it is destabilizing.An instability, 
hara
terized by an imaginary frequen
y, takes pla
e when the Coulom-bi
 intera
tion is suÆ
iently large to 
ompensate the short-range for
es. Histori
ally, theapproa
h was 
arried out using the mi
ros
opi
 approa
h and it was usually assumed thatthe instability o

urs from unusual divergen
e of the ele
troni
 polarizability. From thema
ros
opi
 expression, we see this 
an alternatively be explained from unusually highBorn e�e
tive 
harges. From the results of Chapter 2 and as it will be redis
uss in thefollowing of this Chapter, the se
ond interpretation is more appropriate.
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iples approa
hIn spite of its meaningful 
hara
ter, the approa
h of Co
hran is only qualitative. The pa-rameters to be in
luded in the shell-model are not known a priori. Moreover, the Coulom-bi
 energy is obtained through questionable approximations. In parti
ular, the Coulombintera
tion is estimated within a Lorentz �eld approa
h assuming a lo
al spheri
al sym-metry at ea
h atomi
 site, while it was shown by Slater [15℄, before Co
hran's study,that the lo
al symmetry is far from spheri
al in BaTiO3. In his work, Slater 
omputedthe Lorentz �eld expli
itly by summing dipole-dipole intera
tions following Luttinger andTisza [228℄.In what follows, we will propose a model to separate the Coulomb intera
tion fromthe remaining short-range for
es within our �rst-prin
iples approa
h. This model willallow to quantify the role played by both kind of for
es in the ferroele
tri
 instability ofBaTiO3.When an atom is displa
ed in BaTiO3, a dipole is 
reated so that the spe
i�
 displa
e-ment pattern asso
iated to a given phonon generates a latti
e of dipoles. Our purpose isto 
ompute the resulting dipole-dipole intera
tion by summing the di�erent 
ontributionsinstead of approximating them through the lo
al �eld as in the previous shell-model.The 
onventional dipole-dipole energy between two dipoles ~p1 and ~p2 in va
uum, sep-arated by the ve
tor ~d is given by [229℄:EDDe+i = 14��0 (~p1:~p2) d2 � 3 (~p1:~d) (~p2:~d)d5 (5.99)with �0 being the va
uum permittivity, so that, in atomi
 units, 14��0 is equal to 1.In solids, the dipole 
reated by an atomi
 displa
ement �0�;� is p� = P� Z��;��:�0�;�,while the polarizability of the medium is to be des
ribed by the diele
tri
 permittivitytensor �1��. For the 
ase where �1 and Z� tensors are isotropi
, the 
ontribution to theinteratomi
 for
e 
onstant of the dipole-dipole intera
tion 
reated by the displa
ement ofatoms 0� and j�0, separated by ~d = (~Rj + ~��0 � ~��) is [230℄:CDD��;�0�(0; j) = Æ2EDDe+iÆ�0�;�Æ�j�0;� = Z��Z��0�1 (Æ��d3 � 3d�d�d5 ) (5.100)The generalization of this formula was proposed for the 
ase of anisotropi
 Z�� and �1tensors [231℄:CDD��;�0�(0; j) =X�0�0 Z��;��0 Z��0;��0 (det �1)� 12 �(��11 )�0�0D3 � 3��0��0D5 � (5.101)where �� = P�(��11 )�� d�, and D = p~�:~d. The previous result has been obtainedin real spa
e. The 
orresponding dipole-dipole 
ontribution to the dynami
al matrix inre
ipro
al spa
e, ~CDD, 
an be obtained using Ewald summation te
hnique [231℄.
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ontributions (see text) to the TO mode frequen
y squared(
m�2) for the 
ubi
 phase at the optimized volume. Values in bra
kets where obtainedwith the s
issors 
orre
ted value of �1.F1u(TO1) F1u(TO2) F1u(TO3) F2u!2DD -625897 7232 -130549 109745(-745610) (8615) -155518) 130736)!2SR 613107 26538 361998 -26951(732820) (25155) (386967) (-47942)!2 -12790 33770 231449 82794Note that, in this formulation, the ma
ros
opi
 �1 is used to parametrize the dipole-dipole intera
tions down to nearest neighbors; no 
orre
tion for the q-dependen
e of �1and Z� is in
luded. This pro
edure seems however the natural generalization of theprevious 
omputation of the Lorentz �eld by Luttinger and Tisza [228℄. It will be usedto generalize Co
hran's results on the basis of our �rst-prin
iples approa
h [53℄.The dynami
al matrix ~C was obtained expli
itly from our ab initio 
al
ulations. Usingthe above-mentioned analyti
 form, we 
an now isolate the model dipole-dipole (DD)
ontribution 13 from the remaining short-range (SR) part 14 of this dynami
al matrix ina way similar to the one of Co
hran [17℄: ~C = ~CDD + ~CSR. The partial 
ontributions to!2 are then evaluated as follows:h�j ~Cj�i| {z }!2 = h�j ~CDDj�i| {z }!2DD + h�j ~CSRj�i| {z }!2SR (5.102)where � is an eigenve
tor of the full dynami
al matrix ~C. Finally, ~CDD and ~CSR 
analso be modi�ed independently in order to investigate their respe
tive in
uen
e on theinstable mode.5.6.3 Cubi
 phaseWe �rst 
ompute the de
omposition for the 
ubi
 phase at the optimized volume. InTable 5.7, we report the values of !2DD and !2SR for the TO modes. We observe thatthe small instability of the F1u(TO1) mode originates from the 
ompensation of twovery large numbers: The DD intera
tion greatly destabilizes the 
rystal and is only13The dipole-dipole intera
tion 
annot be properly separated from other intera
tions at short distan
es.We 
hose to work with a model intera
tion that is mathemati
ally unambiguous. All the deviations withrespe
t to this model intera
tion (that will probably appear at short distan
es) will be in
luded in theSR part.14The SR part also 
ontains higher Coulomb terms like dipole-o
tupole and o
tupole-o
tupole inter-a
tions.
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ompensated by the SR 
ontribution. This result 
on�rms, in the frameworkof a more a

urate approa
h, the idea suggested by Co
hran, and usually referred to asthe origin of the ferroele
tri
 instability. Interestingly, the 
lose 
ompensation exists forthe unstable mode only. The giant destabilizing DD intera
tion of this mode is inherentto its anomalously large mode e�e
tive 
harge that was dis
ussed previously.It is now possible to investigate the sensitivity of this 
ompensation. In the 
ubi
phase, it was shown that the large values of Z�T i and Z�Ok (responsible of the strongCoulomb intera
tion) are mainly produ
ed by a dynami
 transfer of 
harge along theTi-O bond [120℄. Postulating ~CSR to be �xed, we 
an �
titiously redu
e this transferof 
harge by de
reasing simultaneously Z�T i and Z�Ok, and monitor the F1u(TO1) modefrequen
y 
hanges 15. Figure 5.3 shows that !2(TO1) evolves approximately linearly with
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Figure 5.3: Evolution of the F1u(TO1) mode frequen
y squared and of its partial SR andDD 
ontributions with respe
t to the dynami
 transfer of 
harge along the Ti-O bond(quanti�ed here by the evolution of Z�T i, see text), in the optimized 
ubi
 phase. Theopen 
ir
les 
orrespond to the evolution when taking into a

ount the modi�
ation ofeigenve
tor produ
ed by the 
hange of ~CDD, while the 
rosses show the result obtainedwhen keeping the initial eigenve
tor of the unstable mode in the optimized 
ubi
 phase.A zoom around zero frequen
y is shown in the inset.the transfer of 
harge and that a 
hange 
orresponding to a redu
tion of the order of 1% of15When 
hanging Z� and/or �1, ~CDD is repla
ed by ~C 0DD and the modi�ed full dynami
al matrix( ~C 0 = ~C 0DD+ ~CSR) has new eigenve
tors �0. The matrix elements giving !2, !2DD and !2SR are 
al
ulatedusing �0. Results are however also presented when keeping the eigenve
tor of the initial full dynami
almatrix, in order to investigate the role of the 
hange of eigenve
tor from � to �0. As � is not an eigenve
torof ~C 0, for that 
ase a �
titious total frequen
y is obtained as �!2 =< �j ~C 0DD j� > + < �j ~CSRj� >.



CHAPTER 5 : LATTICE DYNAMICS 109Z�T i is enough to suppress the instability. Of 
ourse, this situation is arti�
ial and in a realmaterial any modi�
ation of Z�� would be asso
iated with a 
hange of the SR for
es. Thisresult however highlights the very deli
ate nature of the 
ompensation existing betweendipole-dipole and short range intera
tions.Interestingly, if we plot the evolution of partial SR and DD 
ontributions with thetransfer of 
harge des
ribed by the evolution of Z�T i (see Fig. 5.3), we observe that !2SR isalso modi�ed: be
ause ~CSR was kept 
onstant, this is due to the 
hange of the eigenve
tor� indu
ed by the modi�
ation of ~CDD. This 
hange of � is however not 
ru
ial and a similarevolution of !2 is observed if we keep the eigenve
tor of the original optimized stru
ture.We 
he
ked that all these 
on
lusions are independent of the use of the s
issor 
orre
-tion for �1. From now on, we report only results obtained without s
issors 
orre
tion.5.6.4 Rhombohedral phaseThe eigenve
tor of the A1(TO2) modes of the rhombohedral stru
ture remains very 
loseto that of the unstable F1u(TO1) mode of the 
ubi
 phase (see Table 5.6). Surprisinglythe displa
ement of the Ti atom against the O 
age has now be
ome stable. It was foundthat the Z�� are smaller in this ferroele
tri
 phase, suggesting a smaller DD intera
tion,but this 
ould be partly 
ompensated by a 
on
omitant redu
tion of �1. For the A1(TO2)mode 
oming from the soft mode, !2DD (-286267 
m�2) is 
ounterbalan
ed by a slightlylarger SR 
ontribution (356373 
m�2). The values di�er widely from those of the 
ubi
phase: The SR for
es give less stabilization (so a priori in
reasing the instability) butthis is 
ompensated by a larger redu
tion of the DD 
ontribution.If we �
tively modify ~CDD and repla
e Z�� and �1 of the ferroele
tri
 stru
ture bytheir value in the 
ubi
 phase 16, we modify the frequen
y of the A1(TO2) mode from 265to 266i 
m�1: We obtain an instability even larger than in the 
ubi
 phase. From thispoint of view, the redu
tion of Z�� in the rhombohedral phase appears as a 
ru
ial elementto the stabilization of the A1(TO2) mode.Introdu
ing Z�� and �1 of the 
ubi
 phase, we also have strongly modi�ed !2DD and!2SR that be
ome respe
tively equal to -871017 and 800371 
m�2. The drasti
 
hange of!2SR results only from the 
hange of eigenve
tor � ( ~CSR was not modi�ed) and points outthe anisotropy of the SR for
es (the overlap between the new and original eigenve
tor isequal to 0.86). If we had kept the eigenve
tor un
hanged, we would still have observed asmall instability (74i 
m�1) for the A1(TO2) mode. This means that the in
lusion of thee�e
tive 
harges of the 
ubi
 phase is already suÆ
ient to destabilize the 
rystal, but atthe same time produ
es a 
hange of eigenve
tor enlarging the instability.5.6.5 Compressed 
ubi
 phaseNo more instability is present in the 
ompressed 
ubi
 phase, although the global values ofZ�� do not di�er signi�
antly from those obtained at the optimized volume[120℄. Moreover,the redu
tion of volume even in
reases the destabilizing e�e
t of the DD intera
tion by16See previous footnote.
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alling �optTO1 the eigenve
tor of the soft TO1 mode of the optimized phase and ~CoptDD(resp. ~C
ompDD ) the dipole-dipole part of the dynami
al matrix of the optimized (resp.
ompressed) 
ubi
 phase, we obtain:< �optTO1j ~CoptDDj�optTO1 >= �625897
m�2; (5.103)while < �optTO1j ~C
ompDD j�optTO1 >= �775203
m�2: (5.104)In fa
t, for this 
ompressed 
ubi
 phase, the modi�
ations of the SR for
es alone areenough to produ
e a mixing of modes so that no single mode 
an still be identi�ed withthe unstable one observed at the optimized volume (see Table III). Consequently, none ofthe mode of this 
ompressed 
ubi
 phase develops the giant DD or SR 
ontributions thatare a parti
ular feature of the displa
ement pattern asso
iated to the ferroele
tri
 mode.If we repla
e ASR by its value at the optimized volume we re
over a very large instabil-ity (437i 
m�1). The disappearan
e of the unstable mode under pressure seems thereforeessentially 
onne
ted to a modi�
ation of the SR for
es in 
ontrast to its stabilization inthe rhombohedral phase whi
h is asso
iated with a redu
tion of Z��.5.6.6 From ele
troni
 to dynami
al propertiesSin
e it was introdu
ed by Co
hran during the sixties, the soft-mode pi
ture is 
onsideredas a key 
on
ept to explain the ferroele
tri
 phase transition in ABO3 
ompounds. More-over, the 
ompeting role of the short-range and Coulomb intera
tions, invoked to justifyqualitatively the appearan
e of an instability, is still usually 
onsidered as the mi
ros
opi
origin of the ferroele
tri
 instability.In this Chapter, we have proposed a model to quantify from our �rst-prin
iples resultsthe respe
tive role played by both kind of for
es. We have justi�ed on a more rigorousbasis the gratifying explanation of Co
hran. Doing that, we were going even further inthe mi
ros
opi
 understanding of the ferroele
tri
 instability. The giant dipole-dipoleintera
tion, able to 
ompensate the stabilizing short-range for
es is 
onne
ted to the largeanomalous e�e
tive 
harges in turn explained by dynami
 
hanges of orbital hybridizationbetween O 2p and Ti 3d states.Cohen and Krakauer [93℄ re
ently dis
ussed the importan
e of the O 2p { Ti 3dhybridization on the ferroele
tri
 instability of BaTiO3: they suggested that this hy-bridization should redu
e the short-range for
es. If their argument remains pertinent, ourstudy has emphasized that dynami
 
hange of hybridization will also greatly enhan
e thedestabilizing role of the Coulomb intera
tion. It is our 
hoi
e to attribute the ferroele
tri
instability to this latter unexpe
ted feature. Hybridizations are indeed not a spe
i�
 
har-a
ter of ABO3 
ompounds but are also 
ommon to a large variety of other materials. Thepe
uliarity of the hybridization in BaTiO3 (and related 
ompounds) stays in the fa
t thatit 
on
erns o

upied and uno

upied orbitals and is able to generate giant Born e�e
tive
harges as dis
ussed in Chapter 5.
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losely related to the unusual non-linear anisotropi
 polarizability ofthe oxygen reported by Migoni, Bilz and B�auerle [22℄, and that is still usually 
onsideredas the origin of the ferroele
tri
ity in ABO3 
ompounds [232, 25, 23, 24, 141, 26, 233℄. Inparti
ular, our work 
on�rms the important role plays by the hybridization between the2p-states of oxygen and the d-states of the B atom. In our approa
h, however, the me
ha-nisms of polarization have been 
lari�ed: they have been reformulated in terms of dynami
transfer of 
harge and the interplay between ele
troni
 and dynami
 properties has beenpresented within a 
oherent approa
h. In our des
ription, the Born e�e
tive 
harge wasintrodu
ed as a key 
on
ept for the understanding of the ferroele
tri
 instability.Interestingly, we have shown that the balan
e of for
e is deli
ate and strongly sensitiveto small 
hanges like tiny modi�
ation of the Born e�e
tive 
harges. The redu
tion of Z�is suÆ
ient to suppress the instability in the rhombohedral phase while a modi�
ation ofthe short-range for
es is likely at the origin of the stabilization of the ferroele
tri
 modeunder isotropi
 pressure.The previous results are not spe
i�
 to BaTiO3. A similar balan
e of for
es wasidenti�ed in SrTiO3 and LiNbO3. WO3, that undergoes a sequen
e of ferroele
tri
 phasetransitions, also presents large anomalous Born e�e
tive 
harges [177℄. The 
ompetitionbetween short range and Coulomb for
es should be a 
hara
teristi
 of ABO3 perovskitesand related materials. Due to the deli
ate nature of the balan
e of for
es, it is however notsurprising to observe that 
losely related materials do not ne
essarily present the sameferroele
tri
 instability, that remains a vagary of Nature 17.5.7 Irredu
tible representation at di�erent high sym-metry q-pointsUp to know, we fo
used on the � phonons and this already allowed to address someinteresting questions. The formalism previously reported does however not restri
t to thisspe
i�
 
ase and the dynami
al matrix 
an be obtained everywhere within the Brillouinzone. In this Se
tion we report results obtained at di�erent high symmetry points.As some of the properties of the normal modes of vibrations are a dire
t 
onsequen
eof the spe
i�
 symmetry of the 
rystal (degenera
ies of di�erent frequen
ies, separationinto longitudinal and transverse vibrations), a 
areful analysis of the symmetry may re-veal useful for 
lassifying the di�erent phonon modes. As mentioned in Chapter 2, thestru
ture of most ABO3 
ompounds is 
ubi
 perovskite and its spa
e group is Pm3m.The determination of the irredu
ible representations at high symmetry q points and alonghigh symmetry lines of the Brillouin zone has been reported by Cowley [144℄. The no-tations are summarized in Table 5.8 18. This Table gives us a �rst information on thephonon mode degenera
y that are expe
ted at the di�erent q points. Simultaneously, thesymmetry of the di�erent normal mode of vibration imposes 
onstraints on the asso
iated17We note also that the arguments presented here are only part of a more 
omplex problem: forinstan
e, the ma
ros
opi
 strain also plays a major role in the phase transition.18At the � point, these notations di�er from that used in the previous Se
tion.
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ible representations at high symmetry q points and along high symmetrylines of the Brillouin zone as reported by Cowley for the 
ubi
 phase of ABO3 perovskitematerials. q ve
tor little group irredu
ible representation(0; 0; 0) m3m 4�15 + �25(0; 0; q) 4mm 4�1 +�2 + 5�5(0; 0; 12) 4=mmm 2X1 + 2X20 +X3 + 3X5 + 2X50(q; q; 0) mm 5�1 + �2 + 5�3 + 4�4(12 ; 12 ; 0) 4=mmm M1 +M2 +M20 +M3+2M30 +M4 +M5 + 3M50(q; q; q) 3m 4�1 + �2 + 5�3(12 ; 12 ; 12) m3m R20 +R120 +R25 +R250 + 2R15atomi
 displa
ement pattern that were also identi�ed by Cowley in Ref. [144℄. The 
ombi-nation of the informations given by the degenera
y and by the phonon eigenve
tors allowto label unambiguously the di�erent phonon modes. As an example, results obtained inthe 
ubi
 phase of BaTiO3 at the experimental volume are reported in Table 5.9. This
lassi�
ation and the identi�
ation of the phonon modes at high symmetry q-points willappear parti
ularly useful in Chapter 6 when 
onstru
ting an e�e
tive Hamiltonian forABO3 perovskite 
ompounds.5.8 Interpolation of phonon dispersion 
urvesAs illustrated in the previous Se
tion, the dynami
al matrix 
an be a priori 
al
ulatedeverywhere within the Brillouin zone. However, for 
omputational reasons, 
al
ulationsare usually restri
ted to a small set of waveve
tors. A mathemati
al interpolation te
h-nique must therefore be used to dedu
e the full phonon dispersion 
urves. Moreover, anumeri
al integration is required to determine the interatomi
 for
e 
onstants (IFCs) byinverting Eq. (5.8). Both these problems will be addressed simultaneously [230, 231, 84℄.If the dynami
al matrix was known everywhere in the Brillouin zone, the IFCs 
ouldbe built as: C��;�0�(0; b) = (2�)3
0 ZBZ ~C��;�0�(q)eiq�Rbdq (5.105)When the dynami
al matrix is known only on a regular grid S of (l �m � n) points inthe Brillouin zone, the use of a dis
rete Fourier transform, that will generate approximateIFCs in a large box made of (l �m� n) periodi
 
ells, is tempting. Outside of this box,



CHAPTER 5 : LATTICE DYNAMICS 113Table 5.9: Computed phonon frequen
ies (
m�1) of 
ubi
 BaTiO3 (ao=4 �A) at � (0,0,0),X (.5, 0,0), M (.5, .5, 0) R (.5, .5, .5) and at a few points along the �-R dire
tion: � 18(.125, .125, .125), � 14 (.25, .25, .25) and � 38 (.375, .375, .375). The 
omputation of thesplitting at the � was performed without s
issor 
orre
tion.q label frequen
y label frequen
y� �15 (TO) 219 i �25 281�15 (A) 0 �15 (LO) 445�15 (LO) 159 �15 (TO) 453�15 (TO) 166 �15 (LO) 631X X5 189 i X3 322X50 104 X50 330X20 146 X5 421X5 194 X1 517X1 260 X20 627M M30 167 i M5 344M20 103 M2 354M50 104 M50 435M3 208 M1 456M50 270 M4 683M30 333R R15 128 R250 386R25 182 R15 414R120 314 R20 717� 18 �3 137 i �2 272�3 70 �3 310�1 103 �3 447�1 180 �1 461�3 184 �1 645� 14 �3 96 �1 277�1 105 �3 358�3 190 �3 428�3 221 �1 467�2 244 �1 679� 38 �1 115 �1 354�3 121 �3 381�3 204 �3 414�2 205 �1 440�3 290 �1 708



CHAPTER 5 : LATTICE DYNAMICS 114the IFCs are supposed to vanish:C��;�0�(0; b) = 1Nq Xq2S ~C��;�0�(q)eiq�Rb if Rb + � � � � 0� 2 box= 0 if Rb + � � � � 0� 62 box (5.106)The vanishing of the IFCs beyond some distan
e is intrinsi
 to the dis
rete Fourier trans-form te
hnique. If the integrand in Eq. (5.105) was in�nitely di�erentiable, then the IFCsshould de
rease exponentially fast, and this 
ondition would not be a pra
ti
al limitation.However, for insulators with non-vanishing e�e
tive 
harges, 
lose to q = 0, the behaviorof the dynami
al matri
es is strongly non-analyti
al: it depends on the dire
tion alongwhi
h q = 0 is attained.In the real spa
e, this non-analyti
al behavior (due to the Coulomb intera
tion) 
or-responds to long-range IFCs, with an average 1=d3 de
ay (d being the distan
e betweenatoms), 
orresponding to dipole-dipole intera
tions. Even if the Born e�e
tive 
harge van-ishes (this may be imposed by symmetry 
onstraints, in elemental 
rystals), the atomi
displa
ement will 
reate a quadrupole or an o
tupole (the latter 
annot be forbidden bysymmetry reasons), with 
orresponding quadrupole-quadrupole 1=d5 de
ay, or o
tupole-o
tupole 1=d7 de
ay.The non-analyti
ity 
orresponding to the dipole-dipole intera
tion is the strongest.The idea that is proposed is to subtra
t this term from the other 
ontributions and totreat it expli
itly.In this 
ontext a short range dynami
al matrix is introdu
ed:~CSR��;�0�(q) = ~C��;�0�(q)� ~CDDEw;��;�0�(q): (5.107)It is expe
ted that these for
es are suÆ
iently short range so that their inverse Fouriertransform 
an be approximated with good a

ura
y by:CSR��;�0�(0; b) = 1Nq Xq2S ~CSR��;�0�(q)e�iq�Rb if Rb + � � � � 0� 2 box= 0 if Rb + � � � � 0� 62 box: (5.108)The total interatomi
 for
e 
onstants in real spa
e, are then obtained as:C��;�0�(0; b) = CSR��;�0�(0; b) + CDDEw;��;�0�(0; b) (5.109)The dipole-dipole part to be added to the short-range part is 
omputed expli
itly: it isgiven by Eq. (5.101), dis
ussed in Se
tion 7.5. Its Fourier transform had been previouslysubtra
ted in Eq. (5.107). This 
ontribution of the dipole-dipole intera
tion in re
ipro
alspa
e may be evaluated using Ewald summation te
hnique as des
ribed in Ref. [231℄.This te
hnique does not only allow to get the IFCs, but it also permits an easy inter-polation of the dynami
al matrix a
ross the full Brillouin zone, with~C��;�0�(q) = Xdb2boxCSR��;�0�(0; b)eiq�Rb + ~CDDEw;��;�0�(q): (5.110)



CHAPTER 5 : LATTICE DYNAMICS 115To summarize, the full phonon dispersion 
urves 
an in pra
ti
e be determine from theknowledge of the dynami
al matrix on a relatively restri
ted mesh of q-points, even forioni
 
ompounds and in spite of the long-range 
hara
ter of the Coulomb intera
tion. Theinterpolation te
hnique basi
ally 
onsists in a double dis
rete Fourier transform on theshort-range part of the dynami
al matrix while the long-range dipole-dipole intera
tionis treated separately. The 
onvergen
e of the results so obtained must be 
he
ked whenusing q point meshes of in
reasing size until a suÆ
ient a

ura
y has been rea
hed.5.9 The phonon dispersion 
urves of BaTiO3The previous interpolation te
hnique 
an now be applied to BaTiO3. Our 
al
ulationsare performed at the experimental latti
e parameter of 4.00 �A. This 
hoi
e fa
ilitatesthe 
omparison with the experimental data. Some indi
ations on the volume dependen
eof the phonon frequen
ies 
an be found in Se
tion 7.4, where the frequen
ies of the �phonons at di�erent latti
e 
onstants have been 
ompared.5.9.1 Te
hni
al remarksPrior to the presentation of the results, it is ne
essary to mention a few te
hni
al points.
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Figure 5.4: Convergen
e a
hieved on the 
al
ulated phonon dispersion 
urves of 
ubi
BaTiO3 along the �-R line. The open symbols 
orrespond to q-points in
luded in the M1(
ir
le) and M2 (
ir
le+square) meshes used to extrapolate the 
urves (M1: dotted lines;M2: full lines). The �lled symbols are asso
iated to points not in
luded in the mesh: theyillustrate that a satisfa
tory 
onvergen
e is obtained with the M2 mesh.
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omputation of well 
onverged phonon frequen
ies required to in
lude planewaves up to a 45 Ha energy 
uto� and a 6X6X6 mesh of spe
ial k-points. This 
uto�energy is higher from that needed for the Born e�e
tive 
harges and the diele
tri
 tensor(35 Ha). For 
oheren
y, these latter quantities were re
al
ulated. In this Chapter, we use:Z�Ba = +2:74, Z�T i = +7:32, Z�O? = �2:14, Z�Ok = �5:78, and �1 = 6.75.A se
ond point 
on
erns the diele
tri
 
onstant. The 
omputed opti
al diele
tri

onstant (6.75) largely overestimates the experimental value (5.40) [234℄, as usual withinthe LDA. A s
issor 
orre
ted value 
an be used at the � point where the long-rangepart of the dynami
al matrix is 
omputed separately. For small but �nite q ve
tor, theLDA is similarly 
awed but the intera
tion with the slowly os
illating �eld is treatedself-
onsistently with the other terms. There is therefore no dire
t s
heme to in
lude thes
issor 
orre
tion in those 
ases. Our results are reported without s
issor 
orre
tion but itwas 
he
ked that the problem related the diele
tri
 tensor has no dramati
 
onsequen
eson the phonon frequen
ies. It was observed that the dis
repan
y essentially a�e
ts theposition of the highest longitudinal opti
 mode: when repla
ing the theoreti
al diele
tri

onstant by the experimental value, its frequen
y at the � point 
hanges from 631 to696 
m�1. At the opposite, the frequen
ies of the two other longitudinal modes at the �point are a�e
ted by less than 2 
m�1. Our LDA results should therefore remain a

urateex
ept for the highest LO phonon bran
h.Finally, it is always ne
essary to investigate the error indu
ed by the use of a dis
reteFourier transform in the determination of the IFC's, and the interpolation of the dispersion
urves. An insight into the 
onvergen
e rea
hed on the phonon band stru
ture is reportedin Fig. 5.4. The frequen
ies dedu
ed from the dynami
al matrix at q = (:125; :125; :125)and q = (:375; :375; :375) are 
ompared to those extrapolated from two di�erent meshesof q-points: the �rst mesh (M1) in
ludes � (.0, .0, .0), X (.5, .0, .0), M (.5, .5, .0) and R(.5, .5, .5) points; the se
ond mesh (M2) is the 
ubi
 mesh M1 to whi
h the � (.25, .25,.25) point was added. It is observed that we obtain a very good 
onvergen
e with the M2mesh. It is this mesh that was used to obtain the results presented in the next Se
tions.5.9.2 Phonon band stru
tureThe 
al
ulated phonon dispersion 
urves [223℄ are plotted along high symmetry dire
tionsin Fig. 5.5. The �-X, �-M and �-R lines are along the <100>, <110> and <111>dire
tions, respe
tively. The unstable modes asso
iated to a negative 
urvature of theenergy hypersurfa
e have imaginary phonon frequen
ies.Our result 
an be 
ompared to the experimental data [203, 215, 216, 217, 218, 219, 220℄.However, a diÆ
ulty arises from the fa
t that all the experimentally observed vibrationalex
itations have a real frequen
y while the 
omputed unstable modes are obtained withan imaginary frequen
y. As the soft mode 
an be 
learly identi�ed by its symmetry,the asso
iated experimental frequen
ies were removed from the 
omparison, for 
larity.In the low-frequen
y region, the presen
e of this additional soft mode may have slightlymodi�ed the frequen
y of the other modes. In spite of these diÆ
ulties we observe a good
orresponden
e between our theoreti
al frequen
ies and the experimental data, spe
ially
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Figure 5.5: Cal
ulated phonon dispersion 
urves of 
ubi
 BaTiO3 at the experimental lat-ti
e 
onstant. The theoreti
al result shows a reasonable agreement with the experimentaldata: (�) Ref. [3℄, (Æ) Ref. [6℄, (+) Ref. [7℄, (�) Ref. [8℄, (�) Ref. [9℄, (r) Ref. [10℄, (4)Ref. [11℄.for the a
ousti
 modes for whi
h a large variety of data are available.The ferroele
tri
 phase transitions are driven by the unstable phonon modes. Weare therefore mainly 
on
erned by the analysis of these spe
i�
 phonons within the Bril-louin zone (see Fig. 5.6). Two transverse opti
 modes are unstable at the � point: they
orrespond to a displa
ement of the Ti atom against the oxygen 
age. The asso
iateddispla
ement eigenve
tor is equal to [Æ(Ba) = �0:002, Æ(Ti) = �0:096, Æ(O1) = +0:158,Æ(O2) = Æ(O3) = +0:071℄ 19. These two modes remain unstable all along the �-X line,with very little dispersion 20. One of them stabilizes along the �-M and X-M lines. Ex-amination of the eigenve
tors reveals that the unstable mode at the M (.5, .5, .0) point ispolarized along the z-dire
tion: its displa
ement eigenve
tor is equal to [Æ(Tiz) = �0:130,Æ(O1;z) = +0:106℄. Both of the unstable modes be
ome stable when deviating from thethree �-X-M planes to the R-point.These features were also observed for KNbO3 [222℄ and point out a marked 2D 
har-a
ter of the instability in the Brillouin zone. This behaviour is more easily visualized inFig. 5.7 where we show the frequen
y isosurfa
e of the lowest unstable phonon bran
h
orresponding to ! = 0. The region of instability, !2(q) < 0, lies between three pairs of19The eigendispla
ement ve
tor � was normalized su
h that < �jM j� >= 1, where M is su
h thatM =M� Æ�;�0 and M� is the mass of atom � in atomi
 mass units.20At the X point, one of the unstable mode is polarized along the z-axis and has an eigenve
tor equalto [Æ(Tiz) = �0:117, Æ(O1z) = +0:133, Æ(O2z) == +0:062℄; the other is polarized along the y dire
tion.
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Figure 5.6: Analysis of the unstable phonon mode within the Brillouin zone.
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Figure 5.7: Zero-frequen
y isosurfa
e of the lowest unstable phonon bran
h over theBrillouin zone. � is lo
ated at the 
enter of the 
ube. The mode is unstable in the regionbetween the nearly 
at surfa
es.
at surfa
es, that are parallel to the fa
es of the Brillouin zone 
ube. In other words, theunstable modes are 
ontained in three perpendi
ular interpenetrating slab-like regions of�nite thi
kness 
ontaining the � point.As highlighted by Yu and Krakauer [222℄, this behaviour 
orresponds to 
hain insta-bilities in real spa
e. At the M-point, we have seen that there is a single unstable modepolarized along the z-axis and dominated by the Tiz and O1z displa
ements. At this waveve
tor (qz = 0), the Ti and O1 atoms will be 
oherently displa
ed all along an in�nite<001> 
hain. Going now from M to the R-point, the 
oheren
y of the displa
ement willgradually disappear and a �nite length of 
orrelation will be rea
hed for whi
h the phononbe
omes stable. The �nite thi
kness of the slab region of instability therefore 
orrespondsto a minimum 
orrelation length of the displa
ement required to observe an unstablephonon mode. From Fig. 5.7, the length of the shortest unstable 
hain 
an be estimatedto 4 a
ell = 16 �A21. We note �nally, the small dispersion of the unstable mode in the�-X-M plane: it suggests a small 
orrelation of the displa
ements between the di�erentTi{O 
hains.5.9.3 The interatomi
 for
e 
onstantsIn 
ubi
 BaTiO3, we will see that the single displa
ement of a parti
ular atom neverleads to an instability: When one atom is displa
ed, a for
e is indu
ed and brings it21The length of the shortest unstable 
hain is slightly di�erent from that reported for KNbO3. Changesin material properties 
ould explain this di�eren
e although part of it 
ould be due to the di�erent k-pointand q-point 
onvergen
e a
hieved in Ref. [222℄: as observed in Fig. 5.4, the use of a �ner mesh of q-points
ould still slightly de
rease the size of the zone of instability of BaTiO3.



CHAPTER 5 : LATTICE DYNAMICS 120Table 5.10: Longitudinal (k) and transverse (?) interatomi
 for
e 
onstants (Ha/Bohr2)with respe
t to a referen
e Ti atom (Ti(0)) along the Ti-O 
hain of 
ubi
 BaTiO3.Atom Total for
e DD for
e SR for
eT i(0) +0:15215 �0:27543 +0:42758Ok(1) +0:00937 +0:23247 �0:22310T ik(2) �0:06721 �0:03680 �0:03041Ok(3) +0:01560 +0:00861 +0:00699T ik(4) �0:00589 �0:00460 �0:00129O?(1) �0:02114 �0:04298 +0:02184T i?(2) +0:00751 +0:01840 �0:01089ba
k in its initial position (the self-for
e on Ba, Ti and O is positive 22). However, itsatomi
 displa
ement simultaneously indu
es for
es on the other atoms. It is only theadditional displa
ement of some other atoms in this for
e �eld that 
an lower the totalenergy and produ
e an instability. The amplitude and the range of the interatomi
 for
e
onstants (IFC) asso
iated to this me
hanism 
an be analysed [223℄ in order to 
larify the
hain instability pointed out in the previous Se
tion. Moreover, the spe
i�
 role of thedipole-dipole intera
tion (DD) 
an be separated from that of the short-range for
es (SR).Our 
onvention is that the IFC matrix C��;�0�(a; b) whi
h relates the for
e F a�� on atom� in 
ell a and the displa
ement � b�0� of atom �0 in 
ell b is de�ned through the followingexpression: F a�� = �C��;�0�(a; b):� b�0�. The total IFC is de
omposed into a dipole-dipolepart (DD) and a short-range part (SR) , following Refs. [231, 90℄. Su
h a de
ompositionis somewhat arbitrary but is useful for understanding the mi
ros
opi
 origin of the trendsamong di�erent 
ompounds.Let us �rst investigate the IFC with respe
t to a referen
e Ti atom along a Ti-O
hain (Table 5.10). As previously mentioned, we note that the self-for
e on the Ti atomis large and positive (+0.15215 Ha/Bohr2). We observe also that the longitudinal IFCwith the �rst neighbour O atom is surprisingly small (+0.00937 Ha/Bohr2); moreover, it ispositive. The analysis of the DD and SR 
ontributions points out that these 
hara
teristi
sare the result of a destabilizing DD intera
tion, suÆ
iently large to 
ompensate the SRfor
es. It is this 
lose 
ompensation whi
h allows the displa
ement of Ti against the Oatoms. Another insight on this balan
e of for
es was already reported previously in thisChapter (see also Ref. [53, 235℄). Consequently to the very small total IFC, the Ti andO displa
ements might be relatively de
oupled.At the opposite, the DD for
es indu
ed on the next Ti atom are negative: they will
ombine with the SR for
es in order to produ
e sizable 
oupling (�0.06721 Ha/Bohr2).22The self-for
e are the following (Ha/Bohr2): Ba ! 0.08065, Ti ! 0.15215, Ok ! 0.12741, O? !0.06807.



CHAPTER 5 : LATTICE DYNAMICS 121Table 5.11: Ti-Ti longitudinal interatomi
 for
e 
onstants (Ha/Bohr2) with respe
t to areferen
e Ti atom at (.5, .5, .5).
oordinate distan
e IFC DD part SR part(.5, .5, .5) 0.0000 +0:15215 �0:27543 +0:42758(-.5, .5, .5) 7.5589 �0:06721 �0:03680 �0:03041(-.5, -.5, .5) 10.6899 �0:01114 �0:01301 +0:00187(-.5, -.5, -.5) 13.0924 �0:00643 �0:00780 +0:00065(-1.5, .5, .5) 15.1178 �0:00589 �0:00460 �0:00129Table 5.12: O{O longitudinal interatomi
 for
e 
onstants (Ha/Bohr2) with respe
t to areferen
e O atom at (.5, .5, .0).
oordinate distan
e IFC DD part SR part(.5, .5, .0) 0.0000 +0:12741 �0:35322 +0:48062(.5, .0, .5) 5.3450 �0:02838 �0:03367 +0:00529(-.5, .5, .0) 7.5589 �0:00190 �0:00314 +0:00124(.5, .5, -1.0) 7.5589 �0:03212 �0:02295 �0:00918(-.5, .0, .5) 9.2577 �0:00183 �0:00289 +0:00106(-.5,-.5, .0) 10.6899 �0:00290 �0:00111 �0:00179(-.5, .5, -1) 10.6899 �0:00415 �0:00340 �0:00078(.5, -1, -.5) 11.9517 �0:00254 �0:00246 �0:00008(-.5, -.5, -1) 13.0924 �0:00113 �0:00129 +0:00016This me
hanism is at the origin of the 
hain 
orrelation of the Ti atomi
 displa
ements.By 
ontrast, the transverse for
e on the �rst Ti neighbour is very small and 
on�rms thesmall 
orrelation of the displa
ements from 
hain to 
hain.The de
ay of the Ti{Ti and O{O longitudinal IFC with the interatomi
 distan
e 
analso be investigated. The results are reported in Table 5.11 and 5.12. It is seen that thelongitudinal IFC are anisotropi
: they propagate essentially along the Ti{O 
hain. Thisappears 
learly for the SR part. For O, the DD 
ontribution is also highly anisotropi
 dueto the anisotropy of the Born e�e
tive 
harges. The anisotropy of the IFC is inherent tothe 
hain 
orrelation.
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hain-stru
ture instabilityThe presen
e of 
hain-stru
ture instabilities in BaTiO3, is sin
e long under dis
ussion.Histori
ally, the debate was initiated during the late sixties by Comes, Lambert andGuinier [27, 224℄ who reported di�use X-rays s
attering for 
rystals of BaTiO3 and KNbO3in three set of planes normal to the 
ubi
 axis. When a s
attering is observed outside thedire
tions of di�ra
tion, it must provide from a defe
t in the 
rystal periodi
ity. Clearly,the pattern observed by Comes et al. was the �ngerprint of a linear disorder in real spa
e.The subsequent 
ontrovert was on the stati
 or dynami
 nature of this linear disorder.Interestingly, di�use X-ray s
attering is not a parti
ular feature of ABO3 
ompounds:similar features had been reported (even before Comes) by Honjo et al. [236℄, for a largevariety of materials (Si, Al, LiF, NaCl...). In most 
ases, the origin of the disorder wasidenti�ed in the thermal os
illations. For ABO3 
ompounds, it was therefore tempting tomake the 
onne
tion with Co
hran's soft-mode theory of the ferroele
tri
ity. H�uller [28℄favored this approa
h and explained the results in terms of dynami
al 
orrelations froman empiri
al model with a low frequen
y TO bran
h with 
at dispersion along < 100 >dire
tions.Di�erently, Comes et al. [27, 224℄ preferred to invoke a stati
 disorder to explain theirresults and they proposed what is now usually referred to as the 8-sites model 23. In thismodel, it is suggested that the equilibrium position of the Ti (Nb) atom is not at the
enter of the 
ubi
 unit 
ell but is slightly displa
ed along one of the <111> dire
tions.It may therefore o

upy 8 equivalent positions. In this 
ontext, the di�use s
attering isexplained by a strong 
orrelation of the Ti positions along<100> 
hains. As an additionalargument to their model, they suggested that the 
orrelation should propagate throughthe subsequent displa
ement of the O atoms in an opposite dire
tion to the Ti atoms.The 
ontroversy between the stati
 and dynami
 explanation of the linear disorder isstill now under debate. Some re
ent experiments argue in favor of the 8-sites model [239℄while other authors prefer to refer to H�uller's explanation [240℄. As already mentionedby Comes et al. [224℄, this dis
ussion is not 
entral as both approa
hes involve the sameunderlying 
on
ept of 
orrelation. The 
ru
ial question instead 
on
erns the existen
eand the me
hanisms of 
orrelation between the atomi
 displa
ements. Are atomi
 
or-relations really present? What is their mi
ros
opi
 origin? These questions were stillre
ently emphasized by Maglione and Jannot [29℄ who introdu
ed the 
on
ept of \re-laxator ferroele
tri
s", that is based expli
itly on the existen
e of these 
hain stru
ture
orrelations.In 
omplement to the experiments, the 
hain-stru
ture 
orrelation was re
ently inves-tigated from �rst-prin
iples. Early 
omputations, as those reported in Chapter 3, havepointed out the existen
e of energy wells for � soft-mode distortions that are deeper forrhombohedral than for tetragonal types of displa
ements. This seemed to be a step to-ward the 8-sites model. However, it only 
on
erned the 
ooperative displa
ement of Ba,Ti and O atoms, 
orrelated in all the di�erent unit 
ells. Consequently, it did not 
ontain23The 8-sites model is di�erent from the model reported by Mason and Matthias [237℄. It remains alsoa referen
e in spite of the existen
e of more 
ompli
ated but questionable models like in Ref. [238℄.
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Chain length (atom)Figure 5.8: Lowest eigenvalue of the restri
ted for
e 
onstant matrix asso
iated to atomi
displa
ements along a �nite Ti-O 
hain of in
reasing size.any information on the form of the energy surfa
e around a single-atom displa
ement andthe requirement (or not) of a 
orrelation to produ
e an instability.In Se
tion 7.8 we have seen that the form of the dispersion 
urves support the ideaof 
hain-
orrelation. In the previous Se
tion, we have 
learly shown that BaTiO3 is notunstable with respe
t to the displa
ement of a single atom. In this Se
tion, we willquantify with the help of a simple model the 
orrelation of the atomi
 displa
ements,required to observe an instability.Let us 
onsider that we have a bulk 
ubi
 
rystal with the atoms frozen at theirequilibrium position ��0. Then, we allow displa
ements of Ti and O atoms belonging to a[100℄ single Ti{O 
hain of �nite but in
reasing size. The total energy of this system willbe given by: E(f��g) = E(0) +Xa;� Xb;�0 C�1;�1(a; b) �a�1 � b�01where C is the interatomi
 for
e 
onstant matrix and the sum on a; � and b; �0 is restri
tedto the Ti and O atoms that are allowed to move. With the help of this equation, we 
antra
k the appearan
e of an instability in terms of the length of the 
hain of displa
edatoms. An instability will 
orrespond to a spe
i�
 displa
ement pattern that lowers thetotal energy of the system: it will be asso
iated to a negative eigenvalue of the restri
tedfor
e 
onstant matrix.In Fig. 5.8, we report the evolution of the lowest eigenvalue of the for
e 
onstantmatrix with respe
t to the length of the 
hain of moving atoms. Displa
ing only a singleatom, the for
e indu
ed on the Ti is larger than that on the O atom. With 3 atoms, weobserve, at the opposite, that the Ti-terminated 
hain (Ti{O{Ti) is more stable than theO-terminated one (O{Ti{O): it points out the important role of the Ti{Ti intera
tion.The di�eren
e between Ti and O terminated 
hains will disappear progressively with the
hain length. It is seen that an instability takes pla
e for a 
hain longer than 10 atoms
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ells). This is in 
lose agreement with the 
orrelation length estimated in theprevious Se
tion. It suggests that the behaviour of BaTiO3 is already well reprodu
edwhen 
onsidering the present isolated Ti{O 
hain of displa
ements. It 
on�rms also thatthe 
orrelation between the di�erent 
hains may play a minor role.Going further, it seems interesting to 
he
k the role of the small 
oupling between Tiand O displa
ements. Freezing all the O atoms in su
h a way that only the Ti atomsare allowed to move along the 
hain, we 
an repeat the previous 
al
ulations. For this
ase, however, we do not observe any instability even for an in�nite 
hain of 
orrelated Tidispla
ements. This result aims to prove that the relatively weak 
oupling between Ti andO displa
ements still remains an important feature in the appearan
e of the stru
turalinstability.Our 
al
ulations, performed within the harmoni
 approximation at zero temperaturedoes not allow to dis
riminate between the 8-sites and H�uller models. It has however
on�rmed the existen
e of 
hains of 
orrelation in BaTiO3. It has also revealed the 
ru
ialrole of the 
oupling between O and Ti displa
ements, that was hypotheti
ally suggestedby Comes et al. [224℄ to explain the 
orrelation. Going beyond the result presentedhere, Krakauer et al. have re
ently 
lari�ed the dynami
 nature of the 
hain-stru
ture
orrelation in KNbO3 from their �rst-prin
iples results [51℄.5.10 Comparative study of the latti
e dynami
s ofvarious perovskite ABO3 
ompounds5.10.1 Phonon band stru
tureIn this se
tion, we 
ompare the phonon dispersion relations of BaTiO3, PbTiO3 andPbZrO3, providing a global view of the quadrati
-order energy surfa
e around the 
ubi
perovskite stru
ture in these di�erent 
ompounds. The 
al
ulated phonon dispersion
urves along the high symmetry lines of the simple 
ubi
 Brillouin zone are shown inFig. 5.9. In ea
h 
ase we worked at the experimental latti
e 
onstant (4.00 �Afor BaTiO3,3.97 �Afor PbTiO3 and 4.12 �Afor PbZrO3. The unstable modes have imaginary frequen
ies.Their dispersion is shown below the zero-frequen
y line. The 
hara
ter of these modesalso has signi�
ant impli
ations for the properties of the system. This 
hara
ter has beendepi
ted in Fig. 5.9 by assigning a 
olor to ea
h eigenvalue, determined by the per
entageof ea
h atomi
 
hara
ter in the normalized eigenve
tor of the dynami
al matrix (red forA atom, green for B atom and blue for O atoms) 24.Barium titanate and potassium niobate both undergo a transition sequen
e with de-
reasing temperature through ferroele
tri
 tetragonal, orthorhombi
 and rhombohedral(ground state) stru
tures, all related to the 
ubi
 perovskite stru
ture by the freezing-inof a polar mode at �. The main features of the phonon dispersion of BaTiO3 dis
ussed in24For example, a normalized mode with A displa
ement 0.7, B displa
ement 0.5, and O displa
ements0.5, 0.1, and 0.0 (in generalized 
oordinates) would be 
olored via the 
ommand \0.49 0.25 0.26 setrgb-
olor" in the Adobe Systems In
. PostS
riptTM language.
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Figure 5.9: Cal
ulated phonon dispersion relations of BaTiO3, PbTiO3 and PbZrO3 alongvarious high-symmetry lines in the simple 
ubi
 Brillouin zone. A 
olor has been assignedto ea
h point based on the 
ontribution of ea
h kind of atom to the asso
iated dynami
almatrix eigenve
tor (red for the A atom, green for the B atom, and blue for the oxygens).Symmetry labels follow the 
onvention of Cowley, with the A atom at the origin.
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al matrix eigenve
tor for the unstable ferroele
tri
 modeat � (z-polarization). The 
orresponding eigendispla
ement in real spa
e 
an be obtainedby dividing ea
h value by the appropriate mass fa
tor pMion .ABO3 A B Ox Oy OzBaTiO3 +0:0178 +0:6631 �0:2842 �0:2842 �0:6311PbTiO3 +0:2314 +0:4024 �0:4792 �0:4792 �0:5704PbZrO3 +0:5033 �0:1786 �0:5738 �0:5738 �0:2374the previous Se
tion are very similar to those of KNbO3 [222℄. As a brief summary, themost unstable mode is at �, and this mode, dominated by the Ti displa
ement against theoxygens (Table 5.13), is the one that freezes in to give the ferroele
tri
 phases. However,the instability is not restri
ted to the � point. Bran
hes of Ti-dominated unstable modesextend over mu
h of the Brillouin zone. The 
at dispersions of the unstable transverseopti
 mode towards X and M, 
ombined with its rapid sti�ening towards R, 
on�ne theinstability to three quasi-two-dimensional \slabs" of re
ipro
al spa
e interse
ting at �.This is the �ngerprint of a \
hain-like" unstable lo
alized distortion for the Ti displa
e-ments in real spa
e [222, 241℄. Ex
ept for these modes, all the other phonons are stable inBaTiO3, whi
h makes the behavior of the unstable bran
hes relatively easy to understand.Lead titanate has a single transition to a low-temperature ferroele
tri
 tetragonalstru
ture, related to the 
ubi
 perovskite stru
ture by the freezing-in of a polar mode at�. The phonon dispersion of PbTiO3 shows similar features to that of BaTiO3, with someimportant di�eren
es. As in BaTiO3, the most unstable mode is at �, 
onsistent with theobserved ground state stru
ture. However, the eigenve
tor is no longer strongly dominatedby the displa
ement of the Ti against the oxygen along the Ti{O 
hains, but 
ontains asigni�
ant 
omponent of the Pb moving against the O atoms in the Pb{O planes (seeTable 5.13). Unstable Ti-dominated modes, similar to those in BaTiO3, 
an be identi�edin the vi
inity of the M{X line (M30 , X5 modes). However, Pb now plays an a
tive rolein the 
hara
ter of the majority of the unstable bran
hes, notably those terminating atM50 and X50 . Also, the Pb-dominated bran
h emanating from the ferroele
tri
 � modetowards R has a mu
h weaker dispersion than the 
orresponding, Ti-dominated, bran
hin BaTiO3. In 
onsequen
e, the unstable lo
alized ferroele
tri
 distortion in real spa
eis nearly isotropi
, in 
ontrast to the pronoun
ed anisotropy in BaTiO3. Finally, thereis an antiferrodistortive instability at the R-point (R25 mode). As similarly observed inSrTiO3 [173℄, this instability is 
on�ned to quasi-one-dimensional \tubes" of re
ipro
alspa
e running along the edges of the simple 
ubi
 Brillouin zone (R25 and M3 modesand the bran
h 
onne
ting them). The bran
hes emanating from this region stabilizerapidly away from the Brillouin zone edge towards, in parti
ular, �25 and X3. In realspa
e, this instability appears as a 
ooperative rotation of oxygen o
tahedra, with strong
orrelations in the plane perperpendi
ular to the axis of rotation, and little 
orrelationbetween rotations in di�erent planes. The la
k of interplane 
orrelation, arising from



CHAPTER 5 : LATTICE DYNAMICS 127
A0

A1
B0

B1

O1

O2

O3

O4

O5

Figure 5.10: S
hemati
 three-dimensional view of the atoms labeled in Table 5.14.the 
atness of the R25{M3 bran
h, suggests the absen
e of 
oupling between the oxygenmotion in di�erent planes. This will be dis
ussed further in the next se
tion.The ground state of PbZrO3 is an antiferroele
tri
 with 8 formula units per unit
ell, obtained by freezing in a set of 
oupled modes, most importantly modes at R and�(14 140)[242℄. The phonon dispersion 
orrespondingly shows even more pronoun
ed and
omplex instabilities than for PbTiO3. Overall, the unstable bran
hes are dominatedby Pb and O displa
ements, with no signi�
ant Zr 
hara
ter. There is still a polarinstability at the � point but the eigenve
tor (see Table 5.13) is 
learly dominated by thedispla
ement of lead against the oxygens while the Zr atom now moves with these oxygens.In fa
t, the modes where the Zr is displa
ed against the oxygens (�LO at 160 
m�1, M30 ,X5 modes) are now all stable. The o
tahedral rotation bran
h is again remarkably 
atand is signi�
antly more unstable at R25 and M3 than in PbTiO3. The antiferrodistortiveinstability retains some one-dimensional 
hara
ter but spreads into a larger region ofre
ipro
al spa
e : the �25 and X3 transverse oxygen motions, related to the R25 mode, arestill stable but with a relatively low frequen
y. We note �nally that the sti�est longitudinaland tranverse oxygen bran
hes have been shifted to higher energy relative to the titanates.5.10.2 Interatomi
 for
e 
onstantsIn the previous se
tion, 
omparisons between the three 
ompounds were made by analyz-ing phonon dispersion relations along high-symmetry lines in re
ipro
al spa
e. As previ-ously illustrated for BaTiO3, highly instru
tive pi
ture of the quadrati
-order stru
turalenergeti
s of the system is provided by dire
t examination of the real-spa
e interatomi
for
e 
onstants (IFC).Our 
onvention are the same as those de�ned for BaTiO3 in Se
tion 5.9.3. For 
onve-nien
e, the atoms are labeled a

ording to Table 5.14, as illustrated in Fig. 5.10. Theinteratomi
 for
e 
onstants are reported either in 
artesian 
oordinates or in terms of



CHAPTER 5 : LATTICE DYNAMICS 128Table 5.14: Label assigned to various atoms in terms of their position in redu
ed 
oordi-nates. A0 ( 0.0, 0.0, 0.0) B0 ( 0.5, 0.5, 0.5) O1 ( 0.5, 0.5, 0.0)A1 ( 0.0, 0.0, 1.0) B1 ( 1.5, 0.5, 0.5) O2 ( 0.5, 0.0, 0.5)O3 (-0.5, 0.5, 0.0)O4 ( 0.5, 0.5,-1.0)O5 (-0.5, 0.0, 0.5)Table 5.15: Self-for
e 
onstant (Ha/Bohr2) on the di�erent atoms in the unit 
ell.Atom Dire
tion BaTiO3 PbTiO3 PbZrO3A0 x=y=z +0:0806 +0:0247 +0:0129B0 x=y=z +0:1522 +0:1393 +0:2302O1 x=y +0:0681 +0:0451 +0:0166z +0:1274 +0:1518 +0:2758their longitudinal (k) and transverse (?) 
ontributions along the line 
onne
ting the twoatoms. The results for BaTiO3, PbTiO3 and PbZrO3 are presented in Tables 5.15, 5.16and 5.17.First, we examine the \self-for
e 
onstant," whi
h spe
i�es the for
e on a single isolatedatom at a unit displa
ement from its 
rystalline position, all the other atoms remaining�xed. The values are given in Table 5.15. The self-for
e 
onstants are positive for all atomsin the three 
ompounds, so that all three are stable against isolated atomi
 displa
ements.Therefore, it is only the 
ooperative motion of di�erent atoms that 
an de
rease the energyof the 
rystal and generate an instability, su
h as is observed in the phonon dispersionrelations presented in the previous Se
tion. The analysis of the IFCs will help us toidentify the energeti
ally favorable 
oupling in the displa
ements and elu
idate the originof the unstable phonon bran
hes.Next, we dis
uss the ferroele
tri
 instability at �, and the phonon bran
hes whi
hemanate from it. In barium titanate, it was found that the unstable eigenve
tor is domi-nated by Ti displa
ement along the Ti{O{Ti 
hain. If we 
onsider the simple 
ase whereonly Ti atoms are allowed to displa
e, we �nd that the destabilizing 
ontribution from theTi0{Ti1 k intera
tion itself is nearly enough to 
ompensate the Ti self-for
e 
onstant (Ta-ble 5.16). In addition, the fa
t that the Ti0{Ti1 ? intera
tion is 
omparatively small 
ana

ount dire
tly for the 
hara
teristi
 
at dispersion along �-X and �-M and the strongsti�ening along �-R, asso
iated with the 
hain-like nature of the instability. For the trueeigenve
tor, another important, though relatively small, destabilizing 
ontribution 
omesfrom the 
ooperative displa
ement of the O1 atoms against the titaniums along the Ti{O
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Table 5.16: Sele
ted longitudinal (k), transverse (?) and 
artesian (��) interatomi
 for
e
onstants (Ha/Bohr2) between di�erent pairs of atoms. The dipole-dipole (DD) andremaining short-range (SR) 
ontribution, have been separated following the s
heme de-s
ribed in Ref. [241℄. BaTiO3 PbTiO3 PbZrO3Atom Total DD SR Total DD SR Total DD SRB0-O1 (k) +0:0094 +0:2325 �0:2231 �0:0012 +0:1865 �0:1877 �0:0687 +0:1380 �0:2067(?) �0:0211 �0:0430 +0:0218 �0:0178 �0:0417 +0:0239 �0:0100 �0:0358 +0:0258B0-B1 (k) �0:0672 �0:0368 �0:0304 �0:0615 �0:0285 �0:0330 �0:0499 �0:0211 �0:0288(?) +0:0075 +0:0184 �0:0109 +0:0065 +0:0142 �0:0077 +0:0054 +0:0105 �0:0052B0-O4 (k) +0:0156 +0:0086 +0:0070 +0:0135 +0:0069 +0:0066 +0:0106 +0:0051 +0:0055(?) +0:0009 �0:0016 +0:0007 +0:0015 �0:0015 +0:0006 +0:0012 �0:0013 +0:0002B0-A0 (k) �0:0286 �0:0212 �0:0074 �0:0277 �0:0241 �0:0036 �0:0271 �0:0216 �0:0054(?) +0:0134 +0:0106 +0:0028 +0:0157 +0:0121 +0:0036 +0:0145 +0:0108 +0:0037(xx) �0:0006 +0:0000 �0:0006 +0:0012 +0:0000 +0:0012 +0:0007 +0:0000 +0:0007A0-O1 (k) �0:0004 +0:0114 �0:0118 +0:0108 +0:0162 �0:0054 +0:0139 +0:0169 �0:0030(zz) �0:0108 �0:0154 +0:0045 �0:0110 �0:0181 +0:0071 �0:0103 �0:0163 +0:0060A0-A1 (k) �0:0112 �0:0052 �0:0060 �0:0108 �0:0086 �0:0022 �0:0094 �0:0093 �0:0001(?) +0:0038 +0:0025 +0:0012 +0:0054 +0:0043 +0:0011 +0:0056 +0:0047 +0:0009
Table 5.17: Interatomi
 for
e 
onstant matrix in 
artesian 
oordinates (Ha/Bohr2) be-tween various pairs of oxygen atoms. Lines and 
olumns of the matrix 
orrespond respe
-tively to x, y and z displa
ements for the �rst and se
ond atom mentioned in the �rst
olumn of the Table.Atoms BaTiO3 PbTiO3 PbZrO3O1-O2 0� +0:0037 0:0000 0:00000:0000 �0:0087 +0:01190:0000 +0:0274 �0:0087 1A 0� +0:0035 0:0000 0:00000:0000 �0:0091 +0:01230:0000 +0:0271 �0:0091 1A 0� +0:0038 0:0000 0:00000:0000 �0:0065 +0:01100:0000 +0:0229 �0:0065 1AO1-O3 0� �0:0019 0:0000 0:00000:0000 +0:0017 0:00000:0000 0:0000 +0:0091 1A 0� �0:0012 0:0000 0:00000:0000 +0:0022 0:00000:0000 0:0000 +0:0079 1A 0� �0:0012 0:0000 0:00000:0000 +0:0021 0:00000:0000 0:0000 +0:0055 1AO1-O4 0� �0:0003 0:0000 0:00000:0000 �0:0003 0:00000:0000 0:0000 �0:0321 1A 0� +0:0003 0:0000 0:00000:0000 +0:0003 0:00000:0000 0:0000 �0:0326 1A 0� �0:0010 0:0000 0:00000:0000 �0:0010 0:00000:0000 0:0000 �0:0362 1AO1-O5 0� �0:0006 �0:0013 +0:0007�0:0007 +0:0013 +0:0007+0:0013 +0:0025 +0:0013 1A 0� �0:0010 �0:0013 +0:0010�0:0010 +0:0012 +0:0011+0:0013 +0:0022 +0:0012 1A 0� �0:0010 �0:0013 +0:0010�0:0010 +0:0011 +0:0010+0:0013 +0:0018 +0:0011 1A
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hains. This, together with the total 
ontribution of the rest of the IFCs, is responsiblefor the a
tual instability of the ferroele
tri
 Ti-dominated bran
hes in BaTiO3.For lead titanate, the energeti
s of the Ti-only displa
ements, dominated by the Tiself-for
e 
onstant and the Ti0{Ti1 k and ? intera
tions, are remarkably similar to thosein BaTiO3 (Table 5.16). However, in PbTiO3 there is also an important destabilizationasso
iated with pure Pb displa
ements 25. This 
an be fully attributed to the large dif-feren
e in the Ba and Pb self-for
e 
onstants, while the A0{A1 k and ? intera
tions arevery similar in the two 
ompounds. Also, the A0{B0 k and ? 
ation intera
tions are ofthe same order of magnitude as in BaTiO3 and 
ombine to give a surprisingly small xx
oupling. At �, symmetry 
onsiderations permit the mixing of Ti{O and Pb{O displa
e-ments and in the phonon bran
hes whi
h emanate from it, thus a

ounting for the natureof the ferroele
tri
 eigenve
tor. However, at X, M and R symmetry labels distinguish theTi-dominated (X5, M30 and R250) and Pb-dominated (X50 , M20 and R15) modes, whi
h 
anbe readily identi�ed in the 
al
ulated phonon dispersion. Also, the Pb0{Pb1 
oupling ismu
h smaller in magnitude than the Ti0{Ti1 
oupling, whi
h a

ounts for the relativelyweak dispersion of the Pb-dominated bran
h from � to R. In the true eigenve
tors, theseinstabilities are further reinfor
ed by displa
ements of the oxygens. While the longitudi-nal IFC between Ba0 and O1 was very small in BaTiO3, there is a signi�
ant destabilizingintera
tion between Pb0 and O1 in PbTiO3, whi
h further promotes the involvement ofPb in the unstable phonon bran
hes. We note that the Ti0{O1 longitudinal intera
tion isrepulsive in PbTiO3, but it is even smaller in amplitude than in BaTiO3 and its stabilizinge�e
t is 
ompensated by the transverse 
oupling between Pb and O1.In lead zir
onate, the unstable eigenve
tor at � is strongly dominated by Pb{O motion,with little involvement of Zr. This 
an be understood by 
omparing, in Table 5.16,the energeti
s of Zr-only displa
ements with those of Ti-only displa
ements in PbTiO3and BaTiO3: the Zr self-for
e 
onstant is signi�
antly larger and the Zr0{Zr1 k and ?intera
tions are smaller, so that Zr 
annot move as easily as Ti. Also, the Zr0{O1 kintera
tion is now signi�
antly repulsive, explaining why the Zr atom does not moveagainst the oxygens, but with them. As for the titanates, we note �nally that the Zratoms are mainly 
oupled along the B{O 
hains, so that the 
hara
teristi
 dispersion ofthe B-atom modes is preserved, only at higher frequen
ies. On the other hand, the Pbself-for
e 
onstant is mu
h smaller, the Pb0{Pb1 k and ? intera
tions are only slightlysmaller, and the destabilizing 
oupling between lead and oxygen is similar to that inPbTiO3, a

ounting for the involvement of Pb in the instability.Finally, we dis
uss the antiferrodistortive instability identi�ed with the R25 and M3modes and the bran
h along R{M 
onne
ting them. There is a marked variation inthe frequen
y of the R25 mode in the three 
ompounds, ranging from the la
k of anyinstability in BaTiO3, to PbTiO3 with an unstable R25 mode that nonetheless does not
ontribute to the ground state, and �nally to PbZrO3 in whi
h the R25 mode is evenmore unstable and 
ontributes signi�
antly to the observed ground state [242℄. Theeigenve
tor of this mode is 
ompletely determined by symmetry and 
orresponds to a25Spe
i�
ally, the Pb diagonal element of the full for
e 
onstant matrix at � (�0:0018 Ha/Bohr2) showsthat uniform Pb displa
ement is unstable. This is not the 
ase for Ba in BaTiO3.



CHAPTER 5 : LATTICE DYNAMICS 131
oupled rotation of the 
orner-
onne
ted oxygen o
tahedra. Its frequen
y depends onlyon the oxygen IFCs, predominantly the self-for
e 
onstant and the o�-diagonal 
ouplingbetween nearest neighbor oxygen atoms. In fa
t, the latter (for example, O1y{O2z in Table5.17) is remarkably similar in all three 
ompounds. The trend is therefore asso
iated withthe rapid de
rease in the transverse O self-for
e 
onstant from BaTiO3 to PbTiO3 toPbZrO3 and the resulting 
ompensation of the 
ontribution from the self-for
e 
onstantby the destabilizing 
ontribution from the o�-diagonal 
oupling.The self-for
e 
onstant 
an be written as a sum over interatomi
 for
e 
onstants, a
-
ording to the requirement of translational invarian
e: C��;kappa�(a; a) = �P0b;�0 C��;�0�(a; b).It is therefore of interest to identify whi
h interatomi
 for
e 
onstants are responsible forthe trend in the transverse oxygen self-for
e 
onstant. The suggestion that the trend isdue to 
ovalen
y-indu
ed 
hanges in the Pb{O intera
tions 
an be dire
tly investigatedthrough a \
omputer experiment." Everything else being equal, we arti�
ially repla
e theIFC between A0 and O1 atoms in BaTiO3 by its value in PbTiO3, 
onsequently modifyingthe self-for
e 
onstant on A and O atoms. For this hypotheti
al material, the A-atomdominated modes are shifted to lower frequen
ies while the frequen
y of the R25 modeis lowered to 40i 
m�1. If we introdu
e the stronger A0{O1 intera
tion of PbZrO3, weobtain an even larger R25 instability of 103i 
m�1.The previous simulation demonstrates the 
ru
ial role played by the lead-oxygen in-tera
tion in generating the AFD instability. However, this 
hange alone is not suÆ
ientto reprodu
e the 
atness of the R25{M3 bran
h, as the 
orresponding frequen
ies of theM3 mode in the two hypotheti
al 
ases above are 92 
m�1 and 25i 
m�1, respe
tively.Naively, the absen
e of dispersion of the antiferrodistortive mode along that line wouldbe interpreted as the absen
e of 
oupling between the oxygens in the di�erent planes.However, as 
an be seen in Table 5.17, the yy transverse 
oupling between O1 and O3 isfar from negligible, and a
ts to amplify the AFD instability at R with respe
t to M. Inthe lead 
ompounds, however, this is 
ompensated by another yz 
oupling, between O1and O5. The latter is signi�
antly smaller in BaTiO3 (by 35 %). If we 
onsider a thirdhypotheti
al 
ompound in whi
h this 
oupling in BaTiO3 is additionally 
hanged to itsvalue in PbTiO3, we re
over a 
at behavior along the R{M line. In the lead perovskites,the 
atness of this band appears therefore as a 
onsequen
e of a 
ompensation betweendi�erent interplane intera
tions, and 
annot be attributed to 
omplete independen
e ofoxygen motions in the di�erent planes.5.10.3 Transfer of the interatomi
 for
e 
onstantsAt �rst, we observed marked di�eren
es between the phonon dispersion relations andeigenve
tors in the three related 
ompounds. Through the real-spa
e analysis in theprevious se
tion, we have seen that these di�eren
es arise from 
hanges in a few keyinteratomi
 for
e 
onstants.First, we remark that B{O intera
tions depend strongly on the B atom, being similarin PbTiO3 and BaTiO3, and quite di�erent in PbZrO3. In fa
t, the SR for
e 
ontributionto the Zr0{O1 intera
tion and Ti0{O1 are very similar, so that the di�eren
e arises from
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ontribution. In PbZrO3, this 
ontribution is redu
ed in 
onsequen
e of thelower values of the Born e�e
tive 
harges (see Chapter 3). This trend provides anotherexample of the very deli
ate nature of the 
ompensation between SR and DD for
es,previously pointed out for BaTiO3.Next, we remark that A{O intera
tions depend strongly on the A atom, being similarin PbTiO3 and PbZrO3, and quite di�erent in BaTiO3. This 
hange originates in the
ovalent 
hara
ter of the bonding between Pb and O, whi
h results both in smaller A{OSR 
oupling and a larger Born e�e
tive 
harge for Pb. Even though the impa
t of thelatter on destabilizing the DD intera
tion is partly 
ompensated by the in
reased �1, thenet e�e
t is to promote the Pb{O instability.As dis
ussed above, the self-for
e 
onstant 
an be written as a sum over interatomi
for
e 
onstants. It 
an be easily veri�ed that the trends in the self-for
e 
onstants observedin Table 5.15 are primarily asso
iated with the trends in A{O and B{O intera
tions.The rest of the IFCs given in Table 5.16 are a
tually remarkably similar. For example,A{B intera
tions are apparently insensitive to the identity of A (Ba, Pb) or B (Ti, Zr).This is true also for A{A, B{B and most O{O intera
tions. The small di�eren
es observed
an at least in part be attributed to di�eren
es in the latti
e 
onstants and in �1 for thethree 
ompounds.The similarities in IFC's among 
ompounds with related 
ompositions o�er an in-triguing opportunity for the modelling of the latti
e dynami
s of solid solutions. In thesimplest 
ase, the latti
e dynami
s of ordered super
ells of 
ompounds su
h as PZT orBST 
ould be obtained by using the appropriate A{O and B{O 
ouplings from the pure
ompounds and averaged values for the A{B, A{A, B{B and O{O intera
tions. Theseideas have been su

essfully tested by Bungaro and Rabe [243℄ for PZT and by Ghosezet al. [244℄ for BST.5.11 Phonons in LiNbO3The investigation of the latti
e dynami
s of ferroele
tri
 oxides was not restri
ted toperovskite 
ompounds. The phonon dispersion 
urves of LiNbO3 in its two phases havealso been reported [℄.As for BaTiO3, a parti
ular attention has been re
ently paid at the � phonons [245℄.This allowed to 
larify some ambiguities 
on
erning the assignation of the di�erent modesmodes. Moreover, it has been showed that the eigenve
tor of the unstable ferroele
tri
mode has an overlap of 99% with the pattern of atomi
 displa
ement at the phase transi-tion. Also, following the same approa
h as for BaTiO3, it has been demonstrated that theinstability results from the near 
an
ellation between SR and DD for
es, the latter beingsuÆ
iently large to destabilize the 
rystal. Again, this illustrate that the ferroele
tri
behavior of the ferroele
tri
 
ompounds is not related to the perovskite stru
ture but tothe giant Born e�e
tive 
harges asso
iated to the mixed ioni
-
ovalent 
hara
ter of theirbonding.
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lusionsIn this Chapter, we have des
ribed the 
omputation of the phonon frequen
ies within avariational formulation of the density fun
tional perturbation theory and we have pre-sented a useful s
heme for the interpolation of the phonon dispersion 
urves. Theseformalisms have then been applied to various ABO3 
ompounds. Our results allowed toaddress two fundamental aspe
ts of the ferroele
tri
 instability.First, in agreement with the idea of Co
hran, it was demonstrated (for BaTiO3,SrTiO3, LiNbO3) that the ferroele
tri
 instability originates in the 
ompensation of thestabilizing short-range for
es by a large destabilizing Coulomb intera
tion. In this 
on-text, the Born e�e
tive 
harge appeared as a meaningful 
on
ept to understand the originof anomalous dipolar for
es in 
onne
tion with the ele
troni
 properties. The deli
atenature of the balan
e of for
es has been emphasized.Se
ond, it was observed that the displa
ement of a single atom is never unstable inthe di�erent ABO3 
ompounds whi
h where investigated. In BaTiO3, the appearan
e ofan instability requires a 
orrelation of the atomi
 displa
ements along a Ti-O 
hain ofminimum 10 atoms. Our 
al
ulations also 
on�rm the experimental eviden
e of lineardisorder in BaTiO3.It is interesting to realize that these two aspe
ts of the phase transition are not inde-pendent from ea
h others: the amplitude of the interatomi
 for
e 
onstants responsibleof the 
hain stru
ture instability are indeed a dire
t 
onsequen
e of the balan
e betweenthe short range for
es and the Coulomb intera
tion.Finally it is worth noti
ing that in spite of signi�
antly di�erent dispersion 
urvesdi�erent ABO3 
ompounds have very similar interatomi
 for
e 
onstants : the di�eren
esoriginate in the modi�
ation of few key intera
tions. This observation is parti
ularlyuseful to understand and predi
t the dynami
s of mixed 
ompounds.5.13 Referen
esThe results presented in this Chapter have been partly dis
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